Heusler-alloy-based CPP-GMR devices with high MR...

15
K. Hono Magnetic Materials Unit National Institute for Materials Science (NIMS) Tsukuba 305-0047, Japan http://www.nims.go.jp/mmu/ Heusler Alloys for Spintronic Devices July 29, 2015, C-SPIN, University of Minnesota Heusler-alloy-based CPP-GMR devices with high MR outputs Collaborators T. Furubayashi, Y. Sakuraba, Y. K. Takahashi S. T. Li, J. Chen, Du Ye, T. T. Sasaki CPP-GMR Read head for >2 Tbit/in 2 RA>1 Ωμm 2 MgO Current TMR head CPP-GMR Lateral SV CoFeB CoFeB FM FM NM 50 - 100 mΩμm 2 Takagishi et al. IEEE Trans. Magn. 46, 2086 (2010).

Transcript of Heusler-alloy-based CPP-GMR devices with high MR...

Page 1: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

K. Hono Magnetic Materials Unit

National Institute for Materials Science (NIMS) Tsukuba 305-0047, Japan

http://www.nims.go.jp/mmu/

Heusler Alloys for Spintronic Devices July 29, 2015, C-SPIN, University of Minnesota

Heusler-alloy-based CPP-GMR devices with high MR outputs!

Collaborators T. Furubayashi, Y. Sakuraba, Y. K. Takahashi

S. T. Li, J. Chen, Du Ye, T. T. Sasaki!

CPP-GMR

Read head for >2 Tbit/in2

RA>1 Ωµm2

MgO

Current TMR head

CPP-GMR Lateral SV

CoFeB

CoFeB

FM

FM NM

50 - 100 mΩµm2

Takagishi et al. IEEE Trans. Magn. 46, 2086 (2010).

Page 2: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

CPP-GMR and FM Heusler alloys

B2 X(Y or Z) L21 X2YZ A2 X or Y or Z Co2FeZ or Co2MnZ Heusler alloys

bulk interface

ΔRA ≈ 2ρFβ 2

1−β 2tF + 4ARF /N

γ 2

1−γ 2

For 1 Tb/in2

MR ~ 10-20% ΔΔV =ΔΔRA x J= MR% x VBIAS>12 mV

12% MR & J ~ 2x108 A/cm2

High damping against J after Jeff Childress, HGST

B2 L21

FM

FM

NM

β

β

γ

γ

Search for highly spinpolarized FM alloys!

arc melting or induction meting!

XRD & Thermal analysis! Spin polarization!Point Contact Andreev Reflection (PCAR)!

Conductance–bias!

DOS calculation!

DOS calculations: VASP!

+ annealing!

Tc, order-disorder temperature, melting point!

Alloy preparation!

Nb!

Sample!

"6! "4! "2! 0! 2! 4! 6!0.0!0.2!0.4!0.6!0.8!1.0!1.2!1.4!1.6!1.8!2.0!2.2!

P!=!1.0!P!=!0.0!

ΔΔ!=!1.5meV!

V(mVolt)!

G(V)/G

n !

GNS/GNN=2(1"|P|)!

GNS/GNN=1!

Page 3: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Ternary alloys P Ref.

Co2MnSi 56 21

Co2MnGe 58 1

Co2MnSn 60 12

Co2MnAl 60 12

Co2MnGa 60 1

Co2CrAl 62 17

Co2FeAl 59 17

Co2FeSi 60 10

Co2FeGa 58 22

Co2CrGa 61 23

Co2TiSn 57 24

Co2VAl 48 25

Fe2VAl 56 25

Quaternary alloys P(%) Ref.

Co2Mn(Ge0.75Ga0.25) 74 1

Co2Mn(Ga0.5Sn0.5) 72 2

Co2Fe(Si0.75Ge0.25) 70 3

Co2Fe(Ga0.5Ge0.5) 68 4

Co2(Cr0.02Fe0.98)Ga 67 5

Co2Mn(GeSn) 67 6

Co2(Mn0.95Fe0.05)Sn 65 7

(Co, Fe)2MnGe 65 8

Co2(Mn0.5Fe0.5)Ga 65 9

Co2(Cr0.02Fe0.98)Si 65 10

Co2Mn(Ti,Sn) 64 11

Co2Mn(Al0.5Sn0.5) 63 12

Co2Mn(GaxSi1-x) 63 13

Co2Fe(Al.Ga) 63 14

Co2Mn(SiGe) 63 15

Co2(Mn0.5Fe0.5)Si 61 16

Co2(Cr,Fe)Al 60 17

Co2Mn(Al0.5Si0.5) 60 18

Co2Fe(Ga0.5Si0.5) 60 19

Co2Fe(Al0.5Si0.5) 60 20

Metals and binary

P Ref.

Fe 46

Co 45

FeCo 50

Co75Fe25 58

B2-FeCo 60

[Co/Pd]n 60

Fe4N 59 26

Co/Pt 56 27

1. B. Varaprasad et al., APEX3 023002 (2010). 2. B. Varaprasad et al., Acta Matel.57 2702 (2009). 7. A. Rajanikanth et al., JAP103 103904 (2008). 10. S.V. Karthik et al., JAP102 043903 (2007). 12. A. Rajanikanth et al., JAP101 09J508 (2007). 17. S.V. Karthik et al., APL89 052505 (2006). 20. T.M. Nakatani et al., JAP102 033916 (2007). 21. A. Rajanikanth etal., JAP105 063916 (2009). 23. T.M. Nakatani et al., JPD41 225002 (2008). 25. S.V. Karthik et al., Acta Matel.55 3867 (2007). 26. A. Narahara et al., APL94 202502 (2009). 27. A. Rajanikanth et al., APL97 022505 (2010). 3-6, 8,9,11,13-17,18-20,22,24. To be submitted

Spin polarization measured by PCAR

V. Varaprasad et al. Acta Mater (2012).!

E

D↑

D↓

EF

X2YZ!X2Y(Z1-xZ' x)!

ΔΔRA increase by annealing

B2 X(Y or Z) L21 X2YZ A2 X or Y or Z Co2Fe(Ga0.5Ge0.5)

Ru(8)

Co2Fe(Ga0.5Ge0.5)(10)

(001) MgO

anneal Ta

Ag(5)

Co2Fe(Ge0.5Ga0.5)10)

Ag(5)

Ag(100)

Cr(10)

L21B2

as-depo Ta<400°C Ta>400°C

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

Ta allowed for head manufacturing

B.S.D.Ch.S. Varaprasad et a. Acta Mater. 60, 6257 (2012).!S. T. Li

Carey et al., 2011

Page 4: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

-1500 -1000 -500 0 500 1000 150020

22

24

26

28

30

32

34

RA (mΩµ

m2 ) MR=57% ΔRA=12.0 mΩµm2

H (Oe)

300 K

-1500 -1000 -500 0 500 1000 150018

24

30

36

42

48

54

60

RA

(mΩµ

m2)

H (Oe)

10 K

MR=183% ΔRA=33 mΩµm2

Large temperature dependence of MR

?

ΔR/R=183%

ΔR/R=57%

ΔRA= 12 mΩµm2, ΔR/R=57%

ΔRA= 33 mΩµm2, ΔR/R=183%

RT

10 K

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

T (K)

ΔRA

(mΩµm

2 )

Ta=600 oC

Ta=500 oC

Ta=300 oC as-depo.

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

Origin of T dependence of ΔΔRA

bulk

interface

ΔRA ≈ 2ρFβ 2

1−β 2tF + 4ARF /N

γ 2

1−γ 2

Which contributes to T-dependence of ΔRA, β or γ?

γγ∼∼0.6±0.22

γγ∼∼0.84±0.14

Page 5: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Anisotropy magnetoresistance (AMR) !

Δρρ

=ρ// − ρ⊥ρ//

×100(%)

I""

M" M"

ρ//

ρ⊥

Ferromagnet!

ρ// > ρ⊥ :

ρ// < ρ⊥ :Positive!Negative!

I""

Δρρ∝γ (D↑

(d ) −D↓(d ) ) σ↓ −σ↑( )

Kokado et al. (J. Phys. Soc. Jpn. 81, 024705 (2012)) !

no D↓(EF) !

D↓(E) D↑(E)

E

half-metal

EF +! -!no D↑(EF) ! +!-!

AMR is always negative in half-metal !Half-metal:!

Theory of AMR and spin asymmetry by Kokado!

D↓

D↑

∝1+ Δρ / ρc Δρ/ρ < 0, |Δρ/ρ|! D↓/D↑" P!.!

Eveluation of ββ using AMR measurements!

12

10

8

6

4

2

07006005004003002001000

-0.20

-0.15

-0.10

-0.05

0.00

8

6

4

2

0

-0.20

-0.15

-0.10

-0.05

0.00

Annealing temperature, Tann (°C)

AM

R ra

tio (%

)A

MR

ratio

(%)

∆RA

(mΩ

∙µm

2 )∆R

A (m

Ω∙µ

m2 )

Co2FeGa0.5Ge0.5 (NV = 29.5)

Co2FeGa0.5Ge0.5

Co2MnGa0.25Ge0.75 (NV = 28.75)

Co2MnGa0.25Ge0.75 (b)

(c)

Summary

Excellent correlation between AMR and ΔRA

ΔRA and AMR

ΔRA vs AMR ratio

Facile way to estimate βY. Sakuraba et al. APL104, 172407 (2014).!

AMR!

ΔRA!

CMGG/Ag/CMGG!AMR!

ΔRA!

CFGG/Ag/CFGG!

Y. Sakuraba!

Page 6: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

E D↓

CB-edge

VB-edgeCo

2 FeSi (NV = 30.3)Co

2 MnAl0.8 Si0.2 (NV = 28.3)

Co2 FeGa

0.25 Ge0.75 (NV = 28.9)

Co2 MnGa

0.5 Ge0.5 (NV = 29.3)

Δρ(T)= AMR(T) x ρ(T)

Temperature dependence of ΔΔρρ

Δρ/Δρ(

10 K

)

β of CFGG does not degrade at RT!!

Y. Sakuraba!

Y. Sakuraba et a. APL104, 172407 (2014).!

T dependence of µµCo at CMS & CFS/Ag interfacesH. Yako et al. MMM2014.

Ag(40) / Co2MnSi (10) / Ag (1)

Ms : Co2FeSiMs : Co2MnSi

μCo : Co2FeSi

Co2MnSI/Co2FeSi (10 nm)

Ag (1.0 nm)

Bulk region (VSM)

Ag interface region (XMCD)

μCo : Co2MnSi

1.0

0.8

0.6

0.4

0.2

0.010008006004002000

Temperature (K)

μC

o/μC

o (3

00 K

)M

S/M

S(1

0K),

Co2MnSi

Ag

MgO (001)-subs.

Cr (001) 20 nm

Ag (001) 40 nm

Co2FeSi or Co2MnSi 10 nm

Ag 1nmAl-cap 3nm

Co2MnSi!

Ag!

Ag(40) / Co2FeSi (10) / Ag (1)

Ag

Fe!Si Co2FeSi

Ag

Co2FeSi!

Ag!

Y. Sakuraba!

Page 7: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

How to suppress the reduction of spin moment at Hesuer/Ag interface?

N. Hase et al. JAP 109, 07E112 (2011).

Insersion of thin FM layer for increasing exchange stiffness

1 1

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

ΔRA

(mΩµm

2 ) CoFe 450 oC 250 oC 500 oC 400 oC 550 oC

(a)

Band matching at FM/NM interface

Co2MnGe! Rh2CuSn!

K. Nikolaev et al., Appl. Phys. Lett. 94, 222501(2009)!

maj.! min.!

spacer layer!

FM layer!thickness dependence!

F N F!

small R"F/N for up spin

large R!F/N for down spin!

ΔRA!∝"ARF/N·!2/(1–!2)!

# large MR ratios !

short!λs!

Page 8: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

All B2 CPP-GMR

Ru(8 nm)

Co2FeGa0.5Ge0.5(10 nm)

MgO(100) single crystal

Ag(100 nm)

Cr(10 nm)

CuZn or AgZn (5 nm)

Ag(5 nm)

Co2FeGa0.5Ge0.5(10 nm)

T. Furubayashi! Ye Du!

Cu or Ag!

Zn!

MgO/Cr(10)/Ag(100)/Co2FeGa0.5Ge0.5(10)/CuZn(5)/Co2FeGa0.5Ge0.5 (10)/Ag(5)/Ru(8) (nm)

CFGG/CuZn/CFGG PSV!

•  Compared to Ag spacer –  larger ΔRA ~8 mΩ·µm2 at low Ta=350 ˚C –  larger RPA ~35 mΩ·µm2 > ~20mΩ·µm2

*H.S. Goripati at al., J. Appl. Phys., 113. 043901 (2013).

−1 0 1

1.5

1.6

1.7

1.8

36

40

44

H (kOe)

R (Ω)

RA

(mΩ·µ

m2 )

Ta=350 ˚C!

MR=23%!

0.2×0.1 µm!

0 5 10 15

Ta(°C)

500

450

400

350

300

as depos.

ΔRA(mΩ·µm2)

P (

arbi

trar

y un

it)

Ag spacer

T. Furubayashi et al. JAP, submitted.!

Page 9: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Ru !Ag !

CFGG!

Ag !CFGG!

Ag !

CuZn!Ru !Ag !

CFGG!

CuZn !CFGG!

Ag!

400o

C!

•  larger RPA compared to Ag space # RF/N! •  fast Zn diffusion may be responsible for high ΔRA at low Ta, 350oC

CuZn spacer is replaced with Ag spacer by interdiffusion!!

Why CuZn spacer causes high ΔRA at low Ta?!

ΔRA ≈ 2ρFβ 2

1−β 2tF + 4ARF /N

γ 2

1−γ 2

Ta= 400oC, ΔΔRA=14 mΩΩµµm2 !Ta= 350oC, ΔΔRA=9 mΩΩµµm2 !Cu! Zn! Cu! Zn!

AgZn!

CFGG!

CFGG!

Ag!

Ag!

Ag!

CFGG!

CFGG!Ag!

Ag!

ΔΔRA and Ta of Heusler/NM/Heusler PSV!

200 300 400 500 600 70002468

10121416182022

Ta (°C)

ΔRA

(mΩ·µ

m2 )

poly-<100> CFGG/Ag poly-<110> CFGG/Ag poly Carey et al., 2011 Diao et al., 2013 !!

epi-(001) CFGG/Ag CFGG/CuZn CFGG/XY

Du Ye!

CFGG/AgZn!

CFGG/CuZn!

CFGG/Ag!350°C!

p-Carey et al., 2011

p-Diao et al., 2013

Y. Du et al. APL, submitted.!

Page 10: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Very large ΔΔRA of CFGG/AgZn/CFGG PSV MgO//Cr10/Ag100/CFGG10/AgZn5/CFGG10/Ag5/Ru8

Selection of an appropriate spacer give large ΔRA – need of new materials search!

Du Ye!

Y. Du et al. APL, submitted.!

Interlayer diffusion during annealingT. T. Sasaki!

AgZn!CFGG!

CFGG!

Ag!

Ag!CFGG!

CFGG!

Ag!

Y. Du et al. APL, submitted.!

Page 11: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Structure of each layer in CFGG/XY/CFGGTan=350oC! Tan=630oC!

(200)!B2!

B2!

Z.A. <110>!

<100>Ag!

Z.A. <100>!

fcc!

(111)!

(200)!

L21!

L21!

Z.A.!<100>!

<100>Ag!

Z.A.!<110>!

fcc!

As-dep.!

(200)!B2!

B2!

B2!

<100>Ag!

Spacer: B2! Spacer: fcc! Spacer: fcc!

CFGG: B2! CFGG: B2! CFGG: L21!

B2"AgZn!fcc"Ag!fcc"Ag!

B2"CFGG!

B2"CFGG! B2"CFGG!

B2"CFGG! L21"CFGG!

L21"CFGG!

Ta=550!!

268% GMR by interface band matching?

120

100

80

60

40

20

0

RA

(mΩμ

m2 )

-1.0 -0.5 0.0 0.5 1.0

Magnetic field (kOe)

MR = 268% ΔRA = 76 mΩµm2!

MRint = 72% ΔRA = 21 mΩµm2!

RT"

3 K"

XY has an excellent band matching with Ag λs of XY is only ~2 nm # interface insertion!

J. W. Jung, MMM-Intermag Joint 2016.!

insertion of a matching layer!

J. W Jung!

Page 12: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

100

90

80

70

60

50

40

30

20

10

0

MR

ratio

(%)

0.012 3 4 5 6 7 8 9

0.12 3 4 5 6 7 8 9

1

MgO

-MTJ

Heusler CPP-GMREpitaxialpoly

RA (Ω·µm2)

NIMSNIMS

CFGG/X/Ag/X/CFGG!

界面挿入層XによるMR比 ΔRA改善効果

200

150

100

50

0

MR

ratio

(%)

2015201020052000Year

250

300CPP-GMR!

LT"

RT"

!!!!CFGG/Ag/CFGG!!!!!!!Li!et!al.,!APL!(2013)!!!!!!!!!!!

CFMS/Ag/CFMS!!!Sato!et!al.!APEX!Sakuraba!et!al.!APL!

Limit of 3d-metal MR <20%!

!!!!CFGG/AgZn/CFGG!!!!!!!Du!et!al.,!!(2015)!!!!!!!!!!!

!!!!CFGG/X/Ag/X/CFGG!!!!!!!!Jung!et!al.,!!(2015)!!!!!!!!!!!

Heusler alloy based CPP-GMR!

HGST,!Intermag2015!

CFGG/Ag orientation dependence of ΔΔRA!

CFGG[001]/Ag[001]!

CFGG[011]/Ag[111]!

CFGG[011]/Cu[111]!

CFGG[001]/Cu[001]!

J.Chen et al. JAP, 115, 233905 (2014).!

J. Chen!

Page 13: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Polycrystalline CFAS PSV!

Ta!(3!nm)

Ru!(10!nm)Ag!(3!nm)

Co2Fe(Al,Si)(5!nm)

Ag!(7!nm)

Ag!(5!nm)

Ru(6!nm)/Ta(2!nm)/Ru(2!nm)

Co2Fe(Al,Si)(5!nm)

Si/SiO2

Ta!(5!nm)

Cu!(250!nm)

Ta

SiO2!

Cu!

Cu!

Ta!

Ru!

Ag!Co2Fe(Al,Si)!Ag!Co2Fe(Al,Si)!Ag!

Chemical!Mechanical!Processing!

T.M. Nakatani et al. Acta Mater. 61, 3695 (2013). !

T. Nakatani

Ra= 0.2 nm NiTa!

Cr!CFGG(5)!

CFGG(5)!

MTO!

Ag(7)!

Cu!

Ta!

Ag!Ru!

(001) polycrystalline PSV: MTO buffer!

Y. Du et al., APL 103, 202401 (2013).!

epi.!

poly.!

Si-SiO2 subs./Ta/Cu(250)/Ta/NiTa/Mg0.5Ti0.5O buffer!

-1 0 116.1

16.2

16.3

16.4

16.5

16.6

Hex (kOe)

223

224

225

226

227

228

229MR=2.45%ΔRA=5.5 mΩ µm2

R (o

hm)

RA

(mΩ

µm

2 )

(001)-oriented device show higher DRA compared to (011)-oriented!

Du Ye!

Page 14: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Epitaxial device by wafer bonding

Si(001) Si(001)

Buffer layers (001)-Heusler

spacer

Capping layer

Py shield

(001)-Heusler

Py shield layer

Buffer layers (001)-Heusler

spacer

Capping layer (001)-Heusler

Si(001)

Py shield

WWaaffeerr bboonnddiinngg

polycrystalline!

allows high temperature processing high MR low RA will lead other applications of CPP-GMR!

J. Chen!

in collaboration with AIST!

2 Tbit/in2 read head!

10 nm node STT-MRAM!

TMR approach!

MR>300%, RA<0.8Ωµm2

for 10X STT-MRAM and spin-logic

reduction of barrier Eg!

Future direction!

Page 15: Heusler-alloy-based CPP-GMR devices with high MR outputscspin.umn.edu/events/heuslers2015/presentations/k_hono.pdf · S. T. Li, J. Chen, Du Ye, T. T. Sasaki! CPP-GMR ... CPP-GMR and

Acknowledgement!

S. T. Li

Y. Sakuraba! Y. K. Takahashi! T. Furubayashi!

S. Bosu T. T. Sasaki

Ye Du J. Chen Ikhtiar

T. Nakatani (now HGST)

J. W. Jung