GPGPU Accelerated Cardiac Arrhythmia Simulations Wei Wang 1, H. Howie Huang 2, Matthew Kay 2 and...

11
GPGPU Accelerated Cardiac Arrhythmia Simulations Wei Wang 1 , H. Howie Huang 2 , Matthew Kay 2 and John Cavazos 1 1.University of Delaware 2.The George Washington University
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of GPGPU Accelerated Cardiac Arrhythmia Simulations Wei Wang 1, H. Howie Huang 2, Matthew Kay 2 and...

GPGPU Accelerated Cardiac Arrhythmia Simulations

Wei Wang1, H. Howie Huang2, Matthew Kay2 and John Cavazos1

1.University of Delaware2.The George Washington University

Motivation• Cardiac arrhythmia

–~300,000 people/year in the US

• Cure–Image-guided ablation therapy–Simulation improves efficacy

• Problem–Sequential execution of simulation too slow!

Simulation: Cardiac Model

Acceleration Concept

Sequential (Running on CPU) Parallel (Enabled by GPGPUs)

N11 N21 N31

N12 N22 N32

N13 N23 N33

Acceleration Tool—GPU• Example: NVIDIA Tesla C1060

240 Processing Elements Massively parallel multithreaded Up to 30720 active threads

CPU GPU

Acceleration Considerations

• SIMD• Large Matrix• No (Few) Temporal Data Dependency• Acceleration Command—CUDA• Using Atomic Functions*

GPU Acceleration

for (Xstep=1;Xstep<Nx+1;++Xstep){ for (Ystep=1;Ystep<Ny+1;++Ystep){ stimulate(); //apply stimulating current brgates(); // update gating equations brcurrents(); // update currents mdiff(); // update diffusion terms } // end Ystep loop } // end Xstep loop bcs(); // apply boundary conditions

GPU_GPU_GPU_GPU_

Simulation Results

Point Stimulation Electrical Rotor Simulation

Point Simulation Results

Matrix Sizes

S

peed

up

(nor

mal

ized

to

seq

perf

)

Thank you!Wei Wang

[email protected]://www.cis.udel.edu/~wwang

Please consider GPGPU