GWII 9 Multiphase Flow

download GWII 9 Multiphase Flow

of 39

Transcript of GWII 9 Multiphase Flow

  • 8/9/2019 GWII 9 Multiphase Flow

    1/39

    FS 2011 Groundwater II Multiphase flow 1

    Mehrphasenströmungen

    Multiphase Flow

    Fritz Stauffer,

    Institute of Environmental Engineering, ETH Zürich

    Groundwater II

  • 8/9/2019 GWII 9 Multiphase Flow

    2/39

    FS 2011 Groundwater II Multiphase flow 2

    Capillary zone

    unsaturated zone

    Water

     pressure

    θ 

     z   z

    Capillary

    zoneVol. water content

    Piezometer 

    Groundwater table

    Saturated zone

     p

  • 8/9/2019 GWII 9 Multiphase Flow

    3/39

    FS 2011 Groundwater II Multiphase flow 3

    Two-phase flowAt the same time:

    • Interconnected water phase

    • Interconnected air phase

    Volumetric water content θ w [L3/L3]:

    Volume of water per unit volume of porous medium

    θ w:≤ n n: Porosity [-]

  • 8/9/2019 GWII 9 Multiphase Flow

    4/39

    FS 2011 Groundwater II Multiphase flow 4

    Darcy law for the water phase• Index w

    • For constant water density ρ w

    ( )   ww w ww

     pS z g ρ 

    ⎛ ⎞= − ∇ +⎜ ⎟⎝ ⎠

    v K

    vw: Specific flux of water [L/T]

     pw: Water pressure [M L-1 T-2]

    Kw: Hydraulic conductivity of water, Kw(S w) [L/T]S w: Saturation of water phase S w=θ w/n [-]

  • 8/9/2019 GWII 9 Multiphase Flow

    5/39

    FS 2011 Groundwater II Multiphase flow 5

    Darcy law for the air phase• Index a

    • For constant air density ρa

    ( )   aa a a

    a

     pS z

    g ρ 

    ⎛ ⎞= − ∇ +

    ⎜ ⎟⎝ ⎠v K

    va: spezific air flux of [L/T]

     pa: Air pressure [M L-1 T-2]

    Ka: Conductivity for air, Ka(S a) [L/T]

    S a: Saturation of air phase S a=θ a/n [-]

    Condition:

    S w+ S a=1

  • 8/9/2019 GWII 9 Multiphase Flow

    6/39

    FS 2011 Groundwater II Multiphase flow 6

    Generalized Darcy law

    • For variable density of water and air 

    [ ]

    [ ]

    ( )

    ( )

    w w

    w w ww

    a aa a a

    a

    S  p

    S  p

     ρ μ 

     ρ μ 

    = −∇ −

    = −∇ −

    kv g

    kv g

    k: Permeability [L

    2

    ]μ : Dynamic viscosity [M T-1 L-1]

  • 8/9/2019 GWII 9 Multiphase Flow

    7/39

    FS 2011 Groundwater II Multiphase flow 7

    Mass balance for water and

    air phase

    • Without considering mass exchange between phases• Without sources and sinks

    ( )   ( )

    ( )  ( )

    w w

    w w

    a a

    a a

    n S 

    n S 

     ρ  ρ 

     ρ  ρ 

    ∂∇ ⋅ = −∂

    ∂∇ ⋅ = −∂

    v

    v

    t : Time [T]

  • 8/9/2019 GWII 9 Multiphase Flow

    8/39

    FS 2011 Groundwater II Multiphase flow 8

    Mass balance for water and

    air phase

    • Darcy law inserted:

    ( )

    ( )

    w ww w

    w

    a aa a

    a

     p S S z n

    g t 

     p S S z n

    g t 

     ρ 

     ρ 

    ⎛ ⎞⎛ ⎞   ∂∇ ⋅ ∇ + =⎜ ⎟⎜ ⎟⎜ ⎟

      ∂⎝ ⎠⎝ ⎠⎛ ⎞⎛ ⎞   ∂

    ∇ ⋅ ∇ + =⎜ ⎟⎜ ⎟⎜ ⎟   ∂⎝ ⎠⎝ ⎠

    K

    K

    Non-linear diffential equation of second order

    4 variables: S w, S a, pw, pa; 3 equations:1 relation needed: ⇒S w( pw, pa)

    1w a

    S S + =

  • 8/9/2019 GWII 9 Multiphase Flow

    9/39

    FS 2011 Groundwater II Multiphase flow 9

    If influence of air phase on water

    flow is disregarded

    • No friction losses in air flow considered •   pa=0

    ( )   w ww w

    w

     p S S z ng t  ρ 

    ⎛ ⎞⎛ ⎞   ∂∇ ⋅ ∇ + =⎜ ⎟⎜ ⎟⎜ ⎟   ∂⎝ ⎠⎝ ⎠K

    Richards equation:

    ( )( )   ( )w w ww w w ww w

     p S pS p z n pg p t  ρ 

    ⎛ ⎞⎛ ⎞  ∂ ∂∇ ⋅ ∇ + =⎜ ⎟⎜ ⎟⎜ ⎟   ∂ ∂⎝ ⎠⎝ ⎠

    K

  • 8/9/2019 GWII 9 Multiphase Flow

    10/39

    FS 2011 Groundwater II Multiphase flow 10

    Water retention curve• Assume: Water is wetting phase towards

    solid material (controlled by wetting angle)• Interface water-air is curved 

    • Local radius of curvature depends on pressure difference pc at interface forhydrostatic conditions due to mechanical

    equilibrium•   pc: capillary pressure

    = -c a w p p p

    a

    w

  • 8/9/2019 GWII 9 Multiphase Flow

    11/39

    FS 2011 Groundwater II Multiphase flow 11

    Water retention curve• Discontinuity of pressure at the interface

    • Pressure on concave side is larger than on convex side

    1 2

    1 1 = -c a w wa p p p

     R Rσ 

    ⎛ ⎞= ⋅ +⎜ ⎟

    ⎝ ⎠ R1, R2: Principal radii of curvature (orthogonal sections)

    σ wa: Interfacial tension (0.0729 N/m for water-air)

     R1 R2

     R1

    Laplace equation of capillarity:

  • 8/9/2019 GWII 9 Multiphase Flow

    12/39

    FS 2011 Groundwater II Multiphase flow 12

    • Consider one capillary• Assume spherical interface

    Capillary pressure-pore radius

    Concept

    2coswa

    c p

    σ α =

     pc/( ρ wg)

    α : Wetting angle

    a

    w  α 

  • 8/9/2019 GWII 9 Multiphase Flow

    13/39

    FS 2011 Groundwater II Multiphase flow 13

    Water retention curve

    • Saturation S w is essentially a function ofcapillary pressure pc

    •   S w

    ( pc

    ) is to be determined experimentally

    in general

    • Usually it is assumed that S w( pc) is identical

    for hydrostatic conditions and for steady-state and transient flow conditions

  • 8/9/2019 GWII 9 Multiphase Flow

    14/39

    FS 2011 Groundwater II Multiphase flow 14

    Water

    retention

    curve• Sand packing

    • Different curves fordrainage undimbibition

    • Hysteresis effect!

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 0.5 1

    Sw

      p  c   (  c  m   )

    Drainage

    Imbibition

       h

      c

  • 8/9/2019 GWII 9 Multiphase Flow

    15/39

    FS 2011 Groundwater II Multiphase flow 15

    Water retention curve: Models

    • Approach of Brooks und Corey (1966):

    ,

    ,

    ,

    ,

    ;

    1

    1; 0

    w w r    bw e c b

    w r c

    w e c b

    S S    pS p p

    S p

    S p p

    λ −   ⎛ ⎞

    = = ≥⎜ ⎟−   ⎝ ⎠

    = ≤ ≤

    S w,e: Effective saturation [-]S w,r : Residual saturation [-]

     pb: Air-entry capillary press. [M L-1

    T-2

    ]λ : Pore distribution index [-]

     pc

    S wS w,r 

     pb

    0

  • 8/9/2019 GWII 9 Multiphase Flow

    16/39

    FS 2011 Groundwater II Multiphase flow 16

    Water retention curve: Models

    • Approach of van Genuchten (1980):

    α , n und m : Parameters

    Usually: m=1-1/n

    ,

    ,

    ,

    1 ; 01

    1

    m

    w w r 

    w e cn

    w r c

    w

    S S S pS   p

    gα 

     ρ 

    ⎛ ⎞⎜ ⎟

    −   ⎜ ⎟= = ≥⎜ ⎟−   ⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟

    ⎝ ⎠⎝ ⎠

     pc

    S wS w,r 0

  • 8/9/2019 GWII 9 Multiphase Flow

    17/39

    FS 2011 Groundwater II Multiphase flow 17

    Hysteresis in Water retention curve

    • Relation S w( pc) is not unique.

    • Dependent on history of imbibition – and/ordrainage cycles.

    • Single pore can exhibit same capillary pressure

    for water filled and dry conditions. The watercontent can be different for same capillary

     pressure.

    • During imbibition air bubbles can be trapped

    (insular air).

    • For drainage pores can remain water saturated.

     ρ 

  • 8/9/2019 GWII 9 Multiphase Flow

    18/39

    FS 2011 Groundwater II Multiphase flow 18

    Hysteresis in Water retention curve

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.5 1

    S

       h  c

       (  m   ) 1. Drainage

    2. Drainage

    Imbibition

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 0.5 1

    S

       h  c

       (  m   )

    • Sand packing

    • Incl. primarywetting curves

  • 8/9/2019 GWII 9 Multiphase Flow

    19/39

    FS 2011 Groundwater II Multiphase flow 19

    Hydraulic conductivity

    • Approach of Brooks und Corey (1966):

    , ,( ) ; =3+2/w w w sat w eK S K S  ε  ε λ =

    • Approach of van Genuchten (1980):

    ( )

    21/ 2 1/

    , , ,( ) 1 1 ; =1-1/

    mm

    w w w sat w e w eK S K S S m n⎡ ⎤

    = − −⎢ ⎥⎣ ⎦

    Hysteresis effect in K w(S w): exists, but it is relatively

    small. However it may be important in K w( pc).

  • 8/9/2019 GWII 9 Multiphase Flow

    20/39

    FS 2011 Groundwater II Multiphase flow 20

    Hydraulic conductivity

    • Sand packing

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    Sw

       K  r

    1. Drainage

    2. Drainage

    ImbibitionK r =K (S w)/K sat 

    • Relative

    hydraulicconductivity

  • 8/9/2019 GWII 9 Multiphase Flow

    21/39

    FS 2011 Groundwater II Multiphase flow 21

    Numerical solution

    • Finite difference method of FD

    • Finite element method FE

    • Finite volume method FV

    ( )( ( )w ww w ww w

     p pS K p z n p

    g p t  ρ 

    ⎛ ⎞   ∂∂∇ ⋅ ∇ + =⎜ ⎟ ∂ ∂

    ⎝ ⎠

    Differential equation

    for unsaturated flow:

    Parameters: ( )( )   ); ; ; 0w w c w c c a w aK S p S p p p p p= − =

    ( )w ww

    S   p p

    ∂∂

      ( )( )w w cK S p

  • 8/9/2019 GWII 9 Multiphase Flow

    22/39

    FS 2011 Groundwater II Multiphase flow 22

    Numerical solution

    • Initial condition

    • Boundary conditions

    • System of linear equations

    • Solve linear equation system

  • 8/9/2019 GWII 9 Multiphase Flow

    23/39

    FS 2011 Groundwater II Multiphase flow 23

    Numerical solution

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0.0 0.5 1.0

    S

           z

             '

    t'=1

    t'=10

    t'=20

    t'=30

    t'=40

    t'=50

    • Example Infiltration:

    Initial condition: hydrostatic

    Length of column =10 hb

    hb = pb /  ρ wg

    Lower boundary impermeable

    Infiltration rate N =0.1 K sat 

    Brooks-Corey-Par.: λ =2, S r =0, S max=1Result S ( z,t ) dimensionless:

    'b

     z

     z h= '  sat 

    b

    t K t  nh=   n: Porosity

  • 8/9/2019 GWII 9 Multiphase Flow

    24/39

    FS 2011 Groundwater II Multiphase flow 24

    Numerical solution

    Infiltration into

    layered sand packing:Inf.-rate = 0.082 mm/s

    K sat,fine = 0.23 mm/s

    K sat,coarse = 0.73 mm/s

    Stauffer and Dracos, 1986

    I filt ti f t ft 10 i I filt ti f t ft 30 i

  • 8/9/2019 GWII 9 Multiphase Flow

    25/39

    FS 2011 Groundwater II Multiphase flow 25

    Infiltration front after 10 min Infiltration front after 30 min

    Stauffer and Dracos, 1986

  • 8/9/2019 GWII 9 Multiphase Flow

    26/39

    FS 2011 Groundwater II Multiphase flow 26

    Multiphase flow

    • Existence of several non-mixing fluid phases

    • Ex.: Water – air – mineral oil

    • Solid in contact with two fluids:

    Fluid 1

    Fluid 2

    fest

    α    σ s,1   σ s,2σ 1,2

    Mechanical equilibrium, if: σ 1,2 cos α = σ s,1 -  σ s,2 Young’s law

    σ 1,2

    : Interfacial tension between fluids 1 und 2

    σ s,1: Interfacial tension between solid and fluid 1

  • 8/9/2019 GWII 9 Multiphase Flow

    27/39

    FS 2011 Groundwater II Multiphase flow 27

    Multiphase flow

    • No equilibrium, if:   σ 1,2 cos α 

  • 8/9/2019 GWII 9 Multiphase Flow

    28/39

    FS 2011 Groundwater II Multiphase flow 28

    Wetting hierarchy

    • If several fluid phases are present

    • One phase is wetting, one phase is non-wetting, the

    remaining phases are ambivalent, wetting-non-wetting

    Ex.: For mineral solid (e.g., quartz sand) water is wetting, air

    is non-wetting, oil is wetting if water is absent and oil is non-

    wetting if air is absent.

    a)  b) c)

    Mineral

    surface

    Organic

    surface

  • 8/9/2019 GWII 9 Multiphase Flow

    29/39

    FS 2011 Groundwater II Multiphase flow 29

    Multiphase flow

    • A fluid phase gets immobile, if thesaturation is smaller than the residual

    saturation

    • The residual saturation of mineral oilmay be very small, if water and air are

     present in the pore.

    • Flux equations and mass balance equations are similar to

    equations for two phase flow.

  • 8/9/2019 GWII 9 Multiphase Flow

    30/39

    FS 2011 Groundwater II Multiphase flow 30

    Multiphase flow

    • Relation between capillary pressure and fluid content is

    analogue to two-phase flow.1,2

    1,2,

    2

    cosc s p ar 

    σ 

    =

    S oS w

     pc= pa- po

    0

     pc= po - pw

    0

    o

    w

    a

    o p

    bwo   pboa

    S w

     pc= pa - pw

    0

    a

    w p

    bwa

  • 8/9/2019 GWII 9 Multiphase Flow

    31/39

    FS 2011 Groundwater II Multiphase flow 31

    Static distribution of light fluid

    •   ρ a

  • 8/9/2019 GWII 9 Multiphase Flow

    32/39

    FS 2011 Groundwater II Multiphase flow 32

    Rough estimate of mineral oil

    migration

     R0

    hcwa

    hs

    Groundwater 

    Capillary fringe

     H 1

    S o1 z

    Oil spill

    Phase 1: Cylindrical oil spill, essentially vertical migration

    ( )

    ( )

    1

    1

    1 ,max

    ,max

    ( )

    / 2 ln 1

    / 2

    o

    o o

    s w coa

    s w coa

    n S t zK S 

     z z h h

    h h

    = ⋅

    ⎡ ⎤⎛ ⎞⋅ − + +⎢ ⎥⎜ ⎟

    ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

  • 8/9/2019 GWII 9 Multiphase Flow

    33/39

    FS 2011 Groundwater II Multiphase flow 33

    Rough estimate of mineral oil

    migrationPhase 2: Mobile oil plug leaves behind practically immobile trace

     R0hcwa

    Groundwater 

    Capillar fringe

     H 1S o1 z

    S ro1

    mobile

    immobile

  • 8/9/2019 GWII 9 Multiphase Flow

    34/39

    FS 2011 Groundwater II Multiphase flow 34

    Rough estimate of mineral oil

    migration

    hcwa

    Groundwater 

    Capillary fringe

     H 1S ro1

    S o1   H 

    Phase 3: Mobile oil plug reaches capillary fringe

    ( )

    112

    1 1 0 1 1

    o ro

    o ro o ro

    V S  H H 

    n S S R S S  π 

    = −

    − −

  • 8/9/2019 GWII 9 Multiphase Flow

    35/39

    FS 2011 Groundwater II Multiphase flow 35

    Rough estimate of mineral oil

    migration

    Phase 4: Mobile oil plug sinks into groundwater (swim condition)

    hcwa

     H 1   S ro1

    S o1

    S o3 zmax

     H  D

    max3

    1 1

    o d coa o cwa w

    ow o o

    o ro

     H h h z

    S S 

     ρ ρ ρ 

     ρ ρ ρ 

    − +=− +

  • 8/9/2019 GWII 9 Multiphase Flow

    36/39

    FS 2011 Groundwater II Multiphase flow 36

    Rough estimate of mineral oil

    migrationPhase 5: Mainly radial migration within capillary fringe.

    Sinking oil goes up and leaves behind immobile trace

    S ro1

    S

    o1S ro3

     R0  Rmax

    d hcoaS o2S o2

      S o2   w

    hcoa

     zmax

    2 2 1 1 max 3

    max 02

    1  o d coa o ro

    w coa ro

     HS h S z S 

     R R h S 

    ⎛ ⎞− −

    = ⋅ +⎜ ⎟⎝ ⎠

    Rough estimate of mineral oil

  • 8/9/2019 GWII 9 Multiphase Flow

    37/39

    FS 2011 Groundwater II Multiphase flow 37

    g

    migrationPhase 6: Migration within capillary fringe in the flow direction of

    groundwater until all mineral oil is immobile (slow process)

    S ro1

    So1

    S ro3 zmax

     R0 Rmax

    S ro2

     L( y)

     y Rmax

    whcoa

    ( ) 2 22 2 max2

    2( )

    für < y

    o ro

    ro

    0 max

    S S R y L y

     R R

    ⋅ − ⋅ −=

    Additional:

    Influence of water

    table fluctuations

  • 8/9/2019 GWII 9 Multiphase Flow

    38/39

    FS 2011 Groundwater II Multiphase flow 38

    Static distribution of heavy

    fluid

    •   ρ a

  • 8/9/2019 GWII 9 Multiphase Flow

    39/39

    FS 2011 Groundwater II Multiphase flow 39

    Infiltration of dense fluid

    Chlorinated hydrocarbon

    Migration in groundwater is highly influenced by heterogeneities