Global Research Infrastructures for Biodiversity and Ecosystems Research

27
Global Research Infrastructures for Biodiversity and Ecosystems Research Alex Hardisty Director of Informatics Projects School of Computer Science & Informatics email: [email protected] /alexhardisty 1

Transcript of Global Research Infrastructures for Biodiversity and Ecosystems Research

Global Research Infrastructures for Biodiversity and Ecosystems 

Research

Alex HardistyDirector of Informatics Projects School of Computer Science & Informatics

email: [email protected]/alexhardisty

1

Take home messages

• Research infrastructures help data intensive science and collaboration between scientists.

• Measuring and calculating EBVs on a global scale are a unifying use case to drive interoperability across Research Infrastructures.

• No‐one is responsible for research infrastructure.We’re all responsible for research infrastructure.

2

Pedro Ribeiro Simões, flickr.com Goodmami, flickr.com Michael Bentley, flickr.com

Fig.1. Workflow for estimating SD, FD, and ES potential for tropical South America.

Molecular Ecology Resources19 NOV 2014 DOI: 10.1111/1755‐0998.12341

Setting the scene: The era of data‐intensive science 

Monitoring forest microclimate, www.fraunhofer.de

Satellite tagging saltwater crocodilesDanau Girang Field Centre, Cardiff University and Sabah Wildlife Service

Research infrastructures help data intensive science

Simply:Anything semi‐permanent that researchers need to do their job

• Physical equipment(labs, instruments, survey sites, ships, …)

• Computers(desktop, mobile, HPC, e‐Infrastructure, …)

• People(capacity, competencies, training, help, …)

“A collective term for the subordinate parts of an undertaking; substructure, foundation; spec. the permanent installations forming a basis for military operations, as airfields, naval bases, training establishments, etc.”

Oxford English Dictionary

Research Infrastructures support scholarly cycle

Source: Liz Lyon, www.ariadne.ac.uk, July 2003and JISC/SURF/CNI Conference May 2005

Learning & Teaching workflows

Research & Science workflows

Aggregator services: national, commercial

Repositories : institutional,               e‐prints, subject,  data, learning objects

Institutional presentation services: portals, Learning Management Systems, u/g, p/g courses, modules

Harvestingmetadata

Data creation / capture / gathering: laboratory experiments, fieldwork, surveys, media

Resource discovery, linking, embedding

Deposit / self‐archiving

Peer‐reviewed publications: journals, conference proceedings 

Publication

Validation

Data analysis, transformation, mining, modelling

Resource discovery, linking, embedding

Deposit / self‐archiving

Learning object creation, re‐use

Searching , harvesting, embedding

Quality assurance bodies

Validation

Presentation services: subject, media‐specific, data, commercial portals

Resource discovery, linking, embedding

Collect

Assure

Describe

Deposit

Preserve

Discover

Integrate

Analyse

Data LifecycleCredit: W. Michener

Research & teaching (scholarly cycle) involves data

Collect

Assure

Describe

Deposit

Preserve

Discover

Integrate

Analyse

Data LifecycleCredit: W. Michener

Research Infrastructures support the data lifecycleData Acquisition

Data Access

Data Curation

Community Support

Data Processing

Wide context of environmental RIs in Europe

Atmosphere Marine

Biosphere Solid Earth

Multi‐Domain

How we fit together: European view

Based on an original by Wouter Los, UvA9

Reference da

ta,

e‐Infrastructures

In situ,

In natura

Reference data(collections, taxonomy, sequences, environmental)

Modelling and analysis

Observation and monitoring data

Experimentaldata

Data

mob

ilizatio

nKn

owledge

prod

uctio

n

How we fit together: European view

Based on an original by Wouter Los, UvA10

Reference da

ta,

e‐Infrastructures

In situ,

In natura

Modelling and analysis

Observation and monitoring data

Experimentaldata

Data

mob

ilizatio

nKn

owledge

prod

uctio

n

EUDAT EGI.eu PRACE

LifeWatch

ANAEE

BioVeL

LTEREurope

SYN‐THESYS

CETAFBioCASE

MARS

PESI

Sp2000CoL

WoRMS

BioFRESH

SeaDataNet

ELIXIR

MIRRI

AquaMaps

Synth. centres

Scratch‐pads

UvABiTS

AlienSpeciesItaly

iMarine

INTER‐ACTEU BON EMBRCEMSO

A few examples of infrastructure

11

Index of the world’s known species> 1.6 million taxa (84%) from 151 databases

679 sites, > 6000 users360+ datasets Details of 800+ LTER sites around the World

You may have heard about it before

12

Progress at grass‐roots level

• particularly with national initiatives

• and specific projects, like BioVeL

A typical Research Infrastructure

Adapted from: Tjess Hernandez, VLIZ

www.biodiversitycatalogue.org

14

Credit: WCN247, Westminster College, New Wilmington, PA.

Equipping analysis labs for data intensive research

Credit: WCN247, Westminster College, New Wilmington, PA.

Equipping virtual labs for data intensive research

Biodiversity Virtual eLaboratory, http://portal.biovel.eu

http://www.uva‐bits.nl/virtual‐lab

Also, Marine VRE: http://marinevre.lifewatch.be 

https://www.analysisportal.se

http://www.iplantcollaborative.org

BioVeL Portal

17

Global Research Infrastructures

GBoWS Germplasm Bank of Wild Species,also IB CAS, IOZ CAS

SANBI Integrated Biodiversity Information System (SIBIS)

Information System on Brazilian Biodiversity

Reference Center on Environmental Information

More examples

19

GBIF – 2 papers published every day

20

287,768 files (4.2TB) from 25 member nodes and growing

Atlas of Living Australia 

21http://spatial.ala.org.au

How we fit together: Global view

22Regional / national

Global

Datamobilization

Knowledgeproduction

GBIF GeoBONWFCC (CAS)

LifeWatchDataONE

CAS genetics resources CRIA/

SiBBr

Atlas Living

Australia

NEON

SANBI

Competence centres

Source: CReATIVE‐B project

23

1. Increased global coordination and common technical interoperability between RIs

2. Priority for discovery and access3. Data and tools for research, management and 

conservation4. Effective governance for legal interoperability5. Broker for scientists, policy and citizens

A recommended joint action plan: Support development and testing of biodiversity indicators

24

Pursue it in GLOBIS‐B

No‐one is responsible for infrastructure.We’re all responsible for infrastructure.

• A set of rules and standardsgoverns infrastructure

• Coordinating body(ies) toapply them

• For us:• In Europe, LifeWatch ERIC top‐down; community bottom‐up• (USA for example) DataONE – Exec. Team, Leadership Team and partners

• Globally, fledgling HLSG

25

Image courtesy of bluebay at FreeDigitalPhotos.net

ERIC = European Research Infrastructure ConsortiumHLSG = High Level Stakeholders Group

Creating social value from shared resources

• Open Science: opening (the process) of knowledge creation and dissemination to a multitude of   stakeholders, including society in general. 

• Commons: Community governed mechanism reinforcing need of sharing in a way that allows non‐discriminatory access, while ensuring adequate controls to avoid congestion or depletion when capacity is limited

• A backbone of data, e‐Infrastructures, instruments, knowledge, expertise … overlain with related community specific capabilities

26This is exactly the model we foresee for biodiversity and ecosystems research

Take home messages

• Research infrastructures helpdata intensive science andcollaboration between scientists.

• Measuring and calculating EBVson a global scale are a unifyinguse case to drive interoperability across Research Infrastructures.

• No‐one is responsible for research infrastructure.We’re all responsible forresearch infrastructure.

27H is for Home, flickr.com