GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i...

37
R a d i o N A V I G A T I O N l a b GNSS Reflectometry for Earth Remote Sensing James L. Garrison Purdue University, West Lafayette, USA Stanford PNT Symposium Invited Presentation Stanford, CA October 30, 2019

Transcript of GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i...

Page 1: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a b

GNSS Reflectometry for Earth Remote Sensing

James L. GarrisonPurdue University, West Lafayette, USA

Stanford PNT SymposiumInvited Presentation

Stanford, CAOctober 30, 2019

Page 2: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications

• Spaceborne reflectometry• Research directions: Data assimilation

• Other variables• Future work – beyond GNSS

• Conclusions

2

Page 3: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019 3

GNSS Basic Principles

cτ1 = (X − X1)2 + (Y −Y1)

2 + (Z − Z1)2 +ctb

cτ 2 = (X − X2 )2 + (Y −Y2 )

2 + (Z − Z2 )2 +ctb

cτ 3 = (X − X3)2 + (Y −Y3)

2 + (Z − Z3)2 +ctb

cτ 4 = (X − X4 )2 + (Y −Y4 )

2 + (Z − Z4 )2 +ctb4+ Observations

4 Unknowns

τ1

τ 2

τ 3τ 4

Page 4: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

• Ideal navigation signal – infinitely-long sequence of random pulses (in reality – Pseudorandom noise (PRN)

• Received and local signals not aligned

• Received and local signals partially aligned

4

GNSS Basic Principles

Page 5: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

• Cross-correlation of ( -long) sequence of random pulses – large values for narrow range of delay

-Tc Tc

1

5

GNSS Basic Principles

Page 6: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

GNSS-R Basic Principles

6

Receiver

glistening zone

glistening zone

Page 7: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Rough Surface Scattering

7

(From Chapron and Ruffini, 2003 GNSS-R workshop, Barcelona. Photo taken at Le Conquet, Brittany)

Phenomenon observed in visible light at sunset: (water is calm inside the red ellipse)

Page 8: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications• Spaceborne reflectometry• Research directions: Data assimilation• Other variables• Future work – beyond GNSS• Conclusions

8

Page 9: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Early Airborne Experiments

Measured Waveform

Surface Wind Speed (Assumed wave spectrum model)

[Garrison, et al. GRSL 2011]

Best Fit of Model Waveform

9

[Garrison, et al TGARS 2002]

Brightness Temperature

Ca. 1997

Page 10: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications• Spaceborne reflectometry• Research directions: Data assimilation• Other variables• Future work – beyond GNSS• Conclusions

10

Page 11: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Why GNSS-R from Space ?

11

C. S. Ruf, et al., Bull. Am. Met. Soc., V. 97, N. 3, pp. 385–395, 2016. DOI: 10.1175/BAMS-D-14-00218.1

Simulated Coverage of Hurricane Frances: ASCAT vs. CYGNSS

Page 12: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Going to Space …Maximum Delay for 25 km resolution

12

Page 13: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

• Spaceborne observation – 2D “delay-Doppler Map” (DDM)• 25 km resolution requirement: 3 X 5 pixels used in L2 retrieval • Downloaded to the ground: 17 x 11 pixels around specular point

13

Going to Space …

Page 14: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

CYGNSS

14

• NASA Earth Ventures Mission: Launched Dec. 2016• 8 satellite GNSS-R constellation

• Improved forecast of tropical cyclone intensification:

1. Better penetration of rain (L-band vs K-band)

2. Higher revisit rate (2.8 H med. vs 11-35 H)

Page 15: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

CYGNSS

15

https://www.youtube.com/watch?time_continue=1&v=rRBqn6JPtv8

Cyclone GNSS (CYGNSS) Launch 12-Dec-2016[Ruf, et al. JSTARS, 2018, DOI:10.1109/JSTARS.2018.2833075]

[University of Michigan]

Page 16: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications• Spaceborne reflectometry• Research directions: Data assimilation• Other variables• Future work – beyond GNSS• Conclusions

16

Page 17: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Let’s return to this picture …

17

Data Assimilation

Page 18: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Data Assimilation

18

Integralover surface

Cross-section: Proportional to

Probability of slope scattering

in correct direction

Path lossTrans-surface

Path lossSurface-receiverMasking of

Surface by delay-Doppler mapping

Masking ofSurface by

Receiver antenna

Delay-Doppler Map (DDM)

As an equation …

Page 19: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019 19

Wind speed

Waves

AntennaPattern, S/C AttitudeGPS EIRP …

Observable

Wind Speed Retrieval (point)

True Wind field Observed DDM

Wind direction

(Data is just for illustration – not actual observations)

Data Assimilation

Page 20: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019 20

Wind speed

Waves

AntennaPattern, S/C AttitudeGPS EIRP …

Diff

True Wind field

(Data is just for illustration – not actual observations)

Wind direction

Observed DDM

Model Wind field Model DDM

ForwardModel

Adjustment

Data Assimilation

Page 21: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

• Experience from GNSS Radio-occultation (GNSS-RO):

Water vapor -> Refractivity -> bending angle

21

• Direct inversion (bending angle -> refractivity) assumes uniform propertiesover area covered by the integral

• Alternative: assimilate bending angle directly into weather models.

Data Assimilation

Page 22: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

DDM forward model

• Sensitivity of DDM sample to surface wind speed

DDM bins

2 4 6 8 10Doppler

2

4

6

8

10

12

14

16

Delay

304.5 305 305.5Longitude

16.5

17

17.5

18

Latitude

Sensitivity to surface grid points

DDM bins

2 4 6 8 10Doppler

2

4

6

8

10

12

14

16

Delay

304.5 305 305.5Longitude

16.5

17

17.5

18

Latitude

Sensitivity to surface grid points

Delay-Doppler ambiguity

22

Page 23: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Synthetic Aperture Radar (SAR) (Monostatic) [history.nasa.gov]

Bistatic Reflectometry[Zavorotny & Voronovich, 2000]

DDM forward model

“Delay-Doppler Ambiguity” – Have you heard this before ?

Page 24: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications

• Spaceborne reflectometry• Research directions: Data assimilation

• Other variables• Future work – beyond GNSS

• Conclusions

24

Page 25: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Other Variables

25

[1] Remote Sens. of Envi. DOI: 10.1016/j.rse.2017.06.020[2] Scientific Reports DOI: 10.1038/s41598-018-27127-4

Mapping inland waterways under dense biomass [1]

Post-Hurricane Flood Inundation [1]Soil Moisture [1]

Freeze-Thaw State [2]

Page 26: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Outline

• Basic Principles of Reflectometry• Early oceanographic applications• Spaceborne reflectometry• Research directions: Data assimilation• Other variables• Future work – beyond GNSS• Conclusions

26

Page 27: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Why GNSS ?

• Continuous global coverage• L-band good penetration of atmosphere, vegetation,

rain, etc … (but not good penetrating soil)• Pseudorandom noise (PRN) code – designed for ranging• My career began with GNSS! (not radiometry, radar or communications)

27

Page 28: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

What about other signals ?

• Approximately 400 communication satellites in GEO

• High-powered (~30 dB above GNSS) signals

• Allocations in most bands used for remote sensing:

L,S, C, Ku/Ka

• Designed for data transmission – Not ranging!• Assumption: Compression & Encryption are very efficient

at filling available spectrum– Data is nearly random

– Direct signal can be used as reference

28

Page 29: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Signals of Opportunity (SoOp)

29

Self-Ambiguity Function(Defined in: [Baker, et al., 2005, DOI: 10.1049/ip-rsn:20045083])

Page 30: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a b

ScienceNav/CommShared

Why would SoOp be useful ?

NTIA Spectrum Allocations: Very Valuable “Real Estate”

Page 31: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Two New Applications

31

P-band: Long wavelength, Better Penetration (RZSM & SWE)

Ku/K-band: Wide bandwidth “For free” (coastal altimetry)

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Two New Applications

31

P-band: Long wavelength, Better Penetration (RZSM & SWE)

Ku/K-band: Wide bandwidth “For free” (coastal altimetry)

Page 32: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Root Zone Soil Moisture (RZSM)• Water in top ~1m of soil • Essential for understanding water cycle & agricultural forecast.• Global RZSM from model assimilation (e.g. SMAP L4)

32

P-bandI-band L-band

5 cm

100 cm

Page 33: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Wideband SoOp Altimetry

33

• Improved spatial-temporal sampling & coverage from SoOp Altimetry

(Example: 9 days, Monterey Bay)

SSH Signature Altimeter (e.g. Jason-2/3) 10-day repeat

8-satellite W-SoOpconstellation

[Data from R. Shah, JPL]

Page 34: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

The “Virtual Swath”

34

Future Mission ConceptR

a d

i o

N A V I G A T I O N

l a b

Page 35: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

35

SoOp (Bistatic)

Soil Tg

Vegetation canopy

PT PRa GPTTB=eTg

Passive

Conservation of Energy: G=1-e

Active (Monostatic)

PTPra s0PT

SoOp as the “Third Way”

Page 36: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Conclusions

• Spaceborne GNSS-R wind retrievals successfully demonstrated under some conditions.• Perhaps wind speed is not the best variable ?

• Wind/Wave coupling• Direct DDM Assimilation

• Other geophysical variables can be retrieved• GNSS-R just the beginning - many other signals are out there!

• Diversity of frequencies in a crowded spectrum• High EIRP (+30 dB Vs. GNSS)• Broadly – “Signals of Opportunity” may introduce a

“third way” of microwave remote sensing.

36

Page 37: GNSS Reflectometry for Earth Remote Sensingweb.stanford.edu/group/scpnt/pnt/PNT19/... · R a I d i o G I N A V A T O N l b a Stanford PNT Symposium, Oct. 11, 2019 20 Wind speed Waves

R a

d i

o N A V I G A T I O N

l a bStanford PNT Symposium, Oct. 11, 2019

Data Sources• CYGNSS (at the JPL PO.DAAC): https://podaac.jpl.nasa.gov/CYGNSS• UK TDS-1:http://merrbys.co.uk/

37