Green’s function theory for solid state electronic band...

78
Green’s function theory for solid state electronic band structure Hong Jiang College of Chemistry, Peking University

Transcript of Green’s function theory for solid state electronic band...

Page 1: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Green’s function theory for solid state

electronic band structure

Hong JiangCollege of Chemistry, Peking University

Page 2: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Outline

Introduction: what is Green’s functions for?

Green’s function for single-electron Schrödinger Equations

Green’s function for many-body systems: general formalism

GW approximation and implementation

Applications of the GW approach: examples

Page 3: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Further ReadingsThe GW approach

G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

W. G . Aulbur, L. Jonsson, J. Wilken, Solid State Phys., 54, 1 (2000).

F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

L. Hedin and S. Lundqvist, Solid State Phys. 23, 1-181 (1970).

Many-body theory in general

J. C. Inkson, Many-Body Theory of Solids: An Introduction (Plenum Press, 1984).

A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover, 2003).

E. K. U. Gross, E. Runge, O. Heinonen, Many-Particle Theory, (IOP Publishing, 1991).

R. D. Mattuck, A guide to Feynman diagrams in the many-body problem, (McGrow Hill, 1976).

E. N. Economou, Green’s functions in Quantum Physics (3rd ed., Springer, 2006).

Page 4: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Introduction: What are Green’s functions for?

Page 5: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Why are electronic band structure important?

R. M. Navarro Yerga et al. (2009)

Graetzel, Nature (2001)

Page 6: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Electron excitations: experimental measurements

[Yu&Cardona] Yu and Cardona, Fundamentals of Semiconductors(3rd), Springer (2003)

Sample

Source

Source

Analyzer

Analyzer

photon 0: absorption, reflection

photon photon : Raman scattering, Compton scattering, XES

photon electron : PES (XPS, UPS)

electron electron: electron energy loss spectroscopy

electron photon: inverse PES (BIS)

Page 7: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Electron excitations: examples

[Yu&Cardona]

Electron energy loss spectrum

Auger electron spectrum

Optical absorption

Page 8: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Photoelectron spectroscopy and optical absorption

[Jiang12]

Page 9: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Electronic band structure of semiconductors

[YuBook]

Page 10: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Mean field approaches

Remark: Kohn-Sham DFT is a many-body theory for the ground state total energy , but a mean-field approximation for single-electron excitation spectrum.

(Illustrations from G.-M. Rignanese’s talk)

Page 11: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

The band gap problem

NiO

Page 12: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

The origin of the DFT band gap problem

Perdew & Levy (1983); Sham & Schlueter (1983); Godby & Sham (1988)

KS HOMO-LUMO Gap ≠ Egap even with exact Exc

But for all explicit density functionals, e.g. LDA/GGA, Δxc=0

Page 13: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Quasi-particle theory

(courtesy of Dr. R. I. Gomez-Abal)

Concept of quasi-particles

[Mattuck]

Page 14: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

quasi-particle theory and GW approximation

Quasi-particle equation

H. Jiang, Acta Phys.-Chim. Sin. 26, 1017(2010)

Page 15: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Green’s functions for single-electron Schrödinger Equations

Green’s function Green function

Page 16: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Definition of Green’s function (mathematically)

ˆ ( ) ( ) 0z H ψ − = r r

Consider a partial differential equation of the general form with a

certain boundary condition

z : a complex number

: a general Hermitian differential operator ˆ ( )H r

ˆ ( ) ( , '; ) ( ')z H G z δ − = − r r r r r

Green’s function G(r,r’;z) is defined as the solution of the following

equation with the same boundary condition for ψ(r):

Page 17: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Analytic properties of Green’s function ˆ ( ) ( , '; ) ( ')z H G z δ − = − r r r r r

*( ) ( ') ( ')n nnφ φ δ= − r r r rˆ ( ) ( ) ( )n n nH φ ε φ=r r r

* * *'( ) ( ') ( ) ( ') ( ) ( ')( , '; ) n n n n

n nn n

G z dz z z

ε εφ φ φ φ φ φ εε ε ε

= = +− − −

r r r r r rr r

G(r,r’;z) is analytic in the z-plane except at the eigenvalues of (discrete eigenvalues of ): simples poles (continuum eigenvalues of and extended states):

a branch cut

(continuum eigenvalues of and localized states): a natural boundary

( , '; ) ( , '; ), 0G G iε ε η η± ± += ± =r r r r

Page 18: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Green’s function for perturbation theory ˆ ( ) ( , '; ) ( ')z H G z δ − = − r r r r r

ˆ ( ) ( ) ( )

( , '; ) ( ') ', (z , )( )

( , '; ) ( ') ' ( ) (z= ) n

z H f

G z f dG f d ε

ψ

ε εψ

ε φ ε±

− = ≠

= +

r r r

r r r rr

r r r r r

0 0ˆ ( ) ( ; ) 0E H Eψ − = r r

0ˆ ( ) ( ) ( ; ) 0E H V Eψ − − = r r r 0

ˆ ( ) ( ; ) ( ) ( ; )E H E V Eψ ψ − = r r r r

0 ( , '; )G E± r r

0 0( ; ) ( ; ) ( , ') ( ') ( '; ) 'E E G V E dψ ψ ψ± ± ±= + r r r r r r r(Lippman-Schwinger equation)

Page 19: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Dyson’s equationIn many cases, we are interested in the perturbation expansion of

Green’s functions instead of that of wave functions

0 0

0

ˆˆ ( ) 1

ˆˆ ˆ ( ) 1

z H G z

z H V G z

− = − − =

1

0 00

1

00

1ˆ ˆ( ) ˆ

1ˆ ˆ ˆ( ) ˆ ˆ

G z z Hz H

G z z H Vz H V

= − ≡ −

= − − ≡ − −

10 0

10

ˆ ˆ( )ˆ ˆ ˆ( )

G z z H

G z z H V

= −

= − −1 1

0ˆ ˆ ˆ( ) ( )G z G z V− −= −

1 100 0

ˆ ˆ( ) (ˆ ˆ( )ˆ ˆ ˆ( ) ( )) ( )G z G z G z VGG zz G z− − = −

0 0ˆ ˆ ˆ(ˆ ˆ( ) ( )) ( )G G z G zz Vz G= + a Dyson’s equation

Page 20: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Time-dependent Green’s function

Time-dependent Schrödinger equation

ˆ ( ) ( , ) 0i H tt

ψ∂ − = ∂ r r

ˆ ( ) ( , ' ') ( ') ( ')i H G t t t tt

δ δ∂ − = − − ∂ r r r r r

For independent of time, , ≡ , ;Fourier transform ( ')1( , '; ') ( , '; )

2i t tG t t G e dωω ω

π+∞ − −

−∞− = r r r r

ˆ ( ) ( , '; ) ( ')H Gω ω δ − = − r r r r r

But: , ; is singular if ω is equal to any eigenvalue of !

(all in atomic units!)

Page 21: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Retarded and advanced Green’s function

ˆ ( ) ( , ' ') ( ') ( ')i H G t t t tt

δ δ∂ − = − − ∂ r r r r r

R/A / ( ')

( ')

1( , '; ') ( , '; )21 ( , '; )

2

i t t

i t t

G t t G e d

G i e d

ω

ω

ω ωπ

ω η ωπ

+ −+∞ − −

−∞

+∞ − −

−∞

− =

≡ ±

r r r r

r r

Retarded Green’s function

*( ) ( ')( , '; ) n n

n n

G zz

φ φε

=− r rr r

*R ( ) ( ')( , '; ) ( ) , ( ')nin n

n n

G i e t tz

ε τφ φτ θ τ τε

−= − ≡ −− r rr r

*A ( ) ( ')( , '; ) ( ) nin n

n n

G i ez

ε τφ φτ θ τε

−= −− r rr r

Page 22: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

The use of Green’s function

R( , ) ( , '; ') ( ', ')t G t t t dΨ = − Ψr r r r r

Retarded Green’s function as the propagator

Density matrix

Eigenvalues from the poles of Green’s functions *( ) ( ')( , '; ) n n

n n

G zz

φ φε

=− r rr r

( )*

R/A

*

*( ) ( ') 1ˆ( , '; )

( ) ( ')

( ) ( ')

( , ';ˆ )

n n

n nn n

n n

n

n n n

n

G ii

i

φ φφ φω πω ε η ω ε

φ φ

δ ω ε

ρ ωπω ε

= = Ρ − ± −

= Ρ−

r rr r

r r

r r

r r

( )1 1ˆ i xx i x

πδη

= Ρ ±

R/A A R1 1( , '; ) Im ( , '; ) ( , '; ) ( , '; )2

G G Gρ ω ω ω ωπ π

= = − r r r r r r r r

Page 23: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Green’s function for many-body systems: General formalism

Outline

• Green’s functions: definition and properties

• Many-body perturbation theory based on Green’s functions

• Hedin’s equations

Page 24: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Representations (pictures) of quantum mechanics

Schrödinger Representation

( ) ( ) ( )

( ) ( ) ( )†

ˆ

( ) , ,

, ,

ˆS S

S

S

Si H qt

O t Oq

q t

q tqt dq

q tΨ∂ =∂

Ψ

Ψ

= Ψ

Heisenberg Representation

( )

( ) ( ) ( )( ) ( )

( ) ( )

H

†H H

H

H

H

ˆ ˆ

H

0

( )

ˆ ˆ, (assuming is independent of time)

ˆ ˆ ˆ, , ,

ˆ ,

ˆ , iHt iHtS

it

O t q q dq

e O q e H

i O q t O q t Ht

O q t

O q t

q

∂ =∂

= Ψ Ψ

=∂ = ∂

Ψ

Page 25: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hamiltonian in terms of field operatorsField operators

Field operators in the Heisenberg representationˆ ˆ† †

ˆ ˆ

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

iHt iHt

iHt iHt

t e e

t e e

ψ ψ

ψ ψ

=

=

x x

x x

[ ] † †

ˆ ˆ ˆ ˆ( ), ( ') ( ), ( ') 0

ˆ ˆ( ), ( ') ( , ')

ψ ψ ψ ψ

ψ ψ δ+ +

+

= =

=

x x x x

x x x x

ˆ ( )ψ x†ˆ ( )ψ x

annihilation operator remove an electron at rcreation operator creator an electron at r

Hamiltonian of N-electron interacting systems

ˆ ˆ ˆˆ ˆ ˆ,

{ , }, : spin index

A B AB BA

s s+

≡ + ≡x r

20 ext

1ˆ ( ) ( )2

h V≡ − ∇ +x x

Page 26: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Definition of (one-body) Green’s function

†ˆ ˆ ˆ( , ' ') T ( ) ( ' ')G t t i N t t Nψ ψ = − x x x x

††

ˆ ˆ ( ) ( ' '), ' ˆ ˆ ˆT ( ) ( ' ')ˆ ˆ( ' ') ( ), '

t t t tt t

t t t tψ ψψ ψψ ψ

> = <±

x xx x

x x

N

T̂the ground state of the N-electron systemstime-ordering operator

† † †0

1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ' ( ') ( ) ( ' ) ( ' ) ( )2

H dx t h t d d v t t t tψ ψ ψ ψ ψ ψ= + − x x x x x r r x x x x

(one-body) Green’s function

Note:

Page 27: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Physical significance of Green’s function (1)

't t>†ˆ ( ', ')t Nψ x1) add an electron to the system at x’ and t’

†ˆ ˆ( , ) ( ', ')N t t Nψ ψx x3) project to the ground state (measure!)

†ˆ ˆ (( ', '), ) tt Nψ ψ xx2) take an electron away from the system

at x and t

Page 28: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Physical significance of Green’s function (2)† †ˆ ˆ ˆ ˆ( , ' ') ( ') ( ) ( ' ') ( ' ) ( ' ') ( )iG t t t t N t t N t t N t t Nθ ψ ψ θ ψ ψ= − − −x x x x x x

't t<1) remove an electron from (add a hole to )

the system at (x,t )

ˆ ( , )t Nψ x

2) add an electron to (annihilation of the

hole) the system at (x’,t’)

†ˆ ( ', ') ˆ ( , ) Nt tψψ xx

3) project to the ground state (measure!) †ˆ ˆ( ', ') ( , )t t NN ψ ψx x

Page 29: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Lehmann representation (1)

Page 30: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Lehmann representation (2)

metallic systems: Insulating systems:

Page 31: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Lehmann representation (3)

Page 32: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Lehmann representation (4)

fs(x): Lehmann (quasi-particle) amplitudes

Page 33: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Spectral representation of Green’s function

Spectral function

Spectral representation of Green’s function

Alternatively,

Page 34: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Quasi-particles

Spectral function

Non-interacting systems

Interacting systems

(Figures from G.-M. Rignanese’s talk)

Page 35: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Green’s function for many-body systems: General formalism

Outline

• Green’s functions: definition and properties

• Many-body perturbation theory and Hedin’s equations

Page 36: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Equation of motion for GFs

Page 37: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Equation of motion for GFs

Similar EOS can be derived for G2 which involves G3, and so on.

Two-body Green’s function

Page 38: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Equation of motion for GFs: Approximations

Hartree approximation

Hartree-Fock approximation

Page 39: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

(exchange-correlation) self-energyDefinition:

Equation of Motion

Fourier transform

Page 40: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Dyson’s equation

Dyson’s equation (again!)

in matrix form

Hartree approximation

Page 41: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Quasi-particle Equation (?)

Quasi-particles

Page 42: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Two major approaches to obtain approximate Σxc

Diagrammatic expansion (Wick’s theorem)

Equation of motion and functional derivatives

0 H (( ) ( ) ( , ' ) ' ( , ' ) ( ' , ' ) )) (, = ' ( )i h V G t t d dt t t G t t t tttδ δ δδ

φ ′ ′ ′′ ′ ′′ ′ ′′ ′ ′− − + − Σ − − x x x x x x x x x x xx

Page 43: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations

(Figures from G.-M. Rignanese’s talk)

Page 44: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (1)

adiabatic small perturbation

Page 45: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (2)

Page 46: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (3)

Page 47: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (4)

Page 48: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (5)

Page 49: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (6)

Page 50: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: Derivation (7)

Page 51: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Hedin’s Equations: the “grand pentagon”

Page 52: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Ground state properties from Green’s function (1)The expectation value of one-body operator

Examples:

Page 53: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

In general, two-body physical properties cannot be obtained

directly from one-body Green’s function.

Exception:

Galitskii-Migdal formula

Ground state properties from Green’s function (2)

Page 54: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

GW approximation and implementations

Outline

• GW approximation

• Implementations of the GW approach

H. Jiang, Front. Chem. China 6(4): 253–268 (2011)

Page 55: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

GW Approximation

Page 56: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

“best G best W” : G0W0 Approximation

Hybertsen and Louie(1985); Godby, Schlüter and Sham (1986)

( ) ( ) ( ) 'xc 0 0, '; , '; ' ', ; ' '

2ii G W e dηωω ω ω ω ω

πΣ = +r r r r r r

Page 57: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Implementation: main ingredients

*

*

0 0 0

,

,

*

( , '; ) = ( , '; ) ( ', ; )

1 1(1 ( ') ( ')

( ')

( ))

( )

( )

( )

2

= n mm n m nn

n mn m

nm m n

m

nmn

m

f f

P

i i

i d

F

G G

ψ

ω ω ω

ω ε ε η

ω ω

ω ε ε

ω

ψψη

π

ψ

− −

′ ′ ′

Φ

− + + + − − Φ

− +

x x x x x

x

xx

x

x

x x

Polarization function

Key ingredients:

How to expand the products of two orbitals the product basis

How to treat frequency dependency

( ) 0xc

* *0 0

( )'

2 '

( ) ( ) ( ') ( , '; ) ( ) ( ') '

m k k nm n

k

i j k l i

k

j k l

Wi d

W W d d

ψ ψ ω ψ ψψ ω ψ ω

π ω ω

ψψ ω ψ ψ ψ ψ ω ψ ψ

εΣ =

+ −

=

r r r r r r r r

Self-energy

sgn( )k k kiε ε η μ ε= + −

Page 58: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Matrix representation

Product basis:

( ), , ,ε= ≡ −cO v P W W v

c

,

Zc

*B (1( ) '

, ) ( , ')2 '

( , )n

mc m

i jnm ij nm

i j

Md

WiN

Mωω ω

π ω ω ε+∞

−∞−

Σ

=−

+ k

q k q

k q q k q

( , ; ')nmX ωk q

Page 59: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

GW implementations

Page 60: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Implementation: the product basis (1)

[ ]1( ) ( ) exp ( )χ χ→ ≡ + ⋅q qGr r q G ri i

VPlanewaves

;= ( )ψ χ kk k G G

Grn nc 1/2 *

; ' ; ''

( , ) =nm n mM V C C−− −G

k G k q G GG

k q

' , '1( ) = .

| |δ

+GG G Gqq G

v ' ' '4( , ) = ( , ).

| || ' |πε ω δ ω−

+ +GG GG GGq qq G q G

P

Codes: abinit, yambo, BerkeleyGW, SaX, vasp

Atomic-like orbitals ( )1/2

1( ) = ( )αα α αχ φ⋅ + − − q R tq

Rr r R ti

c

eN

[ ] *( ) ' ( ) ( , ' ( ')) .V Vd d Xα βαβ χ χ≡ qq r rr rX r r

[ ]1 1( ) = ( ) ( ) ( )− −qX Xq S q q S q

*( ) ( ) ( ).

VS dαβ α βχ χ ≡ q qq r r r

*

,

= ( ) ( ) (( , ) )' .X α βαβα βχ χ q q

qr r q rXr

Codes: FHI-aims, FIESTA

Page 61: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

(L)APW+lo(+LO) basis

{ } { }MBmax, '

' ' ' '( ) ( ) ( )l ll l NLl l L l l

lu r u r v rαζ αζ≤

− ≤ ≤ +⎯⎯⎯⎯→

Mixed basis

MBmax

( )

( ),

ˆ( ) ( ), MT spheres

( ) 1 , Interstitial

iNL LM

G

i ii

e v r Y

S eV

α α α

αχ

⋅ +

+ ⋅

<

∈=

q R r

Rq

q G rG

G

r r

rr

Implementation: the product basis (2)

Codes: GAP, SPEX

Page 62: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Implementation: frequency dependence

Static approximations

Coulomb hole-screened exchange (COHSEX)

Generalized plasmon pole (GPP) model

Full frequency treatment

Imaginary frequency + analytic continuation

real frequency Hilbert transform

Contour deformation

o*

'

o*

'

SE

*

0

c

X

R ( , '; ) =

( ) ( ') ( ', ( ', ; )1( ) ( ')

1 ( ' ) ( , ';0)2

; )

( ) ( ') ( ', ;0

(

)

' , )

cc

n n nn

cc

c

n

n

n

n nn

n

WdWe

WW

ψ ψ ω ωψ ψ ωπ ω

δψ ψ

εω

ωε

∞ ′ℑ′−′−

Σ

+

− ℜ

+

− ℜ

Σ

k k kk

k kk

k kk k

r rr r

r

r r r r

r r r r

r

r r r

r

r

r

COH ( , ')Σ r r

Page 63: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

frequency treatment: GPP modelsPlasmon pole model for homogeneous electron gas

1Im ( , ) ( ) ( ( ))pq A q qε ω δ ω ω− ≈ −

Generalized plasmon pole models

( )1' ' '

11 ' '

'2 2 2 20'

Im ( , ) = ( ) ( )

( ) ( )2 Im ( , ) 2Re ( , ) = = .( )

A

Ad

ε ω δ ω ωωω ε ωε ω ω δ

π ω ω π ω ω

−∞−

′′+ +′ − −

GG GG GG

GG GGGG

GG

q q q

q qqq 1q

Hybertsen-Louie (HL) model

Godby-Needs (GN) model

von der Linden-Horsch (vdLH) model

Engel-Farid model

Page 64: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

frequency treatment : Hybertsen-Louie model

( )1' ' 'Im ( , ) = ( ) ( )Aε ω δ ω ω− −GG GG GGq q q

Two parameters for each G, G’ are determined by

1) Static dielectric function ω=0

2) The f-sum rule 1 2

' '0

2'

Im ( , ) = ( )2

4 ( ) ( ')( ) ( ')| || ' |

d πω ε ω ω

π ρ

∞ − − Ω

+ ⋅ +Ω = −+ +

GG GG

GG

q q

q G q Gq G Gq G q G

1/21' ' ' '

'' 1/21

' '

( ) = ( ,0) | |2

| |( ) =( ,0)

π δ ε

ωδ ε

− Ω

Ω −

GG GG GG GG

GGGG

GG GG

q q

qq

A

Page 65: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

frequency treatment : the GN model

( )1' ' 'Im ( , ) = ( ) ( )Aε ω δ ω ω− −GG GG GGq q q

Two parameters for each G, G’ are determined by

1) Static dielectric function ω=0

2) Inverse dielectric at a chosen imaginary frequency, ω=iωp

( )( )1/2 1 1 1 1/2' ' ' ' '

1/21 1' '1/2

' 1' '

( ) = [ ( ,0) ( ,0) ( , ) ]2

( ,0) ( , )( ) =

( ,0)

p p

pp

A i

i

π ω δ ε ε ε ω

ε ε ωω ω

δ ε

− − −

− −

− −

− −

GG GG GG GG GG

GG GGGG

GG GG

q q q q

q qq

q

Page 66: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

frequency dependence: IF+AC approach

Imaginary frequency plus analytic continuation (IF-AC) o u *

2 2

2( )( , ) = 2 ( , ) ( , )

( )

BZ cc noccn n i j

ij nm nmn m n n

P iu M Mu

ε εε ε

− − × + − k k q

k k k q

q k q k q

( )( )

c20 2

2 ( , ; )( ) = .

π ε

∞ −

′−′Σ

′ + − k q

kq k q

k qBZm nm

nm m

iu X iuduiuu iu

p;c

;

( ) =N

p nn

p p n

aiu

iu bΣ

− kk

k

p;c

;

( ) =N

p nn

p p n

ab

ωω

Σ− k

kk

Page 67: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

frequency dependence : the CD approach

Contour deformation (CD) approach c

F

( )( ) = .2 sgn( )

nmn

m m m

Xi diωω ω

π ω ω ε η ε ε∞

−∞

′′Σ′+ − − −

c2 20

F F

2( )( ) ( )2 ( )

( )[ ( ) ( ) ( ) ( )]

mn nm

m m

nm m m m m m

du X iuu

X

ε ωωπ ε ω

ε ω θ ε ε θ ω ε θ ε ε θ ε ω

∞ −Σ =− +

+ − − − − − −

Page 68: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Self-consistency: full vs approximate SCGW

Full SCGW Approx. SCGW

Faleev-van Schilfgaarde-Kotani (QSGW) scheme (PRL 2004)

Page 69: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Main technical parameters in GW implementation

Parameters for KS DFT:

pseudopotentials, PAW or LAPW?

basis for Kohn-Sham orbitals

Quality of product basis

Number of unoccupied states considered (P & Σc )

The integration in the Brillouin zone: the number of k/q-

points

The frequency treatment and related parameters

H. Jiang, Front. Chem. China 6(4): 253–268 (2011)

Page 70: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Examples for applications of the GW approach

Page 71: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Band gaps of semiconductors

H. Jiang: GW with HLOs-enhanced LAPW (unpublished)

M. van Schilfgaarde et al. PRL

96, 226402 (2006)

Page 72: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

72

GW0@LDA for ZrO2 and HfO2

Jiang, H. et al. Phys. Rev. B 81, 085119 (2010)

Page 73: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Band gaps of MX2 and ATaO3

Jiang, H., J. Chem. Phys , 134, 204705 (2011);Jiang, H. J. Phys. Chem. C,116, 7664 (2012).

Pm-3m R3ch

H. Wang, F. Wu and H. Jiang, J. Phys. Chem. C, 115, 16180, (2011)

Page 74: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Ln2O3 band gaps: GW0@LDA+U vs Expt.

H. Jiang et al. Phys. Rev. Lett. 102, 126403(2009); Phys. Rev. B 86, 125115(2012).

Page 75: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Fully self-consistent GW for molecules

Rostgaard, Jacobsen and Thygesen, PRB 81, 085103 (2010)

Page 76: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

GW for fullerenes

Page 77: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

GW for CuPc

Page 78: Green’s function theory for solid state electronic band ...ias.ust.hk/events/201512aws/doc/GF-lectures-v2.pdf · ωε ε η ωω ωε ε ω ψ ψ η π ψ −− ′′′ Φ −++

Level alignment in dye-sensitized solar cells

P. Umari et al. J. Chem. Phys. 139, 014709 (2013)C. Verdi et al, Phys. Rev. B 90, 155410 (2014)