Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20,...

93
Group Theory in Quantum Mechanics Lecture 3 (1.20.15) Analyzers, operators, and group axioms (Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 ) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 ) Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker -products Axiom-4 similarity transformation Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman jk-axioms compared to Group axioms 1 Tuesday, January 20, 2015

Transcript of Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20,...

Page 1: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Group Theory in Quantum MechanicsLecture 3 (1.20.15)

Analyzers, operators, and group axioms (Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformationMatrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plateHow analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability Feynman 〈j⏐k〉-axioms compared to Group axioms

1Tuesday, January 20, 2015

Page 2: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss

2Tuesday, January 20, 2015

Page 3: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The probability axiomThe first axiom deals with physical interpretation of amplitudes . Axiom 1: The absolute square gives probability for occurrence in state-j of a system that started in state-k'=1',2',..,or n' from one sorter and then was forced to choose between states j=1,2,...,n by another sorter.

(3) The orthonormality or identity axiom The third axiom concerns the amplitude for "re measurement" by the same analyzer. Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one, and for all others it is zero:

(2) The conjugation or inversion axiom (time reversal symmetry) The second axiom concerns going backwards through a sorter or the reversal of amplitudes. Axiom 2: The complex conjugate of an amplitude equals its reverse:

j k ' *

Feynman amplitude axioms 1-4Feynman-Dirac Interpretation of

〈j⏐k′ 〉=Amplitude of state-j afterstate-k′ is forced to choose

from available m-type states

j k '2= j k ' * j k '

j k '

j k ' *

= k ' j

j k '

j k = δ jk =

1 if: j=k0 if: j ≠ k

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪= j ' k '

(4) The completeness or closure axiomThe fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

j" m ' =

k=1

n∑ j" k k m '

3Tuesday, January 20, 2015

Page 4: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

x'-polarized light

y'-polarized light x'

y

xy'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting ofinput

polarization2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω(Ω=0 means do-nothing)

Ω

inputpolarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzerdoes nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°

4Tuesday, January 20, 2015

Page 5: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

x'-polarized light

y'-polarized light x'

y

xy'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting ofinput

polarization2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω(Ω=0 means do-nothing)

Ω

inputpolarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzerdoes nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°

Imagine final xy-sorter analyzes output beam into x and y-components.

x-Output is: 〈x|Θout〉= 〈x|x'〉〈x'|Θin〉+〈x|y'〉〈y'|Θin〉=cosΘcos(Θin-Θ) - sinΘsin(Θin-Θ)=cos Θin y-Output is: 〈y|Θout〉= 〈y|x'〉〈x'|Θin〉+〈y|y'〉〈y'|Θin〉=sinΘcos(Θin-Θ) - cosΘsin(Θin-Θ)=sin Θin. (Recall cos(a+b)=cosa cosb-sina sinb and sin(a+b)=sina cosb+cosa sinb )

Amplitude in x or y-channel is sum over x' and y'-amplitudes 〈x'|Θin〉=cos(Θin−Θ) 〈y'|Θin〉=sin(Θin−Θ) with relative angle Θin−Θ of Θin to Θ-analyzer axes-(x',y')in products with final xy-sorter: lab x-axis: 〈x|x'〉 = cosΘ = 〈y|y'〉 y-axis: 〈y|x'〉 = sinΘ = -〈x|y'〉.

Conclusion: 〈x|Θout〉 = cos Θout = cos Θin or: Θout= Θin so “Do-Nothing” Analyzer in fact does nothing.

5Tuesday, January 20, 2015

Page 6: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

6Tuesday, January 20, 2015

Page 7: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

7Tuesday, January 20, 2015

Page 8: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

8Tuesday, January 20, 2015

Page 9: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

9Tuesday, January 20, 2015

Page 10: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

10Tuesday, January 20, 2015

Page 11: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

11Tuesday, January 20, 2015

Page 12: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

12Tuesday, January 20, 2015

Page 13: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

13Tuesday, January 20, 2015

Page 14: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

14Tuesday, January 20, 2015

Page 15: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Projections of general state ⏐Ψ〉 ...

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

15Tuesday, January 20, 2015

Page 16: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#Projections of general state ⏐Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

...must add up to⏐Ψ〉Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉(Px + Py)⏐Ψ〉 =⏐Ψ〉

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

16Tuesday, January 20, 2015

Page 17: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#Projections of general state ⏐Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

...must add up to⏐Ψ〉Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉(Px + Py)⏐Ψ〉 =⏐Ψ〉

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!

...and so Pm projectors must add up to identity operator... 1 = Px + Py

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

17Tuesday, January 20, 2015

Page 18: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#Projections of general state ⏐Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

...must add up to⏐Ψ〉Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉(Px + Py)⏐Ψ〉 =⏐Ψ〉

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!

...and so Pm projectors must add up to identity operator... 1 = Px + Py

and identity matrix... 1 00 1

⎛⎝⎜

⎞⎠⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟+ 0 0

0 1⎛⎝⎜

⎞⎠⎟

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

18Tuesday, January 20, 2015

Page 19: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉 may be “abstracted" three different ways

Left abstraction gives bra-transform: Right abstraction gives ket-transform:

〈j′′⏐=∑〈j′′⏐k〉〈k⏐ ⏐m′〉=∑ ⏐k〉〈k⏐m′〉

Center abstraction gives ket-bra identity operator:

1=∑⏐k〉〈k⏐=∑⏐k′〉〈k′⏐=∑⏐k′′〉〈k′′⏐=...

Resolution of Identity into Projectors {⏐1〉〈1⏐, ⏐2〉〈2⏐..} or {⏐1′〉〈1′⏐, ⏐2′〉〈2′⏐..} or {⏐1′′〉〈1′′⏐, ⏐2′′〉〈2′′⏐..}

P1= ⏐1〉〈1⏐, P2= ⏐2〉〈2⏐,.. or P1′= ⏐1′〉〈1′⏐, P2′= ⏐2′〉〈2′⏐ etc.

Abstraction of Axiom 4 to define projection and unitary operators

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

k=1

n

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

Projections of unit vector ⏐x′〉 ontounit kets ⏐x〉 and ⏐y〉

Py!"#=!y#$y!"# Px!"#=!x#$x!"#

!y#

!x#$y!"#

$x!"#

!"#Projections of general state ⏐Ψ〉 ...

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛⎝⎜

⎞⎠⎟

...must add up to⏐Ψ〉Px⏐Ψ〉 + Py⏐Ψ〉 =⏐Ψ〉(Px + Py)⏐Ψ〉 =⏐Ψ〉

Py!x"#=!y#$y!x"# =!y#sin !

Px!x"#=!x#$x!x"# =!x#cos !

!y#

!x#$y!x"#

$x!x"# !x"#

!

...and so Pm projectors must add up to identity operator... 1 = Px + Py

and identity matrix... 1 00 1

⎛⎝⎜

⎞⎠⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟+ 0 0

0 1⎛⎝⎜

⎞⎠⎟

..as required by Axiom 4:

x x ' x y '

y x ' y y '

⎝⎜⎜

⎠⎟⎟= cosθ −sinθ

sinθ cosθ⎛

⎝⎜⎞

⎠⎟

Recall bra-ket Transformation Matrix

Tm,n′=〈m⏐ n′〉

19Tuesday, January 20, 2015

Page 20: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

20Tuesday, January 20, 2015

Page 21: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

21Tuesday, January 20, 2015

Page 22: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py

k=1

2

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

22Tuesday, January 20, 2015

Page 23: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TTUnitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py and matrix representation: 1 0

0 1⎛⎝⎜

⎞⎠⎟

= 1 00 0

⎛⎝⎜

⎞⎠⎟

+ 0 00 1

⎛⎝⎜

⎞⎠⎟

k=1

2

Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

23Tuesday, January 20, 2015

Page 24: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py and matrix representation: 1 0

0 1⎛⎝⎜

⎞⎠⎟

= 1 00 0

⎛⎝⎜

⎞⎠⎟

+ 0 00 1

⎛⎝⎜

⎞⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px + e-iΩyt Py and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜⎞

⎠⎟+ 0 0

0 e− iΩxt

⎝⎜⎞

⎠⎟

24Tuesday, January 20, 2015

Page 25: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py and matrix representation: 1 0

0 1⎛⎝⎜

⎞⎠⎟

= 1 00 0

⎛⎝⎜

⎞⎠⎟

+ 0 00 1

⎛⎝⎜

⎞⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px + e-iΩyt Py and its matrix representation: e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜⎞

⎠⎟+ 0 0

0 e− iΩxt

⎝⎜⎞

⎠⎟

*Unitary here meansinverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry)

25Tuesday, January 20, 2015

Page 26: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py and matrix representation: 1 0

0 1⎛⎝⎜

⎞⎠⎟

= 1 00 0

⎛⎝⎜

⎞⎠⎟

+ 0 00 1

⎛⎝⎜

⎞⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px + e-iΩyt Py and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just ⏐x〉〈x⏐ and ⏐y〉〈y⏐ combinations. T′=∑⏐k′〉e-iΩk′t〈k′⏐= ⏐x′〉e-iΩx′t〈x′⏐ + ⏐y′〉e-iΩy′t〈y′⏐ = e-iΩx′t Px′ + e-iΩy′t Py′

e− iΩxt 00 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜⎞

⎠⎟+ 0 0

0 e− iΩxt

⎝⎜⎞

⎠⎟

*Unitary here meansinverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry)

26Tuesday, January 20, 2015

Page 27: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(Matrix representation of T′ is a little more complicated. See following pages.)

|Ψ〉T|Ψ〉

|Ψ〉

analyzer

Tanalyzer

T|Ψ〉T|Ψ〉 input stateoutput state

TT Fig. 3.1.1 Effect of analyzer

represented by ket vector transformation of ⏐Ψ〉

to new ket vector T⏐Ψ〉 .

Unitary operators and matrices that do something (or “nothing”)

First is the “do-nothing” identity operator 1... 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐ = Px + Py and matrix representation: 1 0

0 1⎛⎝⎜

⎞⎠⎟

= 1 00 0

⎛⎝⎜

⎞⎠⎟

+ 0 00 1

⎛⎝⎜

⎞⎠⎟

k=1

2

Next is the diagonal “do-something” unitary* operator T... T=∑⏐k〉e-iΩkt〈k⏐= ⏐x〉e-iΩxt〈x⏐ + ⏐y〉e-iΩyt〈y⏐ = e-iΩxt Px + e-iΩyt Py and its matrix representation:

Most “do-something” operators T′ are not diagonal, that is, not just ⏐x〉〈x⏐ and ⏐y〉〈y⏐ combinations. T′=∑⏐k′〉e-iΩk′t〈k′⏐= ⏐x′〉e-iΩx′t〈x′⏐ + ⏐y′〉e-iΩy′t〈y′⏐ = e-iΩx′t Px′ + e-iΩy′t Py′

e− iΩxt 00 e− iΩxt

⎝⎜

⎠⎟ =

e− iΩxt 00 0

⎝⎜⎞

⎠⎟+ 0 0

0 e− iΩxt

⎝⎜⎞

⎠⎟

*Unitary here meansinverse-T-1= T†= TT*=transpose-conjugate-T

(Time-Reversal-Symmetry)

27Tuesday, January 20, 2015

Page 28: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

28Tuesday, January 20, 2015

Page 29: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

29Tuesday, January 20, 2015

Page 30: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

30Tuesday, January 20, 2015

Page 31: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐

31Tuesday, January 20, 2015

Page 32: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

32Tuesday, January 20, 2015

Page 33: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation:

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U

33Tuesday, January 20, 2015

Page 34: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

34Tuesday, January 20, 2015

Page 35: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟ =

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎜⎜

⎟⎟

So also is the inverse U†

35Tuesday, January 20, 2015

Page 36: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟ =

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎜⎜

⎟⎟

=x ′x * y ′x *

x ′y * y ′y *

⎜⎜⎜

⎟⎟⎟

Axiom-3 consistent with inverse U =tranpose-conjugate U† = UT*

So also is the inverse U†

36Tuesday, January 20, 2015

Page 37: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Unitary operators U satisfy “easy inversion” relations: U-1= U†= UT* They are “designed” to conserve probability and overlap so each transformed ket ⏐Ψ′〉=U⏐Ψ〉 has the same probability 〈Ψ|Ψ〉=〈Ψ′|Ψ′〉=〈Ψ|U†U|Ψ〉and all transformed kets ⏐Φ′〉=U⏐Φ〉 have the same overlap 〈Ψ|Φ〉=〈Ψ′|Φ′〉=〈Ψ|U†U|Φ〉where transformed bras are defined by 〈Ψ′⏐=〈Ψ⏐U† or 〈Φ′⏐=〈Φ⏐U† implying 1=U†U=UU†

Example U transfomation: (Rotation by φ=30°)

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Ket definition: ⏐x′〉=U⏐x〉 implies: U†⏐x′〉=⏐x〉 implies: 〈x⏐=〈x′⏐U implies: 〈x⏐U† =〈x′⏐ Ket definition: ⏐y′〉=U⏐y〉 implies: U†⏐y′〉=⏐y〉 implies: 〈y⏐=〈y′⏐U implies: 〈y⏐U† =〈y′⏐

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

...implies matrix representation of operator U in either of the bases it connects is exactly the same.

x U† x x U† y

y U† x y U† y

⎜⎜

⎟⎟ =

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟=

cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U† ′x ′x U† ′y

′y U† ′x ′y U† ′y

⎜⎜

⎟⎟

= cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟=

x ′x * y ′x *

x ′y * y ′y *

⎜⎜⎜

⎟⎟⎟

Axiom-3 consistent with inverse U =tranpose-conjugate U† = UT*

So also is the inverse U†

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

37Tuesday, January 20, 2015

Page 38: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

38Tuesday, January 20, 2015

Page 39: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

39Tuesday, January 20, 2015

Page 40: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

40Tuesday, January 20, 2015

Page 41: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

=′x x

′y x

⎝⎜⎜

⎠⎟⎟⊗ x ′x x ′y( )

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

41Tuesday, January 20, 2015

Page 42: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

=′x x

′y x

⎝⎜⎜

⎠⎟⎟⊗ x ′x x ′y( )

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

42Tuesday, January 20, 2015

Page 43: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

=′x x

′y x

⎝⎜⎜

⎠⎟⎟⊗ x ′x x ′y( )

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

43Tuesday, January 20, 2015

Page 44: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

=′x x

′y x

⎝⎜⎜

⎠⎟⎟⊗ x ′x x ′y( )

Px = x x →cosφ−sinφ

⎝⎜⎜

⎠⎟⎟⊗ cosφ −sinφ( )

=cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟ for φ=0( )

The x'y'-representation of Px:

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

44Tuesday, January 20, 2015

Page 45: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

Projector Px=⏐x〉〈x⏐ in φ-tilted polarization bases {⏐x′〉, ⏐y′〉} is not diagonal.

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x x ′x ′x x x ′y

′y x x ′x ′y x x ′y

⎝⎜⎜

⎠⎟⎟

=′x x

′y x

⎝⎜⎜

⎠⎟⎟⊗ x ′x x ′y( )

Px = x x →cosφ−sinφ

⎝⎜⎜

⎠⎟⎟⊗ cosφ −sinφ( )

=cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟ for φ=0( )

The x'y'-representation of Px:

x U x x U y

y U x y U y

⎝⎜⎜

⎠⎟⎟=

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

Py = y y →sinφcosφ

⎝⎜⎜

⎠⎟⎟⊗ sinφ cosφ( )

==sin2φ sinφ cosφ

sinφ cosφ cos2φ

⎝⎜⎜

⎠⎟⎟= 0 0

0 1⎛

⎝⎜⎞

⎠⎟ for φ=0( )

The x'y'-representation of Py:

=′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

UU|y 〉=U|y〉=-sinφ |x〉 + cosφ |y〉|x 〉=U|x〉= cosφ |x〉 + sinφ |y〉

sinφ

-sinφ

cosφcosφ

|x〉

|y〉|x 〉|y 〉

```

`

Projector Px=⏐x〉〈x⏐ is what is called an outer or Kronecker tensor (⊗) product of ket ⏐x〉 and bra 〈x⏐.

45Tuesday, January 20, 2015

Page 46: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

46Tuesday, January 20, 2015

Page 47: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1 ' 1" 2 ' 1" n '

2" 1' 2" 2 ' 2" n '

n" 1' n" 2 ' n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 1" n

2" 1 2" 2 2" n

n" 1 n" 2 n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

1 1 ' 1 2 ' 1 n '

2 1' 2 2 ' 2 n '

n 1' n 2 ' n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

47Tuesday, January 20, 2015

Page 48: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1 ' 1" 2 ' 1" n '

2" 1' 2" 2 ' 2" n '

n" 1' n" 2 ' n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 1" n

2" 1 2" 2 2" n

n" 1 n" 2 n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

1 1 ' 1 2 ' 1 n '

2 1' 2 2 ' 2 n '

n 1' n 2 ' n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

Tj " m '

primeto

double − prime

⎜⎜⎜

⎟⎟⎟=

k=1

n∑ Tj " k

unprimedto

double − prime

⎜⎜⎜

⎟⎟⎟

Tk m '

primeto

unprimed

⎜⎜⎜

⎟⎟⎟

T(b"← b ') = T(b"← b ) •T(b← b ')

48Tuesday, January 20, 2015

Page 49: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is basically a matrix product as seen by comparing the following.

Axiom-4 similarity transformations (Using: 1=∑⏐k〉〈k⏐ )

j" m ' = j" 1 m ' =

k=1

n∑ j" k k m '

1" 1 ' 1" 2 ' 1" n '

2" 1' 2" 2 ' 2" n '

n" 1' n" 2 ' n" n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

=

1" 1 1" 2 1" n

2" 1 2" 2 2" n

n" 1 n" 2 n" n

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

1 1 ' 1 2 ' 1 n '

2 1' 2 2 ' 2 n '

n 1' n 2 ' n n '

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

Tj " m '

primeto

double − prime

⎜⎜⎜

⎟⎟⎟=

k=1

n∑ Tj " k

unprimedto

double − prime

⎜⎜⎜

⎟⎟⎟

Tk m '

primeto

unprimed

⎜⎜⎜

⎟⎟⎟

T(b"← b ') = T(b"← b ) •T(b← b ')(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Transformation Group axioms(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

49Tuesday, January 20, 2015

Page 50: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

50Tuesday, January 20, 2015

Page 51: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

51Tuesday, January 20, 2015

Page 52: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( )

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

52Tuesday, January 20, 2015

Page 53: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ...

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

53Tuesday, January 20, 2015

Page 54: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ...

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

54Tuesday, January 20, 2015

Page 55: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ...

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

55Tuesday, January 20, 2015

Page 56: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

56Tuesday, January 20, 2015

Page 57: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

57Tuesday, January 20, 2015

Page 58: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

1 00 0

⎝⎜⎞

⎠⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

58Tuesday, January 20, 2015

Page 59: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

1 00 0

⎝⎜⎞

⎠⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

= cosφ 0−sinφ 0

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎝⎜⎜

⎠⎟⎟

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

59Tuesday, January 20, 2015

Page 60: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Axiom-4 is applied twice to transform operator matrix representation.Example: Find: given: and T-matrix:

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟

x Px x x Px yy Px x y Px y

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛⎝⎜

⎞⎠⎟

′x Px ′y = ′x 1·Px ·1 ′y = ′x x x + y y( )·Px · x x + y y( ) ′y = ′x x x + ′x y y( )·Px · x x ′y + y y ′y( ) = ′x x x Px x x ′y + ′x y y Px x x ′y + ′x x x Px y y ′y + ′x y y Px y y ′y

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

′x Px ′x ′x Px ′y

′y Px ′x ′y Px ′y

⎝⎜⎜

⎠⎟⎟=

′x x ′x y

′y x ′y y

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

x Px x x Px y

y Px x y Px y

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

=cosφ sinφ−sinφ cosφ

⎝⎜⎜

⎠⎟⎟

1 00 0

⎝⎜⎞

⎠⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

= cosφ 0−sinφ 0

⎝⎜⎜

⎠⎟⎟

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cos2φ −cosφ sinφ

−sinφ cosφ sin2φ

⎝⎜⎜

⎠⎟⎟

Px = x x →cosφ−sinφ

⎝⎜⎜

⎠⎟⎟⊗ cosφ −sinφ( ) = cos2φ −sinφ cosφ

−sinφ cosφ sin2φ

⎝⎜⎜

⎠⎟⎟= 1 0

0 0⎛

⎝⎜⎞

⎠⎟ for φ=0( )This checks with the previous result 4-pages back:

More elegant matrix product:

The old “P=1·P·1-trick” where: 1=∑⏐k〉〈k⏐= ⏐x〉〈x⏐ + ⏐y〉〈y⏐;

60Tuesday, January 20, 2015

Page 61: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

61Tuesday, January 20, 2015

Page 62: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) Optical analyzer in sorter-counter configuration

Initial polarization angleθ=β/2 = 30°

θ

x-counts~| 〈x|x'〉|2= cos2 θ =

y-counts~| 〈y|x'〉|2= sin2 θ=

xy-analyzer( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

x T x x T yy T x y T y

⎝⎜⎜

⎠⎟⎟

= 0 00 0

⎛⎝⎜

⎞⎠⎟

Analyzer matrix:

62Tuesday, January 20, 2015

Page 63: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) Optical analyzer in sorter-counter configuration

Initial polarization angleθ=β/2 = 30°

θ

x-counts~| 〈x|x'〉|2= cos2 θ =

y-counts~| 〈y|x'〉|2= sin2 θ=

xy-analyzer( βanalyzer =0°)

Analyzer reduced to a simple sorter-counter by blocking output of x-high-road and y-low-road with counters

Fig. 1.3.3 Simulated polarization analyzer set up as a sorter-counter

y-output~| 〈y|x'〉|2= sin2 θ=

x-counts~| 〈y|x'〉|2=(Blocked and filtered out)

Initial polarization angleθ=β/2 = 30°

θxy-analyzer( βanalyzer =0°)

Analyzer blocks one path which may have photon counter without affecting function.

(2) Optical analyzer in a filter configuration (Polaroid© sunglasses)

Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons

x Py x x Py y

y Py x y Py y

⎝⎜⎜

⎠⎟⎟

= 0 00 1

⎛⎝⎜

⎞⎠⎟

x T x x T yy T x y T y

⎝⎜⎜

⎠⎟⎟

= 0 00 0

⎛⎝⎜

⎞⎠⎟

Analyzer matrix:

Analyzer matrix:

63Tuesday, January 20, 2015

Page 64: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

64Tuesday, January 20, 2015

Page 65: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°(a)

Half-wave plate

(Ω=π)Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

x U x x U yy U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟

Analyzer matrix:

65Tuesday, January 20, 2015

Page 66: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates

θ

Initial polarization angle

θ=β/2 = 30°(a)

Half-wave plate

(Ω=π)Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave (Ω = π) , (b) Quarter wave (Ω= π/2)

x U x x U yy U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −1⎛⎝⎜

⎞⎠⎟

x U x x U yy U x y U y

⎝⎜⎜

⎠⎟⎟= 1 0

0 −i⎛⎝⎜

⎞⎠⎟

x U x x U yy U x y U y

⎝⎜⎜

⎠⎟⎟= e− iΩxt 0

0 e− iΩxt

⎝⎜

⎠⎟

Analyzer matrix:

Analyzer matrix:

Analyzer matrix:

66Tuesday, January 20, 2015

Page 67: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Similar to "do-nothing" analyzer but has extra phase factor e-iΩx′ = 0.94-i 0.34 on the x'-path (top).x-output: y-output:

(b)Simulation

x'-polarized light

y'-polarized light

β/2=Θ= -30°

Θin =βin/2=100°plane-polarized light

x'

y

x

y'

Elliptically

polarized light ω=20°phase shift

(a)Analyzer Experiment

Phase shift→ Ω

Output polarization

changed by analyzer

phase shift

setting of

input

polarization

2Θin =βin=200°Θin=100°

Θ=-30°

=2Θanalyzerβ

x Ψout = x ′x e−iΩ ′x ′x Ψin + x ′y ′y Ψin = e−iΩ ′x cosΘcos Θin −Θ( )− sinΘsin Θin −Θ( )

y Ψout = y ′x e−iΩ ′x ′x Ψin + x ′y ′y Ψin = e−iΩ ′x sinΘcos Θin −Θ( ) + cosΘsin Θin −Θ( )

′x U ′x ′x U ′y

′y U ′x ′y U ′y

⎝⎜⎜

⎠⎟⎟

= e− iΩ ′x t 00 e− iΩ ′x t

⎝⎜

⎠⎟

Analyzer matrix:

67Tuesday, January 20, 2015

Page 68: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

ReΨy

ReΨx

ReΨy

ReΨx-√3/2

1/2

-30°

1/2√3/2

θ=

ω t = 0ω t = 0

ω t = πω t = π

0 12

3

4

5

6

78-7-6

-5

-4

-3

-2-1

01

2

3 4 5

6

78

-7-6

-5

-4-3

-2-1

(2,4)(3,5)(4,6)

(5,7)

(6,8)

(7,-7)

x-position

x-velocity vx/ω(c) 2-D Oscillator

Phasor Plot

(8,-6)(9,-5)

y-velocity

vy/ω

(x-Phase

45° behind the

y-Phase)

y-position

φ counter-clockwise

if y is behind x

clockwise

orbit

if x is behind y

(1,3) Left-

handed

Right-

handed

(0,2)

Fig. 1.3.6 Polarization states for (a) Half-wave (Ω = π) , (b) Quarter wave (Ω= π/2) (c) (Ω=−π/4)

68Tuesday, January 20, 2015

Page 69: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

69Tuesday, January 20, 2015

Page 70: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

A "peeking" eye

If eye sees an x-photonthen the output particleis 100% x-polarized.(75% probability for that.)

If eye sees no x-photonthen the output particleis 100% y-polarized(25% probability.)

θ

θ=β/2 = 30°

θ

θ=β/2 = 30°

(Looks for x-photons)

xy-analyzer(βanalyzer=0°)

xy-analyzer(βanalyzer=0°)

Initial polarization angle

Initial polarization angle

Fig. 1.3.7 Simulated polarization analyzer set up to "peek" if the photon is x-or y-polarized

How analyzers may “peek” and how that changes outcomes

70Tuesday, January 20, 2015

Page 71: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Initial

Without

“Peeking Eye” angle

θ=β/2 = 30°

Initial

polarization

angle

θ=β/2 = 30°

With

“Peeking Eye”

polarization(a)

(b)

xy-analyzer

(βanalyzer

=0°)

xy-analyzer

(βanalyzer

=0°)

βanalyzer

=60°

Θanalyzer

=30°

βanalyzer

=60°

Θanalyzer

=30°

Reconstructs

x (30°) beam

Cancels

y (30°) beamNo

y (30°)

appear

Only

x (30°)

appears

=2θ

5 to 8 odds

for x (30°)

to appear

3 to 8 odds

for y (30°)

to appear

30°

30°

(empty path)

Fig. 1.3.8 Output with β/2=30° input to: (a) Coherent xy-"Do nothing" or (b) Incoherent xy-"Peeking" devices

How analyzers “peek” and how that changes outcomesSimulations

71Tuesday, January 20, 2015

Page 72: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Fig. 1.3.9 Beams-amplitudes of (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with input

〈y|x'〉=1/2

〈x|x'〉=√3/2

〈y'|x〉= -1/2

〈x'|x〉=√3/2

〈x'|y〉=1/2

〈y'|y〉=√3/2

〈x'|x〉〈x|x'〉=√3/2 √3/2

〈x'|y〉〈y|x'〉=1/2 1/2

〈y'|y〉〈y|x'〉=√3/2 1/2

〈y'|x〉〈x|x'〉= -1/2 √3/2

〈x'|x〉〈x|x'〉+〈x'|y〉〈y|x'〉=√3/2 √3/2 +1/2 1/2 = 1

〈y'|x〉〈x|x' 〉+〈y'|y〉〈y|x'〉=-1/2 √3/2+√3/2 1/2 =0

|x〉-beam

|y〉-beam

|x〉-beam

|y〉-beam

|x〉

|x〉

|x'〉-beam|x'〉-beam

|y'〉-beam (zero)

|x'〉|y〉

Withouta

“Peeking Eye”

Witha

“Peeking Eye”

(a)

(b)

|x'〉-beam|y〉

|x'〉

|y'〉

|y'〉

|x'〉

x '

How analyzers “peek” and how that changes outcomes

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

72Tuesday, January 20, 2015

Page 73: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

A(x') = x' x x x' + x' y y x'

= 43 + 4

1 = 1

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

A( y') = y' x x x' + y' y y x'

= 4− 3 + 4

3 = 0

=P(x′)

=P(y′)

Do-Nothing-analyzer

!x"#$x"!x#=%3/2!x"#

!y"#$y"!x#=1/2!y"#

!x"=!x#"$x#!x"+!y#"$y#!x"

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟=

cosφ −sinφsinφ cosφ

⎝⎜⎜

⎠⎟⎟

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

73Tuesday, January 20, 2015

Page 74: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

74Tuesday, January 20, 2015

Page 75: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

75Tuesday, January 20, 2015

Page 76: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) = 5

8+ 3

16e−iφ + eiφ( ) = 5+ 3cosφ

8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

76Tuesday, January 20, 2015

Page 77: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

A( y') = y' x eiφ( ) x x' + y' y y x'

= 4− 3 eiφ( ) + 4

3

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) = 5

8+ 3

16e−iφ + eiφ( ) = 5+ 3cosφ

8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

77Tuesday, January 20, 2015

Page 78: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Suppose "x-eye" puts phase eiφ on each x-photon with random φ distributed over unit circle (-π< φ <π). So eiφ averages to zero!

A(x') = x' x 1( ) x x' + x' y y x'

= 43 1( ) + 4

1 = 1

A( y') = y' x 1( ) x x' + y' y y x'

= 4− 3 1( ) + 4

3 = 0

A(x') = x' x eiφ( ) x x' + x' y y x'

= 43 eiφ( ) + 4

1

A( y') = y' x eiφ( ) x x' + y' y y x'

= 4− 3 eiφ( ) + 4

3

P(x')= 43 eiφ( ) +4

1( )* 43 eiφ( ) +4

1( ) = 5

8+ 3

16e−iφ + eiφ( ) = 5+ 3cosφ

8

P( y')= 4− 3 eiφ( ) + 4

3( )* 4− 3 eiφ( ) + 4

3( ) = 3

8− 3

16e−iφ + eiφ( ) = 3− 3cosφ

8

Amplitude A(n′) and Probability P(n′) at counter n′ WITHOUT “peeking”

Amplitude A(n′) and Probability P(n′) at counter n′ WITH “peeking”

Without“Peeking Eye”

(a)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

Reconstructsx (30°) beam

Cancelsy (30°) beam

30°

(empty path)θ=β/2= 30°

(b)

xy-analyzer(βanalyzer=0°)

βanalyzer=60°Θanalyzer=30°

5 to 8 oddsfor x (30°)to appear

3 to 8 oddsfor y (30°)to appear

30°

With“Peeking Eye”

With“Peeking Eye”

θ=β/2= 30°

Do-Nothing-analyzer

=P(x′)

=P(y′)

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

78Tuesday, January 20, 2015

Page 79: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

79Tuesday, January 20, 2015

Page 80: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ ⋅ x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ ⋅ y x'

2⎛⎝⎜

⎞⎠⎟

Classical Bayesian probability vs. Quantum probability

80Tuesday, January 20, 2015

Page 81: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ · x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ · y x'

2⎛⎝⎜

⎞⎠⎟ =

32

2⎛

⎜⎜

⎟⎟· 3

2

2⎛

⎜⎜

⎟⎟+ −1

2

2⎛

⎝⎜⎜

⎠⎟⎟· 1

2

2⎛

⎝⎜⎜

⎠⎟⎟= 5

8

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

81Tuesday, January 20, 2015

Page 82: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ · x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ · y x'

2⎛⎝⎜

⎞⎠⎟ =

32

2⎛

⎜⎜

⎟⎟· 3

2

2⎛

⎜⎜

⎟⎟+ −1

2

2⎛

⎝⎜⎜

⎠⎟⎟· 1

2

2⎛

⎝⎜⎜

⎠⎟⎟= 5

8

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

82Tuesday, January 20, 2015

Page 83: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x * x x' * x' y y x' + eiφ x' x x x' x' y * y x' *

=1

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ · x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ · y x'

2⎛⎝⎜

⎞⎠⎟ =

32

2⎛

⎜⎜

⎟⎟· 3

2

2⎛

⎜⎜

⎟⎟+ −1

2

2⎛

⎝⎜⎜

⎠⎟⎟· 1

2

2⎛

⎝⎜⎜

⎠⎟⎟= 5

8

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

83Tuesday, January 20, 2015

Page 84: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

84Tuesday, January 20, 2015

Page 85: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ * x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ * y x'

2⎛⎝⎜

⎞⎠⎟ =

32

2⎛

⎜⎜

⎟⎟

* 32

2⎛

⎜⎜

⎟⎟+ −1

2

2⎛

⎝⎜⎜

⎠⎟⎟

* 12

2⎛

⎝⎜⎜

⎠⎟⎟= 5

8

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x * x x' * x' y y x' + eiφ x' x x x' x' y * y x' *

=1

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x x x' + x' y y x'

2

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

Square of sum 85Tuesday, January 20, 2015

Page 86: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

=

probability thatphoton in x-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in x-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

+

probability thatphoton in y-beam

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

*

probability thatphoton in x'-input

becomesphoton in y-beam

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

Probability thatphoton in x'-input

becomesphoton in x'-counter

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

classical

= x' x2⎛

⎝⎜⎞⎠⎟ * x x'

2⎛⎝⎜

⎞⎠⎟ + x' y

2⎛⎝⎜

⎞⎠⎟ * y x'

2⎛⎝⎜

⎞⎠⎟ =

32

2⎛

⎜⎜

⎟⎟

* 32

2⎛

⎜⎜

⎟⎟+ −1

2

2⎛

⎝⎜⎜

⎠⎟⎟

* 12

2⎛

⎝⎜⎜

⎠⎟⎟= 5

8

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x eiφ( ) x x' + x' y y x'

2

= x' x x x'2+ x' y y x'

2+ e−iφ x' x * x x' * x' y y x' + eiφ x' x x x' x' y * y x' *

=( classical probability ) + ( Phase-sensitive or quantum interference terms )

Quantum probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x x x' + x' y y x'

2

Classical probabilityat x'-counter

⎝⎜⎜

⎠⎟⎟= x' x x x'

2+ x' y y x'

2

x ′x x ′y

y ′x y ′y

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟= 3 / 2 −1/ 2

1/ 2 3 / 2

⎝⎜⎜

⎠⎟⎟

Classical Bayesian probability vs. Quantum probability

Square of sum Sum of squares 86Tuesday, January 20, 2015

Page 87: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”) Diagonal unitary operators Non-diagonal unitary operators and †-conjugation relations Non-diagonal projection operators and Kronecker ⊗-products Axiom-4 similarity transformation

Matrix representation of beam analyzers Non-unitary “killer” devices: Sorter-counter, filter Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes Peeking polarizers and coherence loss Classical Bayesian probability vs. Quantum probability

Feynman 〈j⏐k〉-axioms compared to Group axioms

87Tuesday, January 20, 2015

Page 88: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

88Tuesday, January 20, 2015

Page 89: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

89Tuesday, January 20, 2015

Page 90: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

90Tuesday, January 20, 2015

Page 91: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

91Tuesday, January 20, 2015

Page 92: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

92Tuesday, January 20, 2015

Page 93: Group Theory in Quantum Mechanics Lecture 3 Analyzers ... · 1/20/2015  · Tuesday, January 20, 2015 1. Review: Axioms 1-4 and“Do-Nothing”vs“ Do-Something” analyzers ...

(1) The closure axiom Products ab = c are defined between any two group elements a and b, and the result c is contained in the group.

(2) The associativity axiom Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

Group axioms

(3) The identity axiom There is a unique element 1 (the identity) such that 1.a = a = a.1 for all elements a in the group ..

4) The inverse axiom For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

Feynman Axiom-3 consistent with group axiom 4 since inverse U =tranpose-conjugate U† = UT*

Feynman Axiom-2 consistent with group axiom 3 since “Do Nothing” analyzer =identity operator=1

Feynman Axiom-4 consistent with group axiom 1 since analyzer-A following analyzer-B is analyzer-AB =C and analyzer-B following analyzer-A is analyzer-BA =D

Axiom 4: 〈j′′⏐m′〉=∑〈j′′⏐k〉〈k⏐m′〉

k=1

nAxiom 3: 〈j⏐k〉=δjk=〈j′⏐k′〉=〈j′′⏐ k′′〉

Axiom 2: 〈j′′⏐m′〉*=〈m′⏐ j′′〉

Axiom 1: j′′⇔m′ probability equals |〈j′′⏐m′〉|2 = |〈m′⏐ j′′〉|2

Feynman 〈j⏐k〉-axioms compared to Group axioms

Feynman Axiom-4 consistent with group axiom 2 since analyzer matrix multiplication is associative

(5) The commutative axiom (Abelian groups only) All elements a in an Abelian group are mutually commuting: a.b = b.a.

Most analyzer sets (and most groups)are not Abelian (commutative)

(Probability) (T-reversal Conjugation) (Orthonormality) (Completeness)

93Tuesday, January 20, 2015