GSI and Hoek-Brown Procedure

download GSI and Hoek-Brown Procedure

of 5

Transcript of GSI and Hoek-Brown Procedure

  • 8/12/2019 GSI and Hoek-Brown Procedure

    1/5

    Review:GSIandHoekBrownProcedure

    The presence of geological structures within a rock mass (joints, shears, etc.), requires that

    consideration be given to the combined influence of intact rock blocks and discontinuities when

    calculatingtherockmass'responsetotunnelling.This is incontrasttomosttestingcarriedoutduring

    geotechnicalinvestigations,

    which

    is

    usually

    restricted

    to

    laboratory

    testing

    of

    intact

    rock

    samples.

    In

    situ tests are often prohibitively expensive and associated with their own issues of reliability,

    repeatability and scale.Thishas led to thedevelopmentofanumberof systems that link rockmass

    propertiestoobservationsoftherockmasscharacteristics.Amongthese,theGeologicalStrengthIndex

    (GSI) coupled with the HoekBrown failure criterion has become one of the industry standards for

    estimatingrockmasspropertiesoninternationaltunnellingprojects.

    The HoekBrown failure criterion is an empirical formulation for estimating the confinement

    strengthrelationshipofarockmass.It'snonlinearformdistinguishesitfromthelinearMohrCoulomb

    failurecriterion(Fig.1a).Thecriterionwasoriginallyconceivedbasedonexperienceswithbrittlefailure

    inhard rock anddeveloped to assume that rockmass failurewas controlledbyjointingbutwithno

    preferred failure directions (Hoek & Brown 1980); i.e. the rock mass responds as an equivalent

    continuum.Later

    revisions

    saw

    the

    Hoek

    Brown

    failure

    criterion

    coupled

    with

    Bieniawski's

    Rock

    Mass

    Rating(RMR)systemasameanstoscalelaboratoryintactrockpropertiestothoseforthejointedrock

    mass(Hoek&Brown1988),andimprovementstobetteraccountforpoorerqualityrockmasses(Hoek

    etal.1992).Furtherexperiencewith the latter found that itwasdifficult toapplyRMR toverypoor

    quality rock masses. This led to the introduction of the Geological Strength Index (GSI) as a

    characterization system based more heavily on fundamental geological observations and less on

    'numbers' (Hoeketal.1995).Themostuptodateversion,Hoeketal. (2002), representsamajor re

    examination of the entire HoekBrown criterion and includes new derivations for the relationships

    betweenthedifferentinputparametersandGSI.

    ThegeneralizedformofthenonlinearHoekBrownfailurecriterionis:

    (1)where and are the major and minor effective principal stresses at failure, is the uniaxialcompressivestrengthoftheintactrock,and,sandaarematerialconstantsfortherockmass.TheseconstantsaredeterminedfortherockmassusingGSIasperHoeketal.(2002):

    (2) (3)

    /

    /

    (4)

    Fromabove, isacurvefittingparameterderivedfromtriaxialtestingof intactrock.Theparameter isthereforeareducedvalueofthe intactrockvalue,whichaccountsforthestrengthreducingeffectsoftherockmassconditionsdefinedbyGSI.Strengthreductionfortheparameterssandafollow

    accordingly(Fig.1b).D isadisturbancefactorthatcanaccountforblastdamageandstressrelaxation,

    withvaluesrangingfrom0forundisturbedconditionsto1forverydisturbedrockmasses.

  • 8/12/2019 GSI and Hoek-Brown Procedure

    2/5

    Figure1.a)ComparisonoflinearMohrCoulombandnonlinearHoekBrownfailureenvelopesplottedagainsttriaxialtestdataforintactrock;b)ScalingofHoekBrownfailureenvelopeforintactrocktothatforrockmassstrength.

    GSIisestimatedinthefieldfromthechartofMarinosetal.(2005);seeFigure2.Intheabsenceof

    GSIvaluesorasasecondarycheck,GSIcanbeconvertedfromRMR89values(Bieniawski1989),aswas

    thepracticeinearlyapplicationsoftheGSIsystemusingtherelationship:

    5 (for >23) (5)where is amodified version of RMR89 inwhich the groundwater rating is set to 15 and theadjustmentforjointorientation issettozero.Theseadjustmentsavoiddoublecountingtheeffectsof

    groundwater(aneffectivestressparameterinthenumericalanalysis)andjointorientation(treatedasa

    specific input for structural analysis) when deriving rock mass properties to be used in numerical

    analyses.Forverypoorqualityrockmasses(

  • 8/12/2019 GSI and Hoek-Brown Procedure

    3/5

    Figure2.GeologicalStrengthIndex(GSI)lookupchartforjointedrockmasses(afterMarinos&Hoek2000).

  • 8/12/2019 GSI and Hoek-Brown Procedure

    4/5

    A further consideration is thatmost geotechnical design calculations arewritten for theMohr

    Coulomb failure criterion, it is often necessary to calculate equivalent rockmass friction angles and

    cohesive strengths from the HoekBrown parameters. Moreover, most practitioners have more

    experience,andthereforeanintuitivefeelingforthephysicalmeaningsofcohesionandfriction,which

    isnotthecasefor,sanda.Intermsofequivalencies,theparameter isrelatedtothefrictionalstrengthoftherockmass,ands,whichisameasureofhowfracturedtherockmassis,isrelatedtothe

    rock mass cohesion. These are only descriptive relationships, however. Where MohrCoulomb

    parametersarerequired,thefittingofthelinearMohrCoulombenvelopetothenonlinearHoekBrown

    enveloperesultsinthefollowingequationsforfrictionandcohesivestrength: (7)

    (8)

    where

    /.Notethatthevalueof

    representstheupperlimitofconfiningstressover

    which

    the

    relationship

    between

    the

    Hoek

    Brown

    and

    Mohr

    Coulomb

    failure

    envelopes

    is

    considered.

    Fordeeptunnels, canbecalculatedfromtheempiricalrelationship(Hoeketal.2002): 0.47 . (9)where istheunitweightoftherockmass,Histhedepthofthetunnelbelowsurface,and isthe"global"rockmassstrengthforthestressrange givenby: (10)Incaseswherethehorizontalstressishigherthantheverticalstress,thehorizontalstressvalueshould

    beusedinplaceof

    inEqn.(9).

    These procedures form the basis for the Rocscience software package ROCLAB, which can be

    downloadedforfreefrom: http://www.rocscience.com/products/RocLab.asp.

    Incarryingoutthesecalculations,itmustbeemphasizedthatthequantitativeconversionofHoek

    BrowntoMohrCoulombparameters isdonebyfittinganaverage linearrelationshiptothenonlinear

    HoekBrownenvelope forarangeofminorprincipalstressvaluesdefinedbyt

  • 8/12/2019 GSI and Hoek-Brown Procedure

    5/5

    Figure3.FittingoflinearMohrCoulombfailureenvelopesalongtwodifferentstressrangesofanonlinearHoekBrownfailureenvelope.Notethechangeincohesionandfrictionanglevaluesforthetwodifferent stressrangesspecified.

    References

    Barton,

    N.,

    Lien,

    R.

    &

    Lunde,

    J.

    (1974).

    Engineering

    classification

    of

    rock

    masses

    for

    the

    design

    of

    tunnel

    support. RockMechanics6(4):189236.Bieniawski, Z.T. (1989).EngineeringRockMassClassifications:ACompleteManualforEngineers and

    GeologistsinMining,Civil,andPetroleumEngineering.NewYork:Wiley,272pp.Hoek,E.(2007).PracticalRockEngineering.Toronto:Rocscience,ebook.Hoek, E.& Brown, E.T. (1980). Underground Excavations in Rock. London: Institution ofMining and

    Metallurgy,527pp.

    Hoek,E.&Brown,E.T. (1988).TheHoekBrown failurecriterion a1988update. In J.H.Curran (ed.),

    Proc.15thCanadianRockMech.Symp.,Toronto.Toronto:UniversityofToronto,pp.3138.Hoek, E., Kaiser, P.K. & Bawden, W.F. (1995). Support of Underground Excavations in Hard Rock.

    Rotterdam:Balkema,215pp.

    Hoek,E.,Wood,D.&Shah,S. (1992).AmodifiedHoekBrown criterion forjointed rockmasses. In J.

    Hudson(ed.),

    Rock Characterization: ISRM Symp, Eurock 92, Chester, UK. London: Thomas

    Telford,pp.209213.

    Marinos, P.&Hoek, E. (2000).GSI:A geologically friendly tool for rockmass strengthestimation. In

    GeoEng2000,Melbourne.Lancaster:TechnomicPublishingCompany,CDROM.Marinos,V,Marinos,P.&Hoek,E. (2005).Thegeologicalstrength index:applicationsand limitations.

    BulletinofEngineeringGeologyandtheEnvironment64(1):5565.Rocscience(2007).RocLab,version1.031.Toronto:Rocscience,Inc.