Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics...

92
Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 ) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 ) Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker -products Axiom-4 similarity transformation Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman jk-axioms compared to Group axioms

Transcript of Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics...

Page 1: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Group Theory in Quantum Mechanics Lecture 3 (1.24.17)

Analyzers, operators, and group axioms (Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈jk〉-axioms compared to Group axioms

Page 2: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss

Page 3: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The probability axiom The first axiom deals with physical interpretation of amplitudes .Axiom 1: The absolute square gives probability for occurrence in state-j of a system that started in state-k'=1',2',..,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.

(3) The orthonormality or identity axiom The third axiom concerns the amplitude for "re measurement" by the same analyzer. Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one, and for all others it is zero:

(2) The conjugation or inversion axiom (time reversal symmetry) The second axiom concerns going backwards through a sorter or the reversal of amplitudes.Axiom 2: The complex conjugate of an amplitude equals its reverse:

j k ' *

Feynman amplitude axioms 1-4Feynman-Dirac Interpretation of

〈jk′ 〉=Amplitude of state-j after state-k′ is forced to choose

from available m-type states

j k '2= j k ' * j k '

j k '

j k ' *

= k ' j

j k '

j k = δ jk =

1 if: j=k0 if: j ≠ k

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪= j ' k '

(4) The completeness or closure axiom The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

j" m ' =

k=1

n∑ j" k k m '

Page 4: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

x'-polarized light

y'-polarized light x'

y

xy'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting ofinput

polarization2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω(Ω=0 means do-nothing)

Ω

inputpolarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzerdoes nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°

Page 5: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

x'-polarized light

y'-polarized light x'

y

xy'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting ofinput

polarization2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω(Ω=0 means do-nothing)

Ω

inputpolarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzerdoes nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°

Imagine final xy-sorter analyzes output beam into x and y-components.

x-Output is: 〈x|Θout〉= 〈x|x'〉〈x'|Θin〉+〈x|y'〉〈y'|Θin〉=cosΘcos(Θin-Θ) - sinΘsin(Θin-Θ)=cos Θin y-Output is: 〈y|Θout〉= 〈y|x'〉〈x'|Θin〉+〈y|y'〉〈y'|Θin〉=sinΘcos(Θin-Θ) - cosΘsin(Θin-Θ)=sin Θin. (Recall cos(a+b)=cosa cosb-sina sinb and sin(a+b)=sina cosb+cosa sinb )

Amplitude in x or y-channel is sum over x' and y'-amplitudes 〈x'|Θin〉=cos(Θin−Θ) 〈y'|Θin〉=sin(Θin−Θ) with relative angle Θin−Θ of Θin to Θ-analyzer axes-(x',y')in products with final xy-sorter: lab x-axis: 〈x|x'〉 = cosΘ = 〈y|y'〉 y-axis: 〈y|x'〉 = sinΘ = -〈x|y'〉.

Conclusion: 〈x|Θout〉 = cos Θout = cos Θin or: Θout= Θin so “Do-Nothing” Analyzer in fact does nothing.

Page 6: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈jk〉-axioms compared to Group axioms

Page 7: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

Page 8: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform:

〈j′′=∑〈j′′k〉〈k

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 9: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 10: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 11: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 12: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 13: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 14: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟

Projections of unit vector x′〉 onto unit kets x〉 and y〉

Pyx′〉=y〉〈yx′〉 =y〉sin θ

Pxx′〉=x〉〈xx′〉 =x〉cos θ

y〉

x〉〈yx′〉

〈xx′〉 x′〉

θ

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 15: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

Pyx′〉=y〉〈yx′〉 =y〉sin θ

Pxx′〉=x〉〈xx′〉 =x〉cos θ

y〉

x〉〈yx′〉

〈xx′〉 x′〉

θx Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟

PyΨ〉=y〉〈yΨ〉 PxΨ〉=x〉〈xΨ〉

y〉

x〉〈yΨ〉

〈xΨ〉

Ψ〉

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟

Projections of unit vector x′〉 onto unit kets x〉 and y〉

Projections of general state Ψ〉 ...

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 16: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟

Projections of unit vector x′〉 onto unit kets x〉 and y〉

PyΨ〉=y〉〈yΨ〉 PxΨ〉=x〉〈xΨ〉

y〉

x〉〈yΨ〉

〈xΨ〉

Ψ〉Projections of general state Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟

...must add up toΨ〉 PxΨ〉 + PyΨ〉 =Ψ〉(Px + Py)Ψ〉 =Ψ〉

Pyx′〉=y〉〈yx′〉 =y〉sin θ

Pxx′〉=x〉〈xx′〉 =x〉cos θ

y〉

x〉〈yx′〉

〈xx′〉 x′〉

θ

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 17: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟

Projections of unit vector x′〉 onto unit kets x〉 and y〉

PyΨ〉=y〉〈yΨ〉 PxΨ〉=x〉〈xΨ〉

y〉

x〉〈yΨ〉

〈xΨ〉

Ψ〉Projections of general state Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟

...must add up toΨ〉 PxΨ〉 + PyΨ〉 =Ψ〉(Px + Py)Ψ〉 =Ψ〉

Pyx′〉=y〉〈yx′〉 =y〉sin θ

Pxx′〉=x〉〈xx′〉 =x〉cos θ

y〉

x〉〈yx′〉

〈xx′〉 x′〉

θ

...and so Pm projectors must add up to identity operator... 1 = Px + Py

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 18: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′=∑〈j′′k〉〈k m′〉=∑ k〉〈km′〉

Center abstraction gives ket-bra identity operator:

1=∑k〉〈k=∑k′〉〈k′=∑k′′〉〈k′′=...

Resolution of Identity into Projectors 1〉〈1, 2〉〈2.. or 1′〉〈1′, 2′〉〈2′.. or 1′′〉〈1′′, 2′′〉〈2′′..

P1= 1〉〈1, P2= 2〉〈2,.. or P1′= 1′〉〈1′, P2′= 2′〉〈2′ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟

Projections of unit vector x′〉 onto unit kets x〉 and y〉

PyΨ〉=y〉〈yΨ〉 PxΨ〉=x〉〈xΨ〉

y〉

x〉〈yΨ〉

〈xΨ〉

Ψ〉Projections of general state Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟

...must add up toΨ〉 PxΨ〉 + PyΨ〉 =Ψ〉(Px + Py)Ψ〉 =Ψ〉

Pyx′〉=y〉〈yx′〉 =y〉sin θ

Pxx′〉=x〉〈xx′〉 =x〉cos θ

y〉

x〉〈yx′〉

〈xx′〉 x′〉

θ

...and so Pm projectors must add up to identity operator... 1 = Px + Py

and identity matrix... 1 00 1

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

..as required by Axiom 4:

x x ' x y '

y x ' y y '

⎜⎜

⎟⎟= cosθ −sinθ

sinθ cosθ

⎝⎜

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m n′〉

Page 19: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 20: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Page 21: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py

k=1

2

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Page 22: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py and matrix representation: 1 0

0 1⎛

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

k=1

2

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Page 23: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py and matrix representation: 1 0

0 1⎛

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑k〉e-iΩkt〈k= x〉e-iΩxt〈x + y〉e-iΩyt〈y = e-iΩxt Px + e-iΩyt Py and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜

⎠⎟ +

0 00 e− iΩxt

⎝⎜

⎠⎟

Page 24: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py and matrix representation: 1 0

0 1⎛

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑k〉e-iΩkt〈k= x〉e-iΩxt〈x + y〉e-iΩyt〈y = e-iΩxt Px + e-iΩyt Py and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜

⎠⎟ +

0 00 e− iΩxt

⎝⎜

⎠⎟

(Time-Reversal-Symmetry)

*Unitary here means inverse-T-1= T†= TT*=transpose-conjugate-T

Page 25: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py and matrix representation: 1 0

0 1⎛

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑k〉e-iΩkt〈k= x〉e-iΩxt〈x + y〉e-iΩyt〈y = e-iΩxt Px + e-iΩyt Py and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just x〉〈x and y〉〈y combinations. T′=∑k′〉e-iΩk′t〈k′= x′〉e-iΩx′t〈x′ + y′〉e-iΩy′t〈y′ = e-iΩx′t Px′ + e-iΩy′t Py′

e− iΩxt 00 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜

⎠⎟ +

0 00 e− iΩxt

⎝⎜

⎠⎟

*Unitary here means inverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry)

Page 26: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(Matrix representation of T′ is a little more complicated. See following pages.)

|Ψ⟩T|Ψ⟩

|Ψ⟩

analyzer

Tanalyzer

T|Ψ⟩T|Ψ⟩ input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of Ψ〉

to new ket vector TΨ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑k〉〈k= x〉〈x + y〉〈y = Px + Py and matrix representation: 1 0

0 1⎛

⎝⎜⎞

⎠⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟+ 0 0

0 1⎛

⎝⎜⎞

⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑k〉e-iΩkt〈k= x〉e-iΩxt〈x + y〉e-iΩyt〈y = e-iΩxt Px + e-iΩyt Py and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just x〉〈x and y〉〈y combinations. T′=∑k′〉e-iΩk′t〈k′= x′〉e-iΩx′t〈x′ + y′〉e-iΩy′t〈y′ = e-iΩx′t Px′ + e-iΩy′t Py′

e− iΩxt 00 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜

⎠⎟ +

0 00 e− iΩxt

⎝⎜

⎠⎟

(Time-Reversal-Symmetry)

*Unitary here means inverse-T-1= T†= TT*=transpose-conjugate-T

Page 27: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 28: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Page 29: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation:

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Page 30: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation:

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′

Page 31: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation:

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

Page 32: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation:

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U

Page 33: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

Page 34: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜

⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U† ʹx ʹx U† ʹy

ʹy U† ʹx ʹy U† ʹy

⎜⎜

⎟⎟

So also is the inverse U†

Page 35: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜

⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U† ʹx ʹx U† ʹy

ʹy U† ʹx ʹy U† ʹy

⎜⎜

⎟⎟

=x ʹx

*y ʹx

*

x ʹy*

y ʹy*

⎜⎜⎜

⎟⎟⎟

Axiom-3 consistent with inverse U =tranpose-conjugate U† = UT*

So also is the inverse U†

Page 36: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket Ψ′〉=UΨ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets Φ′〉=UΦ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′=〈ΨU† or 〈Φ′=〈ΦU† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Ket definition: x′〉=Ux〉 implies: U†x′〉=x〉 implies: 〈x=〈x′U implies: 〈xU† =〈x′ Ket definition: y′〉=Uy〉 implies: U†y′〉=y〉 implies: 〈y=〈y′U implies: 〈yU† =〈y′

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜

⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U† ʹx ʹx U† ʹy

ʹy U† ʹx ʹy U† ʹy

⎜⎜

⎟⎟

= cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟=

x ʹx*

y ʹx*

x ʹy*

y ʹy*

⎜⎜⎜

⎟⎟⎟

Axiom-3 consistent with inverse U =tranpose-conjugate U† = UT*

So also is the inverse U†

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

Page 37: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 38: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Page 39: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Page 40: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

=ʹx x

ʹy x

⎜⎜

⎟⎟⊗ x ʹx x ʹy( )

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Page 41: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

=ʹx x

ʹy x

⎜⎜

⎟⎟⊗ x ʹx x ʹy( )

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Page 42: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

=ʹx x

ʹy x

⎜⎜

⎟⎟⊗ x ʹx x ʹy( )

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Page 43: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

=ʹx x

ʹy x

⎜⎜

⎟⎟⊗ x ʹx x ʹy( )

Px = x x →cosφ−sinφ

⎝⎜⎜

⎠⎟⎟⊗ cosφ −sinφ( )

=cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

for φ=0( )

The x'y'-representation of Px:

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Page 44: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

Projector Px=x〉〈x in φ-tilted polarization bases x′〉, y′〉 is not diagonal.

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜

⎟⎟=

ʹx x x ʹx ʹx x x ʹy

ʹy x x ʹx ʹy x x ʹy

⎜⎜

⎟⎟

=ʹx x

ʹy x

⎜⎜

⎟⎟⊗ x ʹx x ʹy( )

Px = x x →cosφ−sinφ

⎝⎜⎜

⎠⎟⎟⊗ cosφ −sinφ( )

=cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

for φ=0( )

The x'y'-representation of Px:

x U x x U y

y U x y U y

⎜⎜

⎟⎟=

x ʹx x ʹy

y ʹx y ʹy

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

Py = y y →sinφcosφ

⎜⎜

⎟⎟⊗ sinφ cosφ( )

=sin2φ sinφ cosφ

sinφ cosφ cos2φ

⎜⎜

⎟⎟=

0 00 1

⎝⎜⎜

⎠⎟⎟

for φ=0( )

The x'y'-representation of Py:

=ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎜⎜

⎟⎟

UU|y ⟩=U|y⟩=-sinφ |x⟩ + cosφ |y⟩|x ⟩=U|x⟩= cosφ |x⟩ + sinφ |y⟩

sinφ

-sinφ

cosφcosφ

|x⟩

|y⟩|x ⟩|y ⟩

```

`

Projector Px=x〉〈x is what is called an outer or Kronecker tensor (⊗) product of ket x〉 and bra 〈x.

Page 45: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 46: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑k〉〈k )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1 ' 1" 2 ' ! 1" n '

2" 1' 2" 2 ' ! 2" n '

" " # "n" 1' n" 2 ' ! n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 ! 1" n

2" 1 2" 2 ! 2" n

" " # "n" 1 n" 2 ! n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

1 1 ' 1 2 ' ! 1 n '

2 1' 2 2 ' ! 2 n '

" " # "n 1' n 2 ' ! n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

Page 47: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑k〉〈k )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1' 1" 2' ! 1" n '

2" 1' 2" 2' ! 2" n '

! ! " !n" 1' n" 2' ! n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 ! 1" n

2" 1 2" 2 ! 2" n

! ! " !n" 1 n" 2 ! n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

11' 1 2' ! 1 n '

2 1' 2 2' ! 2 n '

! ! " !n 1' n 2' ! n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

Tj"m '

primeto

double− prime

⎜⎜⎜

⎟⎟⎟=k=1

n∑ Tj" k

unprimedto

double− prime

⎜⎜⎜

⎟⎟⎟Tk m '

primeto

unprimed

⎜⎜⎜

⎟⎟⎟

T(b"← b ') = T(b"← b ) •T(b← b ')

Page 48: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑k〉〈k )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1' 1" 2' ! 1" n '

2" 1' 2" 2' ! 2" n '

! ! " !n" 1' n" 2' ! n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 ! 1" n

2" 1 2" 2 ! 2" n

! ! " !n" 1 n" 2 ! n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

11' 1 2' ! 1 n '

2 1' 2 2' ! 2 n '

! ! " !n 1' n 2' ! n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

Tj"m '

primeto

double− prime

⎜⎜⎜

⎟⎟⎟=k=1

n∑ Tj" k

unprimedto

double− prime

⎜⎜⎜

⎟⎟⎟Tk m '

primeto

unprimed

⎜⎜⎜

⎟⎟⎟

T(b"← b ') = T(b"← b)•T(b← b ')(1) The closure axiom

Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Transformation Group axioms(3) The identity axiom

There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Page 49: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

Page 50: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

Page 51: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( )

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 52: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ...

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 53: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ...

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 54: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ...

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 55: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ʹx y y Px y y ʹy

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 56: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ʹx y y Px y y ʹy

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 57: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ʹx y y Px y y ʹy

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟ 1 0

0 0

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 58: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ʹx y y Px y y ʹy

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟ 1 0

0 0

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

= cosφ 0−sinφ 0

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎜⎜

⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 59: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

ʹx Px ʹy = ʹx 1·Px·1 ʹy = ʹx x x + y y( )·Px· x x + y y( ) ʹy = ʹx x x + ʹx y y( )·Px· x x ʹy + y y ʹy( ) = ʹx x x Px x x ʹy + ʹx y y Px x x ʹy + ʹx x x Px y y ʹy + ʹx y y Px y y ʹy

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟=

ʹx x ʹx y

ʹy x ʹy y

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜⎜

⎟⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

=cosφ sinφ−sinφ cosφ

⎜⎜

⎟⎟ 1 0

0 0

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

= cosφ 0−sinφ 0

⎜⎜

⎟⎟

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎜⎜

⎟⎟

Px = x x →cosφ−sinφ

⎜⎜

⎟⎟⊗ cosφ −sinφ( ) = cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎜⎜

⎟⎟=

1 00 0

⎝⎜⎜

⎠⎟⎟

for φ=0( )This checks with the previous result 4-pages back:

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑k〉〈k= x〉〈x + y〉〈y;

ʹx Px ʹx ʹx Px ʹy

ʹy Px ʹx ʹy Px ʹy

⎜⎜⎜

⎟⎟⎟

x Px x x Px y

y Px x y Px y

⎜⎜

⎟⎟= 1 0

0 0

⎝⎜

⎠⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟

=cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 60: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 61: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) Optical analyzer in sorter-counter configuration

Initial polarization angleθ=β/2 = 30°

θ

x-counts~| ⟨x|x'⟩|2

= cos2 θ =

y-counts~| ⟨y|x'⟩|2

= sin2 θ=

xy-analyzer( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

x T x x T y

y T x y T y

⎝⎜⎜

⎠⎟⎟

= 0 00 0

⎝⎜⎞

⎠⎟

Analyzer matrix:

Page 62: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) Optical analyzer in sorter-counter configuration

Initial polarization angleθ=β/2 = 30°

θ

x-counts~| ⟨x|x'⟩|2

= cos2 θ =

y-counts~| ⟨y|x'⟩|2

= sin2 θ=

xy-analyzer( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

y-output~| ⟨y|x'⟩|2= sin2 θ=

x-counts~| ⟨y|x'⟩|2=(Blocked and filtered out)

Initial polarization angleθ=β/2 = 30°

θxy-analyzer( βanalyzer =0°)

Analyzer blocks one path which may have photon counter without affecting function.

(2) Optical analyzer in a filter configuration (Polaroid© sunglasses)

Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟

= 0 00 1

⎝⎜⎞

⎠⎟

x T x x T y

y T x y T y

⎝⎜⎜

⎠⎟⎟

= 0 00 0

⎝⎜⎞

⎠⎟

Analyzer matrix:

Analyzer matrix:

Page 63: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Page 64: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°(a)

Half-wave plate

(Ω=π)Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛

⎝⎜⎞

⎠⎟

Analyzer matrix:

Page 65: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°(a)

Half-wave plate

(Ω=π)Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave (Ω = π) , (b) Quarter wave (Ω= π/2)

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛

⎝⎜⎞

⎠⎟

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −i⎛

⎝⎜⎞

⎠⎟

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟= e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟

Analyzer matrix:

Analyzer matrix:

Analyzer matrix:

Page 66: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Similar to "do-nothing" analyzer but has extra phase factor e-iΩx′ = 0.94-i 0.34 on the x'-path (top).x-output: y-output:

(b)Simulation

x'-polarized light

y'-polarized light

β/2=Θ= -30°

Θin =βin/2=100°plane-polarized light

x'

y

x

y'

Elliptically

polarized light ω=20°phase shift

(a)Analyzer Experiment

Phase shift→ Ω

Output polarization

changed by analyzer

phase shift

setting of

input

polarization

2Θin =βin=200°Θin=100°

Θ=-30°

=2Θanalyzerβ

x Ψout = x ʹx e−iΩ ʹx ʹx Ψin + x ʹy ʹy Ψin = e−iΩ ʹx cosΘcos Θin −Θ( )− sinΘsin Θin −Θ( )

y Ψout = y ʹx e−iΩ ʹx ʹx Ψin + x ʹy ʹy Ψin = e−iΩ ʹx sinΘcos Θin −Θ( ) + cosΘsin Θin −Θ( )

ʹx U ʹx ʹx U ʹy

ʹy U ʹx ʹy U ʹy

⎝⎜⎜

⎠⎟⎟

= e− iΩ ʹx t 00 e− iΩ ʹx t

⎝⎜

⎠⎟

Analyzer matrix:

Page 67: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

ReΨy

ReΨx

ReΨy

ReΨx-√3/2

1/2

-30°

1/2√3/2

θ=

ω t = 0ω t = 0

ω t = πω t = π

0 12

3

4

5

6

78-7-6

-5

-4

-3

-2-1

01

2

3 4 5

6

78

-7-6

-5

-4-3

-2-1

(2,4)(3,5)(4,6)

(5,7)

(6,8)

(7,-7)

x-position

x-velocity vx/ω(c) 2-D Oscillator

Phasor Plot

(8,-6)(9,-5)

y-velocity

vy/ω

(x-Phase

45° behind the

y-Phase)

y-position

φ counter-clockwise

if y is behind x

clockwise

orbit

if x is behind y

(1,3) Left-

handed

Right-

handed

(0,2)

Fig. 1.3.6 Polarization states for (a) Half-wave (Ω = π) , (b) Quarter wave (Ω= π/2) (c) (Ω=−π/4)BoxIt web simulation - With y-Phasor is on other side of xy plot RelaWavity web simulation - Contact ellipsometry

Page 68: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 69: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

A "peeking" eye

If eye sees an x-photonthen the output particleis 100% x-polarized.(75% probability for that.)

If eye sees no x-photonthen the output particleis 100% y-polarized(25% probability.)

θ

θ=β/2 = 30°

θ

θ=β/2 = 30°

(Looks for x-photons)

xy-analyzer(βanalyzer=0°)

xy-analyzer(βanalyzer=0°)

Initial polarization angle

Initial polarization angle

Fig. 1.3.7 Simulated polarization analyzer set up to "peek" if the photon is x-or y-polarized

How analyzers may “peek” and how that changes outcomes

Page 70: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Initial

Without

“Peeking Eye” angle

θ=β/2 = 30°

Initial

polarization

angle

θ=β/2 = 30°

With

“Peeking Eye”

polarization(a)

(b)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

βanalyzer

=60°

Θanalyzer

=30°

βanalyzer

=60°

Θanalyzer

=30°

Reconstructs

x (30°) beam

Cancels

y (30°) beamNo

y (30°)

appear

Only

x (30°)

appears

=2θ

5 to 8 odds

for x (30°)

to appear

3 to 8 odds

for y (30°)

to appear

30°

30°

(empty path)

Fig. 1.3.8 Output with β/2=30° input to: (a) Coherent xy-"Do nothing" or (b) Incoherent xy-"Peeking" devices

How analyzers “peek” and how that changes outcomes Simulations

Page 71: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Fig. 1.3.9 Beams-amplitudes of (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with input

⟨y|x'⟩=1/2

⟨x|x'⟩=√3/2

⟨y'|x⟩= -1/2

⟨x'|x⟩=√3/2

⟨x'|y⟩=1/2

⟨y'|y⟩=√3/2

⟨x'|x⟩⟨x|x'⟩=√3/2 √3/2

⟨x'|y⟩⟨y|x'⟩=1/2 1/2

⟨y'|y⟩⟨y|x'⟩=√3/2 1/2

⟨y'|x⟩⟨x|x'⟩= -1/2 √3/2

⟨x'|x⟩⟨x|x'⟩+⟨x'|y⟩⟨y|x'⟩=√3/2 √3/2 +1/2 1/2 = 1

⟨y'|x⟩⟨x|x' ⟩+⟨y'|y⟩⟨y|x'⟩=-1/2 √3/2+√3/2 1/2 =0

|x⟩-beam

|y⟩-beam

|x⟩-beam

|y⟩-beam

|x⟩

|x⟩

|x'⟩-beam|x'⟩-beam

|y'⟩-beam (zero)

|x'⟩|y⟩

Withouta

“Peeking Eye”

Witha

“Peeking Eye”

(a)

(b)

|x'⟩-beam|y⟩

|x'⟩

|y'⟩

|y'⟩

|x'⟩

x '

How analyzers “peek” and how that changes outcomes

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

Page 72: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Fig. 1.3.9 Beams-amplitudes of (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with input

⟨y|x'⟩=1/2

⟨x|x'⟩=√3/2

⟨y'|x⟩= -1/2

⟨x'|x⟩=√3/2

⟨x'|y⟩=1/2

⟨y'|y⟩=√3/2

⟨x'|x⟩⟨x|x'⟩=√3/2 √3/2

⟨x'|y⟩⟨y|x'⟩=1/2 1/2

⟨y'|y⟩⟨y|x'⟩=√3/2 1/2

⟨y'|x⟩⟨x|x'⟩= -1/2 √3/2

⟨x'|x⟩⟨x|x'⟩+⟨x'|y⟩⟨y|x'⟩=√3/2 √3/2 +1/2 1/2 = 1

⟨y'|x⟩⟨x|x' ⟩+⟨y'|y⟩⟨y|x'⟩=-1/2 √3/2+√3/2 1/2 =0

|x⟩-beam

|y⟩-beam

|x⟩-beam

|y⟩-beam

|x⟩

|x⟩

|x'⟩-beam|x'⟩-beam

|y'⟩-beam (zero)

|x'⟩|y⟩

Withouta

“Peeking Eye”

Witha

“Peeking Eye”

(a)

(b)

|x'⟩-beam|y⟩

|x'⟩

|y'⟩

|y'⟩

|x'⟩

x '

How analyzers “peek” and how that changes outcomes

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

34⎛

⎝⎜⎞

⎠⎟

2

+14⎛

⎝⎜⎞

⎠⎟

2

58

34

⎝⎜

⎠⎟

2

+3

4

⎝⎜

⎠⎟

2

38

Page 73: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

A(x') = x' x x x' + x' y y x'

= 43 + 4

1 = 1

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

A( y') = y' x x x' + y' y y x'

= 4− 3 + 4

3 = 0

=P(x′)

=P(y′)

Do-Nothing-analyzer

x′〉〈x′x〉=√3/2x′〉

y′〉〈y′x〉=1/2y′〉

x〉=x′〉〈x′x〉+y′〉〈y′x〉

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟=

cosφ −sinφsinφ cosφ

⎜⎜

⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 74: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 75: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) =

58+

316

e−iφ + eiφ( ) = 5+ 3cosφ8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 76: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

A( y') = y' x eiφ( ) x x' + y' y y x'

= 4− 3 eiφ( ) + 4

3

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) =

58+

316

e−iφ + eiφ( ) = 5+ 3cosφ8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 77: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

A( y') = y' x eiφ( ) x x' + y' y y x'

= 4− 3 eiφ( ) + 4

3

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) =

58+

316

e−iφ + eiφ( ) = 5+ 3cosφ8

P( y')= 4− 3 eiφ( ) + 4

3( )* 4− 3 eiφ( ) + 4

3( ) =

38−

316

e−iφ + eiφ( ) = 3− 3cosφ8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 78: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 79: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟⋅ x x'

2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟⋅ y x'

2⎛

⎝⎜

⎠⎟

Classical Bayesian probability vs. Quantum probability

Page 80: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟· x x'

2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟· y x'

2⎛

⎝⎜

⎠⎟=

32

2⎛

⎜⎜⎜

⎟⎟⎟· 3

2

2⎛

⎜⎜⎜

⎟⎟⎟+

−12

2⎛

⎜⎜

⎟⎟· 1

2

2⎛

⎜⎜

⎟⎟=

58

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Classical Bayesian probability vs. Quantum probabilityProbability that

photon in x'-inputbecomes

photon in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Page 81: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

Classical Bayesian probability vs. Quantum probabilityClassical Bayesian probability vs. Quantum probability

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟· x x'

2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟· y x'

2⎛

⎝⎜

⎠⎟=

32

2⎛

⎜⎜⎜

⎟⎟⎟· 3

2

2⎛

⎜⎜⎜

⎟⎟⎟+

−12

2⎛

⎜⎜

⎟⎟· 1

2

2⎛

⎜⎜

⎟⎟=

58

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Page 82: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x

*x x'

*x' y y x' + eiφ x' x x x' x' y

*y x'

*=1

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Classical Bayesian probability vs. Quantum probability

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟· x x'

2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟· y x'

2⎛

⎝⎜

⎠⎟=

32

2⎛

⎜⎜⎜

⎟⎟⎟· 3

2

2⎛

⎜⎜⎜

⎟⎟⎟+

−12

2⎛

⎜⎜

⎟⎟· 1

2

2⎛

⎜⎜

⎟⎟=

58

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Page 83: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 84: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟*

x x'2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟*

y x'2⎛

⎝⎜

⎠⎟=

32

2⎛

⎜⎜⎜

⎟⎟⎟

*

32

2⎛

⎜⎜⎜

⎟⎟⎟+

−12

2⎛

⎜⎜

⎟⎟

*12

2⎛

⎜⎜

⎟⎟=

58

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x

*x x'

*x' y y x' + eiφ x' x x x' x' y

*y x'

*=1

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x x x' + x' y y x'

2

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Classical Bayesian probability vs. Quantum probability

Square of sum

Page 85: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x

*x x'

*x' y y x' + eiφ x' x x x' x' y

*y x'

*

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

Quantum probabilityat x'-counter

⎜⎜

⎟⎟= x' x x x' + x' y y x'

2 Classical probabilityat x'-counter

⎜⎜

⎟⎟= x' x x x'

2+ x' y y x'

2

x ʹx x ʹy

y ʹx y ʹy

⎜⎜⎜

⎟⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎜⎜

⎟⎟

Classical Bayesian probability vs. Quantum probability

Square of sum Sum of squares

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟classical

= x' x2⎛

⎝⎜

⎠⎟*

x x'2⎛

⎝⎜

⎠⎟+ x' y

2⎛

⎝⎜

⎠⎟*

y x'2⎛

⎝⎜

⎠⎟=

32

2⎛

⎜⎜⎜

⎟⎟⎟

*

32

2⎛

⎜⎜⎜

⎟⎟⎟+

−12

2⎛

⎜⎜

⎟⎟

*12

2⎛

⎜⎜

⎟⎟=

58

Page 86: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈jk〉-axioms compared to Group axioms

Page 87: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

Page 88: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

Page 89: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

Page 90: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

Page 91: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

Page 92: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · Group Theory in Quantum Mechanics Lecture 3 (1.24.17) Analyzers, operators, and group axioms (Quantum Theory for Computer

(1) The closure axiom Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1

for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′m′〉=∑〈j′′k〉〈km′〉

k=1

nAxiom 3: 〈jk〉=δjk=〈j′k′〉=〈j′′ k′′〉

Axiom 2: 〈j′′m′〉*=〈m′ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′m′〉|2 = |〈m′ j′′〉|2

Feynman 〈jk〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(5) The commutative axiom (Abelian groups only) All elements a in an Abelian group are mutually commuting: a.b = b.a.

Most analyzer sets (and most groups) are not Abelian (commutative)

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)