Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced...

67
Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized disjunctive programming: A framework for formulation and alternative algorithms for MINLP optimization IMA Hot Topics Workshop: Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications November 17-21, 2008

Transcript of Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced...

Page 1: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

Ignacio E. GrossmannCenter for Advanced Process Decision-making

Carnegie Mellon University Pittsburgh, PA 15213, USA

Generalized disjunctive programming: A framework for formulation and alternative

algorithms for MINLP optimization

IMA Hot Topics Workshop:Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications

November 17-21, 2008

Page 2: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

2

• Discrete/Continuous Optimization Nonlinear models0-1 and continuous decisions

• Optimization Models Mixed-Integer Linear Programming (MILP)Mixed-Integer Nonlinear Programming (MINLP)

Motivation

• ChallengesHow to develop “best” model?How to improve relaxation?How to solve nonconvex GDP problems to global optimality?

Alternative approach:Logic-based: Generalized Disjunctive Programming (GDP)

Page 3: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

3

1. Overview of major relaxations for nonlinearGDP and algorithms

2. Linear GDP: hierarchy of relaxations

3. Global Optimization of nonconvex GDP

Outline

Ph.D. StudentsRamesh RamanMetin TurkaySangbum LeeNick SawayaJuan Ruiz

Page 4: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

4

MINLP

f(x,y) and g(x,y) - assumed to be convex and bounded over X. f(x,y) and g(x,y) commonly linear in y

,1,0|,,|

, 0),( ..

),(min

aAyyyYbBxxxxRxxX

YyXxyx gts

yxfZ

m

ULn

≤∈=≤≤≤∈=

∈∈≤

=

• Mixed-Integer Nonlinear Programming

Objective Function

Inequality Constraints

Page 5: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

5

Algorithms Branch and Bound (BB) Ravindran and Gupta (1985), Stubbs, Mehrotra (1999), Leyffer (2001) Generalized Benders Decomposition (GBD) Geoffrion (1972)Outer-Approximation (OA) Duran and Grossmann (1986), Fletcher and Leyffer (1994) LP/NLP based Branch and Bound Quesada, Grossmann (1994)Extended Cutting Plane(ECP) Westerlund and Pettersson (1992) Codes: SBB GAMS simple B&B MINLP-BB (AMPL)Fletcher and Leyffer (1999)

Bonmin (COIN-OR) Bonami et al (2006) FilMINT Linderoth and Leyffer (2006)

DICOPT (GAMS) Viswanathan and Grossman (1990) AOA (AIMSS)

α−ECP Westerlund and Peterssson (1996) MINOPT Schweiger and Floudas (1998) BARON Sahinidis et al. (1998)

Mixed-integer Nonlinear Programming

Page 6: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

6

Generalized Disjunctive Programming

Motivation

1. Facilitate modeling of discrete/continuous optimization problems through use algebraic constraints andsymbolic expressions

2. Reduce combinatorial search effort3. Improve handling nonlinearities

Page 7: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

7

Generalized Disjunctive Programming (GDP)

( )

Ω

,0)(

0)(

)(min

1

falsetrue,YRc,Rx

trueY

K k γc

xgY

Jj

xs.t. r

xfc Z

jk

k

n

jkk

jk

jk

k

kk

∈∈=

∈⎥⎥⎥

⎢⎢⎢

=

≤∈

∑ +=

• Raman and Grossmann (1994) (Extension Balas, 1979)

Objective Function

Common Constraints

Continuous Variables

Boolean Variables

Logic Propositions

OR operator

Disjunction

Fixed Charges

Constraints

Page 8: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

8

11 21

12 22

13 23

11 12 13

13 11 12

21 22

11 21 12 22 13 23

0, , , , , ,

U

Y YY YY YY Y YY Y YY Y

x xY Y Y Y Y Y True Fa

∨∨∨

∨ ⇒⇒ ∨

≤ ≤∈

11 2 3, ,

lse

c c c

∈R

Process Network with fixed charges

1 2 3

1 2 4

6 3 5

11

3 1 2

1

. .

TMin Z c c c d xs tx x xx x x

Yx p xc

= + + +

= += +

=21

3 2

1 1

12 22

5 2 4 5 4

2 2 2

13 23

7 3 6 7 6

3 3 3

0 0

0 0

0 0

Yx x

c

Y Yx p x x xc c

Y Yx p x x xc c

γ

γ

γ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥∨ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ∨ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ∨ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎣ ⎦

GDP model

Page 9: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

9

Generalized Disjunctive Programming (GDP)

( )

Ω

,0)(

0)(

)(min

1

falsetrue,YRc,Rx

trueY

K k γc

xgY

Jj

xs.t. r

xfc Z

jk

k

n

jkk

jk

jk

k

kk

∈∈=

∈⎥⎥⎥

⎢⎢⎢

=

≤∈

∑ +=

• Raman and Grossmann (1994)

Objective Function

Common Constraints

Disjunction

Fixed Charges

Continuous Variables

Boolean Variables

Logic Propositions

OR operator Constraints

Relaxation?

Page 10: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

10

Big-M MINLP (BM)

• MINLP reformulation of GDP

min ( )

. . ( ) 0 ( ) (1 ) , ,

1,

0, 0,1

k

k

jk jkk K j J

jk jk jk k

jkj J

jk

Z f x

s t r xg x M j J k K

k K

A a x

γ λ

λ

λ

λλ

∈ ∈

= +

≤≤ − ∈ ∈

= ∈

≤≥ ∈

∑ ∑

∑Big-M Parameter

Logic constraints

NLP Relaxation 0 1jkλ≤ ≤

Page 11: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

11

Convex Hull Formulation

• Consider Disjunction k ∈ K( ) 0

k

jk

jkj J

jk

Y

g x

c γ∈

⎡ ⎤⎢ ⎥

≤⎢ ⎥⎢ ⎥=⎢ ⎥⎣ ⎦

Theorem: Convex Hull of Disjunction k (Lee, Grossmann, 2000)Disaggregated variables ν j

λj - weights for linear combination

, 0)/(

1,0 ,1

,0

, ,|),(

kjk

jk

jkjk

jkJj

jk

kjkjk

jk

Jjjkjk

Jj

jk

Jjvg

JjUv

cvxcx

k

k

∈≤

≤<=∑

∈≤≤

∑=∑=

∈∈

λλ

λλ

λ

γλ

Convex Constraints

- Generalization of Balas (1979)Stubbs and Mehrotra (1999)

=>

k

Page 12: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

12

)/(),( λλλ vgvh =

Remarks

If g(x) is a bounded convex function, is a bounded convex function Hiriart-Urruty and Lemaréchal (1993)),( λvh

1.

0)0,( =νh for bounded g(x)

0, ( )( (0)) (0) 0 0jk jk jkif g gλ ε ε= ⇒ − = ≤

1, ((1)( ( / (1)) (0)(0) (1) ( / (1)) 0jk jk jk jk jk jkif g g gλ ν ε ν= ⇒ − = ≤

a. Exact approximation of the original constraints as ε → 0.

c. The LHS of the new constraints are convex.

b. The constraints are exact at λjk = 0 and at λjk = 1 regardless of value of ε.

2. Replace by:( / ) 0jk jk jk jkgλ ν λ ≤ 0 jk jkUν λ≤ ≤where

((1 ) )( ( / ((1 ) ))) (0)(1 ) 0jk jk jk jk jk jkg gε λ ε ν ε λ ε ε λ− + − + − − ≤

Furman, Sawaya & Grossmann (2007)

Page 13: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

13

Convex Relaxation Problem (CRP)

Property: The NLP (CRP) yields a lower bound to optimum of (GDP).

Logic constraints

, ,10 ,0 ,

, ,0)/(

, 1

, ,0

,

0)( ..

)( min

Kk JjxaA

Kk Jjg

Kk

Kk JjU

Kk x

xrts

xfZ

kjk

jk

kjk

jk

jkjk

Jjjk

kjkjk

jk

Jj

jk

Kk Jjjkjk

k

k

k

∈∈≤≤≥≤

∈∈≤

∈=∑

∈∈≤≤

∈∑=

+∑ ∑=

∈ ∈

λλ

λλ

λ

λ

λγ

ν

ν

ν

ν

Convex HullFormulation

CRP:

Note: Hull relaxation as intersection of convex hull for each disjunction

Page 14: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

14

Strength Lower BoundsTheorem: The relaxation of (CRP) yields a lower bound that is greater than or equal to the lower bound that is obtained from the relaxation of problem (BM):

min ( )

. . ( ) 0 ( ) (1 ) ,

1,

0, 0 1

k

k

jk jkk K j J

jk jk jk k

jkj J

jk

Z f x

s t r xg x M j J k K

k K

A a x

γ λ

λ

λ

λλ

∈ ∈

= +

≤≤ − ∈ ∈

= ∈

≤≥ ≤ ≤

∑ ∑

RBM:

Page 15: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

15

MINLP Reformulation

, 1,0 ,0 ,

, ,0)/(

, 1

, ,0

,

0)( ..

)( min

Kk JjxaA

Kk Jjg

Kk

Kk JjU

Kk x

xrts

xfZ

kjk

jk

kjk

jk

jkjk

Jjjk

kjkjk

jk

Jj

jk

Kk Jjjkjk

k

k

k

∈∈=≥≤

∈∈≤

∈=∑

∈∈≤≤

∈∑=

+∑ ∑=

∈ ∈

λλ

λλ

λ

λ

λγ

ν

ν

ν

ν

Specify in CRP as 0-1 variablesλ

Page 16: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

16

Logic based methods

Branch and bound(Lee & Grossmann, 2000)

DecompositionOuter-ApproximationGeneralized Benders

(Turkay & Grossmann, 1997)

Methods Generalized Disjunctive Programming

Convex-hull Big-MCutting plane

(Sawaya & Grossmann, 2004)

Reformulation MINLPOuter-ApproximationGeneralized Benders

Extended Cutting Plane

GDP

Page 17: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

17

A Branch and Bound Algorithm for GDP

• Tree Search NLP subproblem at each node

• Solve CRP of GDPlower bound

CRP

+ fix a term indisjunction

CRPCRP

+ convex hullof remaining

terms

• Branching Rule Set the largest λj as 1 Dichotomy rule

• Logic inferenceCNF unit resolution (Raman & Grosmann, 1993)

• Depth first searchWhen all the terms are fixed

upper bound • Repeat Branching until ZL > ZU.

Page 18: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

18

GDP Example

Global Optimum(3.293,1.707)

Z* = 1.172

Contour of f (x)

Local solutions

x1

x2

(0,0)

S3

S2S1

Find x ≥ 0, (x ∈ S1)∨(x ∈ S2)∨(x ∈ S3) to minimize Z = (x1 - 3)2 + (x2 - 2)2 + c

Objective Function = continuous function + fixed charge (discontinuous).

Page 19: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

19

x1

x2

Convex hull = conv(USj)

Example : convex hull

S3

S2

S1

Page 20: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

20

x1

x2

(0,0)Convex hull

optimum, ZL = 1.154xL = (3.159,1.797)

S3

S2

S1

Convex combinationof zj

Convex hull = conv(USj)

zj = vj/λj

λ1= 0.016λ2= 0.955λ3= 0.029

Local solution point

Example: CRP solution

x*

Infeasible to GDP

Weight

Page 21: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

21

Example : branch and boundFirst Node: S2

Optimal solution: ZU = 1.172

x1

x2

(0,0)

S3

S1

Optimal Solution(3.293,1.707)Z* = 1.172

S2

Page 22: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

22

Example : branch and boundSecond Node: conv(S1 U S3)Optimal solution: ZL = 3.327

x1

x2

(0,0)

S3

S2S1

Upper BoundZU = 1.172

Lower BoundZL = 3.327

Page 23: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

23

• Branching Rule: λj - the weight of disaggregated variable Fix Yj as true: fix λj as 1.

Y2

Root NodeConvex hull of all Si

Z = 1.154λ = [0.016,0.955,0.029]

First NodeFix λ2 = 1, Z = 1.172[x1 ,x2] = [3.293,1.707]

λ = [0,1,0]

Second NodeConvex hull of S1 and S3

Z = 3.327λ = [ 0.337,0,0.623]

¬ Y2

ZU = 1.172Backtrack

ZL = 1.154Branch on Y2

ZL = 3.327 > ZU

Stop

Example: Search Tree

Page 24: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

24

Process Network with Fixed Charges• Türkay and Grossmann (1997)

Superstructure of the process

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25x18

x10

x20

x23x22 x24x5

x3x2

A

B

: Unitj

Y1 ∨ Y2

Y6 ∨ Y7

Y4 ∨ Y5

C

D

F

E

Yi ∨ Yj

Specifications

Page 25: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

25

Minimum Cost: $ 68.01M/year

2

6

4

8

x1

x4

x19

x13

x14

x11

x12

x18

x20

x23 x24x5A

B

: Unitj

D

F

E

RawMaterial ProductsReactor Reactor

Optimal solution

x7

x6x10

x17

x25

x8

Page 26: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

26

Proposed BB MethodZL = 62.48

λ = [0.31,0.69,0.03,1.0,1,0,1]

ZU = 68.01 = Z*λ = [0,1,0,0,1.0,1,0,1]

Optimal Solution

ZU = 71.79λ = [0,1,1,1.0,1,0,1]

Feasible Solution

ZL = 75.01 > ZU

λ = [1,0,0.022,1.0,1,0,1]

ZL = 65.92λ = [0,1,0.022,1.0,1,0,1]

0

32

41

Fix λ2 = 1

Fix λ3 = 1 Fix λ3 = 0

Fix λ2 = 0

Stop

5 nodes vs. 17 nodes of Standard BB (lower bound = 15.08)

Proposed BB

0

ZL = 15.08 Big-M Std. BB

1 2

43

1413 5 6

812111615 7

10*9

Y4 = 0 Y4 = 1

Y6 = 0 Y6 = 1

Y8 = 0Y8 = 1

Y1 = 0 Y1 = 1

Y8 = 0 Y8 = 1

Y2 = 0 Y2 = 1 Y1 = 1

Y3 = 0 Y3 = 1

Page 27: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

27

Logic-based Outer ApproximationMain point: avoids solving MINLP in full space

Turkay, Grossmann (1997)

SDkiiDifalseYforc

xB

SDkDitrueYforc

xhxgts

xfcZ

kikk

i

kkiikk

ik

SDkk

∈≠∈=⎭⎬⎫

==

∈∈=⎭⎬⎫

=≤

+= ∑∈

,ˆ,0

0

,ˆ0)(0)(..

)(min

ˆγ (NLPD)

x ∈ Rn, ci ∈ Rm,

NLP Subproblem:(reduced)

α+= ∑k

kcZMin

(MGDP)1,...,= 0)()()()()()(..

Lxxxgxg

xxxfxftsT

T

llll

lll

⎪⎭

⎪⎬⎫

≤−∇+

−∇+≥α

SDk

cL

xxxhxh

Y

ikk

ik

Tikik

ik

Di k

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=∈

≤−∇+∨∈

γl

lll 0)()()(

Ω (Y) = True α ∈ R, x ∈ Rn, c ∈ Rm, Y ∈ true, falsem

Master Problem:

Proceed as OA. Requires initialization several NLPs to cover all disjunctions

Redundant constraints are eliminated with falsevalues

Master problem solved with disjunctive branch and bound orwith MILP reformulation

Page 28: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

28

LogMIP

Part of GAMS Modeling System-Disjunctions specified with IF Then ELSE statementsDISJUNCTION D1(I,K,J);D1(I,K,J)

with (L(I,K,J)) ISIF Y(I,K,J) THEN

NOCLASH1(I,K,J);ELSE

NOCLASH2(I,K,J);ENDIF;

-Logic can be specified in symbolic form (⇒, OR, AND, NOT )or special operators (ATMOST, ATLEAST, EXACTLY)

-Linear case: MILP reformulation big-M, convex hull-Nonlinear: Logic-based OA

http://www.ceride.gov.ar/logmip/

Aldo Vecchietti, INGAR

Page 29: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

29

Carnegie Mellon

1

. .

( )

, ,

jk

k

jk

k

Tk

k K

jk jk

j Jk j k

j J

L U

jk k

k

Min Z c d x

s t Bx bY

A x a k Kc

Y k K

Y Truex x xY True False j J k K

c

γ

= +

⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

∨ ∈

Ω =

≤ ≤∈ ∈ ∈

R k K∈

Linear Generalized Disjunctive ProgrammingLGDP Model

Raman R. and Grossmann I.E. (1994) (Extension Balas (1979)) (LGDP)

Objective function

Common constraints

Disjunctive constraints

Logic constraints

Boolean variables

Logical OR operator

Continuous variables

Can we obtain stronger relaxations?

Page 30: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

30

Carnegie Mellon

Disjunctive Programming

Constraint set of a DP can be expressed in two equivalentextreme forms

: ( )n i i

i QF x A x a

∈= ∈ ∨ ≥R

- Disjunctive Normal Form (DNF). A disjunction whose terms do not contain further disjunctions

0: , ( ), 1,...,j

n h h

h QF x Ax a d x d j t

∈= ∈ ≥ ∨ ≥ =R

- Conjunctive Normal Form (CNF). A conjunction whose terms do not contain further conjunctions

Disjunction: A set of constraints connected to one another through the logical OR operator ∨

Conjunction: A set of constraints connected to one anotherthrough the logical AND operator ∧

Page 31: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

31

Carnegie Mellon

1

. .

( )

, ,

jk

k

jk

k

Tk

k K

jk jk

j Jk j k

j J

L U

jk k

k

Min Z c d x

s t Bx bY

A x a k Kc

Y k K

Y Truex x xY True False j J k K

c

γ

= +

⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

∨ ∈

Ω =

≤ ≤∈ ∈ ∈

R k K∈

Linear Generalized Disjunctive ProgrammingLGDP Model

(LGDP)

Objective function

Common constraints

Disjunctive constraints

Logic constraints

How to deal with Boolean and logic constraints in Disjunctive Programming?

Boolean variables

Page 32: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

32

Carnegie Mellon

Reformulating LGDP into DisjunctiveProgramming Formulation

Sawaya N.W. and Grossmann I.E. (2008)

1

. .

( )

, ,

jk

k

jk

k

Tk

k K

jk jk

j Jk j k

j J

L U

jk k

k

Min Z c d x

s t Bx bY

A x a k Kc

Y k K

Y Truex x xY True False j J k K

c

γ

= +

⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

∨ ∈

Ω =

≤ ≤∈ ∈ ∈

R k K∈

LGDP

1

. . 1

1

0 1 ,

jk

k

k

Tk

k K

jk jk

j Jk j k

jkj J

L U

jk k

k

Min Z c d x

s t Bx b

A x a k Kc

k K

H hx x x

j J k K

c

λ

γ

λ

λ

λ

= +

=⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

= ∈

≤ ≤≤ ≤ ∈ ∈

R k K ∈

LDP => Integrality λ guaranteed

Proposition. LGDP and LDP have equivalent solutions.

Page 33: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

33

Carnegie Mellon

Equivalent Forms in DP Through Basic Steps

tt TF S

∈= ∩

,t T∈ , a polyhedron, .t

t i i ti QS P P i Q

∈= ∪ ∈

Thus the RF is:

where for

There are many forms between CNF and DNF that are equivalent

Regular Form (RF): form represented by intersection of unions of polyhedra

Proposition 1 (Theorem 2.1 in Balas (1979)). Let F be a disjunctive set in RF. Then F

can be brought to DNF by | | 1T − recursive applications of the following basic steps,

which preserve regularity:

For some , , ,r s T r s∈ ≠ bring r sS S∩ to DNF, by replacing it with:

( ).rs

rs i ti Qt Q

S P P∈∈

= ∪ ∩

Page 34: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

34

Carnegie Mellon

Illustrative Example: Basic Steps1 2 3F S S S= ∩ ∩

1 11 21( )S P P= ∪ 2 12 22( )S P P= ∪ 3 13 23( )S P P= ∪

12 11 12 11 22 21 12 21 22( ) ( ) ( ) ( )S P P P P P P P P= ∩ ∪ ∩ ∪ ∩ ∪ ∩

11 12 13 11 22 13 21 12 13 21 22 13123

11 12 23 11 22 23 21 12 23 21 22 23

( ) ( ) ( ) ( )( ) ( ) ( ) ( )P P P P P P P P P P P P

SP P P P P P P P P P P P

∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩⎛ ⎞= ⎜ ⎟∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩⎝ ⎠

Then F can be brought to DNF through 2 basic steps.

which is its equivalent DNF

1 2 3F S S S= ∩ ∩We can then rewrite

12 3as F S S= ∩

1 2 11 21 12 22( ) ( )S S P P P P∩ = ∪ ∩ ∪Apply Basic Step to:

12 3 11 12 11 22 21 12 21 22 13 23(( ) ( ) ( ) ( )) ( )S S P P P P P P P P P P∩ = ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∩ ∪

Apply Basic Step to:

12 3F S S= ∩ 123as F S=We can then rewrite

Page 35: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

35

Carnegie Mellon

Equivalent Forms for GDP

1

. .

( )

, ,

jk

k

jk

k

Tk

k K

jk jk

j Jk j k

j J

L U

jk k

k

M in Z c d x

s t B x bY

A x a k Kc

Y k K

Y T ru ex x xY T ru e F a lse j J k K

c

γ

= +

⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

∨ ∈

Ω =

≤ ≤∈ ∈ ∈

R k K∈ 1

. . 1

1

0 1 ,

jk

k

k

Tk

k K

jk jk

j Jk j k

jkj J

L U

jk k

k

M in Z c d x

s t B x b

A x a k Kc

k K

H hx x x

j J k K

c

λ

γ

λ

λ

λ

= +

=⎡ ⎤⎢ ⎥

≥ ∈⎢ ⎥⎢ ⎥=⎣ ⎦

= ∈

≤ ≤≤ ≤ ∈ ∈

R k K ∈

LGDP LDP

| | | |

0: ( , , ) : ( )k

k K

k

n J Ki i jk jk

i T k K j JF z x c b z b A z aλ ∈

+ +

∈ ∈ ∈

∑⎧ ⎫= = ∈ ∩ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭R

| | | |

0 ˆˆ ˆ: ( , , ) : ( ) ( )

kk K

k n

n J Ki i jk jk mn mn

j J m Ji T k K n KF z x c b z b A z a A z aλ ∈

+ +

∈ ∈∈ ∈ ∈

∑⎧ ⎫= = ∈ ∩ ≥ ∩ ∪ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭R

All possible equivalent forms for GDP, obtained through any number of basic steps,are represented by:

LDP’

Page 36: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

36

Carnegie Mellon

Proposition 2 (Theorem 3.3 combined with Corollary 3.5 in Balas (1979)). Let

0, : , n i ii ii Q

F P P x A x a i Q∈

= ∪ = ∈ ≥ ∈R , where Q is an arbitrary set and each

0( , )i iA a is an ( 1)im n× + matrix such that every iP is a bounded non-empty polyhedron.

Furthermore, let ( )Qζ be the set of all those nx ∈R such that there exist vectors1( , ) , i n

iv y i Q+∈ ∈R , satisfying

0

0

0 0

1

i

i Q

i i ii

i

ii Q

x v

A v a y i Qy i Q

y i Q

− =

− ≥ ∈

≥ ∈

= ∈

Then ( ).cl conv F Qζ=

Proposition 3 (Corollary 3.7 in Balas (1979).

Let ( ) : ( ) : 0,1, I iQ x Q y i Qζ ζ= ∈ ∈ ∈ .

Then ( ) .I Q Fζ =

Converting LDP to MIP reformulations

=> MIP representation

iν disaggregated variables

=> Convex Hull

Page 37: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

37

Carnegie Mellon

Family of MIP Reformulations For GDP| | | |

0 ˆˆ ˆ: ( , , ) : ( ) ( )

kk K

k n

n J Ki i jk jk mn mn

j J m Ji T k K n KF z x c b z b A z a A z aλ ∈

+ +

∈ ∈∈ ∈ ∈

∑⎧ ⎫= = ∈ ∩ ≥ ∩ ∪ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭R LDP’

MIP’

General template for any MILP reformulation

1

1

1

2 2

0

0

2

. .

ˆ ( , ) ,

ˆ

ˆ

k

n n n

n

n

Tj k jk

k K j J

i iB

i iH

L Ui i i X

mnjk jk S H

m J

mn

m J

i

Min Z y d x

s tb x b i I

h y h i I

x x x i I

y u j k L K I n N

x v n N

b v

γ∈ ∈

= +

≥ ∈

≥ ∈

≤ ≤ ∈

= ∈ ∪ ∪ ∈

= ∈

∑∑

∑∑

2

2

2

0

0

ˆ , ,

ˆ ˆ , ,

ˆ ˆ , ,

ˆ ˆ ( , ) , ,

n

n

k

n

mn imn B n

mnjk mn S n

j J

i mn imn H n

mnjk mn mn n

b y i I m J n N

u y k K m J n N

h u h y i I m J n N

u y j k M m J n N

≥ ∈ ∈ ∈

= ∈ ∈ ∈

≥ ∈ ∈ ∈

= ∈ ∈ ∈

3

ˆ ˆ ( , ) , ,ˆ ˆ ˆ ,

ˆ ˆ0 ( , ) , ,

ˆ 1

ˆ , ,

1

n

n

jk

n jk

k

jk mn jkmn mn n

L mn Umn mn n

mnjk mn n

mnm J

mn jk jk km Q

jkj J

A v a y j k M m J n N

x y v x y m J n N

u y j k L m J n N

y n N

y y n N j J k K

y

≥ ∈ ∈ ∈

≤ ≤ ∈ ∈

≤ ≤ ∈ ∈ ∈

= ∈

= ∈ ∈ ∈

=

∑∑

ˆ 0 , 0,1 ,

mn n

jk k

k K

y m J n Ny j J k K

≥ ∈ ∈∈ ∈ ∈

Page 38: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

38

Carnegie Mellon

Particular case: Convex Hull Reformulation of LGDP

. .

,

,

1

0,1

k

k

k

Tj k jk

k K j J

jk

j J

jk jk jkjk k

L jk Ujk jk k

jkj J

jk

Min Z y d x

s t Bx b

x v k K

A v a y j J k K

x y v x y j J k K

y k K

Hy hy

γ∈ ∈

= +

= ∈

≥ ∈ ∈

≤ ≤ ∈ ∈

= ∈

≥∈

∑∑

,kj J k K∈ ∈

Raman and Grossmann I.E. (1994) (CH)

Disaggregated variables

While this MILP formulation has stronger relaxation than big-M, it is not strongest!!

Page 39: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

39

Carnegie Mellon

Proposition 4. For | | | 1i T K∈ + − let iGDPF be a sequence of regular forms of the disjunctive set:

| | | |

0 ˆˆ ˆ: ( , , ) : ( ) ( ) ,

kk K

k n

n J Ki i jk jk mn mn

j J m Ji T k K n KF z x c b z b A z a A z aλ ∈

+ +

∈ ∈∈ ∈ ∈

∑⎧ ⎫= = ∈ ∩ ≥ ∩ ∪ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭R such that

i) 0GDPF corresponds to the disjunctive form:

| | | |

0: ( , , ) : ( ) ;k

k K

k

n J Ki i jk jk

i T k K j JF z x c b z b A z aλ ∈

+ +

∈ ∈ ∈

∑⎧ ⎫= = ∈ ∩ ≥ ∩ ∪ ≥⎨ ⎬

⎩ ⎭R

ii)| | | | 1

:T KGDP tF F

+ −= is in DNF;

iii) for 1, , ,i t= … iGDPF is obtained from

1iGDPF−

by a basic step.

Then,

0 1 | | | | 1 | | | | 1 .

T K T KGDP GDP GDP GDP th rel F h rel F h rel F clconv F clconv F+ − + −

− ⊇ − ⊇ ⊇ − = = (true convex hull)

A Hierarchy of Relaxations for GDP

Page 40: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

40

Carnegie Mellon

Illustrative Example: Hierarchy of Relaxations

1 2

1 2

1 1

2 2

0.5 01 0

0 10 1 0 1

x xx xx x

x x

− + ≥− − + ≥

= =⎡ ⎤ ⎡ ⎤∨⎢ ⎥ ⎢ ⎥≤ ≤ ≤ ≤⎣ ⎦ ⎣ ⎦

1 2 1 2

1 2 1 2

1 1

2 2

0.5 0 0.5 01 0 1 0

0 10 1 0 1

x x x xx x x x

x xx x

− + ≥ − + ≥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− − + ≥ − − + ≥⎢ ⎥ ⎢ ⎥∨⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥

≤ ≤ ≤ ≤⎣ ⎦ ⎣ ⎦

Application of 2 Basic Steps

Convex Hull of disjunction

Convex Hull of disjunction

1x

2x

TighterRelaxation!

LP Relaxation

Page 41: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

41

Carnegie Mellon

y

xL = ?

W

(0,0)

Set of small rectangles

ij

ji

j

(xi,yi)

j

Numerical Example:Strip-packing problem

Problem statement: Hifi (1998)Given a set of small rectangles with width Hi and length Li.Large rectangular strip of fixed width W and unknown length L.Objective is to fit small rectangles onto strip without overlap and rotation while minimizing length L of the strip.

Page 42: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

42

Carnegie Mellon

. . i i

Min ltst lt x L≥ +

1 2 3 4

, ,

ij ij ij ij

i i j j j i i i j j j i

i i i

i N

Y Y Y Yi j N i j

x L x x L x y H y y H y

x UB L

∀ ∈

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∨ ∨ ∨ ∀ ∈ <⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ ≤ + ≤ − ≥ − ≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦≤ −

i i

i NH y W i N

∀ ∈

≤ ≤ ∀ ∈1 1 2 3 4

, , , , , , , , , i i ij ij ij ijlt x y Y Y Y Y True False i j N i j+∈ ∈ ∀ ∈ <R

GDP/DP Model forStrip-packing problem

Objective functionMinimize length

Disjunctive constraintsNo overlap between rectangles

Bounds on variables

. . i i

Min ltst lt x L≥ +

1 2 3 4

1 2 3 4

1 1 1 1 , ,

1 , ,

ij ij ij ij

i i j j j i i i j j j i

ij ij ij ij

i

i N

i j N i jx L x x L x y H y y H y

i j N i j

x U

λ λ λ λ

λ λ λ λ

∀ ∈

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =∨ ∨ ∨ ∀ ∈ <⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ ≤ + ≤ − ≥ − ≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + = ∀ ∈ <

i i

i i

B L i NH y W

− ∀ ∈

≤ ≤1 1 2 3 4

, , , 0 , , , 1 , , i i ij ij ij ij

i N

lt x y i j N i jλ λ λ λ+

∀ ∈

∈ ≤ ≤ ∀ ∈ <R

Page 43: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

43

Carnegie Mellon

25 Rectangle Problem Optimal solution= 31

Original CH1,112 0-1 variables4,940 cont vars7,526 constraintsLP relaxation = 9

Strengthened1,112 0-1 variables5,783 cont vars8,232 constraintsLP relaxation = 27!

=>

31 Rectangle Problem Optimal solution= 38

Original CH2,256 0-1 variables9,716 cont vars14,911 constraintsLP relaxation = 10.64

Strengthened2,256 0-1 variables11,452 cont vars15,624 constraintsLP relaxation = 33!

=>

Page 44: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

44

Cutting Planes for LinearGeneralized Disjunctive Programming

Min Z = + hTx Objective Function

s.t. Bx ≤ b Common Constraints

Ω(Y) = True Logic Constraints

x∈ Rn, Yjk∈ True, False, ck∈ R

j∈ Jk , k∈ K

=

jkk

jkjk

jk

c

axA

Y

γ

∨∈ kJj

∑∈ Kk

kc

k ∈ K

GDP Model:

OR Operator

Boolean Variables

Disjunctive Constraints

Sawaya, Grossmann (2004)

Page 45: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

45

Motivation for Cutting Plane Method

Trade-off: Big-M fewer vars/weaker relaxation vs Convex-Hull tighter relaxation/more vars

Big-MRelaxed Feasible Region

x2

x1Convex Hull

Relaxed Projected Feasible Region

Strengthened Big-MRelaxed Feasible Region

Cutting Plane(x - xSEP)T(xSEP - xR

BM) ≥ 0

xSEP

xRBM

Page 46: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

46

Global Optimization Algorithms

• Most algorithms are based on spatial branch and bound method (Horst & Tuy, 1996)

•Nonconvex NLP/MINLPαBB (Adjiman, Androulakis & Floudas, 1997; 2000)

BARON (Branch and Reduce) (Ryoo & Sahinidis, 1995, Tawarmalani and Sahinidis (2002))

OA for nonconvex MINLP (Kesavan et al., 2004)

Branch and Contract (Zamora & Grossmann, 1999)

•Nonconvex GDPTwo-level Branch and Bound (Lee & Grossmann, 2001)

Page 47: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

47

Spatial Branch and Bound to

obtain the Global Optimum Guaranteed to converge to global optimum given a certain tolerance between

lower and upper bounds

Page 48: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

48

Obj

ectiv

e

Multiple minima

Lower bound

LB

LB

LBUB = Upper bound

LB < UB

LB > UB LB < UB

Global optimum search Branch and bound tree

Page 49: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

49

Nonconvex GDP

( )

Ω

,0)(

0)(

)(min

1

falsetrue,YRc,Rx

trueY

K k γc

xgY

Jj

xs.t. r

xfc Z

jk

k

n

jkk

jk

jk

k

kk

∈∈=

∈⎥⎥⎥

⎢⎢⎢

=

≤∈

∑ +=

Objective Function

Common Constraints

Disjunctions

Logic Propositions

OR operator

f, g and r: nonconvex

Page 50: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

50

• Introducing convex underestimators

Convex Underestimator GDP (R)

( )

convexgandrf

falsetrue,YRc,Rx

trueY

K k γc

xg

Y

J

xrs.t.

xfc Z

jk

k

n

jkk

jk

jk

k

kk

j

:,

Ω

,0)(

0)(

)(min

1

∈∈=

∈⎥⎥⎥

⎢⎢⎢

=

∑ +=

∈∨

Convex underestimatorsBilinear: LinearMcCormick (1976), Al-Khayyal (1992)

Linear fractional: Convex nonlinearQuesada and Grossmann (1995)

Concave separable: Linear secant

Problem (R) yields a valid lower bound to Problem (GDP)

Page 51: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

51

Convex envelopesConcave function

xba

Secant g(x)

[ ( ) ( )]( ) ( ) ( )f b f ag x f a x ab a

−= + −

f(x)

Page 52: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

52

Bilinearw = xy

L U L Ux x x y y y≤ ≤ ≤ ≤

L L L L

U U U U

L U L U

U L U L

w x y y x x y

w x y y x x y

w x y y x x y

w x y y x x y

≥ + −

≥ + −

≤ + −

≤ + −

McCormick convex envelopes

For other convex envelopes/underestimators see:Tawarmalani, M. and N. V. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Vol. 65, Nonconvex Optimization And Its Applications series, Kluwer Academic Publishers, Dordrecht, 2002

Page 53: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

53

Basic Ideas Global Optimization GDP

1. Branch and bound enumeration on disjunctionsof convex GDP (R)

Yj ¬Yj

Disjunctive B&B

Spatial B&B

Feasible discrete

2. When feasible discrete solution foundswitch to spatial branch and bound (NLP subproblem)

Page 54: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

54

S S

ABC

Mixing CrystallizationReaction Drying

1 2 3 4

ABC

S

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5Cast Iron

w/ AgitatorStainless Steel

w/ AgitatorCast IronJacketed

Stainless SteelJacketed w/ Agitator

TrayDryer

More than 100 alternatives: each requires nonlinear optimization

Equipment

Tasks

Synthesis Multiproduct Batch Plant(Birewar & Grossmann, 1990)

Page 55: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

55

∑ ≤

=≥

==∑=

==≥

∑+∑=

=

=

p

j

N

iLii

Piii

PTt

itjij

Piti

T

t

jj

M

jj

EQ

j

HTn

NiQBn

MjNiptyptTtNiSBVts

CSCN

1

1

,...,1

,...,1;,...,1,...,1;,...,1..

COSTmin

Synthesis Multiproduct Batch Plant

Tt

jjptyptpty

VVY

Jj

itj

T

ititj

T

tj

tj

t

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

≠=

=

∈∨

',0'

Objective function

Process time

Disjunction forTask Assignments

Nonconvexfunctions

Sizing

Demand

Horizon time

Nonconvex GDP Model

Page 56: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

56

,,,,;,,,,,,,,0

)()()()()(

,,,

34241434

34241434241424

34241434241434241414

34241404

34241404

4553424144

33322122111

falsetrueWYCYYEXptyNptTBnVVCYYYW

YYYYYYWYYYYYYYYYW

YYYWWWWW

YYEXYYYYEXYYEXYYYEXYYEX

ljcjtjtjitj

EQ

jijLiii

T

tjj ∈≤

∧∧⇔

∧∧¬∨¬∧∧⇔

∧¬∧¬∨¬∧∧¬∨¬∧¬∧⇔

¬∧¬∧¬⇔

∨∨∨

⇔∨∨⇔

⇔∨⇔⇔

Jj

CSVST

BBYS

VSTCSVST

NEQBSVSTNEQBSVST

BBYS

Jj

Tpt

NVC

YEX

ptTN

YC

ptTN

YC

ptTN

YC

ptTN

YC

VVVVC

YEX

j

j

ijij

j

jj

j

jijijj

jijijj

ijij

j

Li

ij

EQ

j

j

j

j

ijLi

EQ

j

j

ijLi

EQ

j

j

ijLi

EQ

j

j

ijLi

EQ

j

j

U

jj

L

j

jjjj

j

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

=

=

¬

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

+=

≤≤

≤−≤−

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

=

=

=

=

¬

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

=∨⎥⎥⎥

⎢⎢⎢

=∨⎥⎥⎥

⎢⎢⎢

=∨⎥⎥⎥

⎢⎢⎢

=

≤≤

+=

00

80500010000100

''

000

00

44

33

221

'

5.0

''

'

4321

6.0

φφ

αγ

Disjunction for Equipment

Disjunction forStorage Tank

Logic Propositions

GDP model (continued)

Page 57: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

57

Proposed Algorithm for Nonconvex GDP

Nonconvex MINLPStep 0

ZU

OA (Viswanathan and Grossmann, 1990)

BoundContraction

New Bound

Step 1 (Zamora and Grossmann, 1999)

BB with Y’sUpdate ZL

Spatial BB

When solution is Integral

Update ZU

Stop whenZL ≥ ZU

Add Integer Cut

Fixed Y’s

Step 2

Step 3

(Lee and Grossmann, 2000)

(Quesada and Grossmann, 1995)

Page 58: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

58

Upper Bound Solution

• Use 4 Stages (6 units) without Storage Tank

j = 1 j = 4 j = 5

Mixing Reaction

ABC

V1 = 4,842 L V2 = 2,881 L V4 = 2,469 L V5 = 8,071 L

DryingCrystallization

ABC

j = 2

2

8

4

9

A 243 batches, 4.5hrs

2

4

3

12

B 260 batches, 6hrs

7

4

9

3

C 372 batches, 9hrs 6000 hrs

1093 hrs 1562 hrs 3345 hrs

Cost = $ 277,928 (by GAMS/DICOPT++)

Page 59: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

59

Optimal Solution: Multiproduct Batch Plant

S

Mixing Reaction Storage Tank

ABC

j = 2 j = 3 j = 5V2 = 4,309 L VST2 = 4,800 L V3 = 3,600 L V5 = 11,753 L

DryingCrystallization

ABC

Global optimal cost = $ 264,887 (5% improvement)3 Stages + 1 storage tank (5 units) (43 nodes, 48 sec)

9 12 3167 batches, 9hrs

184 batches, 12 hrs

255 batches, 9hrs

10

4

A 250 batches, 5hrs

6

3

B 293 batches, 3hrs

11

9

C 418 batches, 5.5hrs 6000 hrs

Storage 1503 hrs 2202 hrs 2295 hrs

Page 60: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

60

Carnegie Mellon

∑∈

+=Kk

kcxfZ )(

Global Optimization of Bilinear Generalized Disjunctive Programs

eTrue,FalsR,Y,cRx ikkn ∈∈∈

Ω(Y)= True

i Dk , k K ∈∈

Disjunctions

Logic Propositions

Objective Function

0)( ≤xg

kDi∈∨

⎥⎥⎥

⎢⎢⎢

=≤

ikk

ik

ik

cxrY

γ0)(

Min

s.t. Global Constraints

Bilinearities

Bilinearities may lead to multiple local minima → Global Optimization techniquesare required

Relaxation of Bilinear terms using McCormick envelopes leads to a LGDP → Improved relaxations for Linear GDP has recently been obtained (Sawaya & Grossmann, 2007)

k K ∈

Juan Ruiz

Page 61: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

61

Carnegie Mellon

Guidelines for applying basic steps in Bilinear GDP

• Replace bilinear terms in GDP by McCormick convex envelopes (LGDP)• Apply basic steps between those disjunctions with at least one variable in

common. The more variables in common two disjunctions have the more the tightening can be expected

• If bilinearities are outside the disjunctions apply basic steps by introducing them in the disjunctions previous to the relaxation.If bilinearities are inside the disjunctions a smaller tightening effect is expected.

• A smaller increase in the size of the formulation is expected when basic steps are applied between improper disjunctions and proper disjunctions.

Page 62: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

62

Carnegie Mellon

Step 3: Branch and Bound Procedure (Lee & Grossmann, 2001)

Step 1: GDP reformulation (Apply basic steps following the rules presented)

Intersecting disjunctionsContracting

Bounds

Spatial B&B

Step 2: Bound Contraction (Zamora & Grossmann, 1999)

Methodology

Page 63: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

63

Carnegie Mellon

Process superstructure

Min Z = ∑∈PUk

kCP

∑∈

=kMi

ji

jk ff j∀ MUk ∈

∑∈

=kSi

jk

ji ff j∀ SUk ∈

∑∈

=kSi

ki 1ζ SUk ∈

jk

ki

ji ff ζ= j∀ kSi ∈ SUk ∈

jk

ji ff ,0 ≤ kji ,,∀

10 ≤≤ kiζ kj,∀

kDh ∈∀ PUk ∈∀, falsetrueYP hk ∈

kCP≤0

s.t.

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

∂=

∈=∀∈∈=

∨ ∑∈

kikk

kj

jik

kkj

ijh

kj

i

hk

Dh

FCP

OPUifFjIPUiOPUiff

YP

k ,,',,'β

PUk ∈

k∀

Generalized Disjunctive Program

A/B/C

G/H/I

S4

S5

S6

M1

M2

M3

S1

S2

S3

M4D/E/F

Optimal structure

Z* = 1.214

A S4

S5

M1

M2

S1

S2

S3

M4D

N of cont. vars. : 114N of disc. vars. : 9N of bilinear terms: 36

Case Study I: Water treatment network design

Page 64: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

64

Carnegie Mellon

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

=

=

∈∈∀=

∈∀=

∑∑

∑ ∑∑ ∑

∈ ∈

∈ ∈

jj

Kk

kj

Iiijw

kjjkw

Kk Iiijwjkw

Ii Wwijw

loj

CP

KkWwff

Wwff

ffYP

γ

ζ

ζ

1

,,

,

∑ ∑ ∑∑ ∑ ∑ ∑ ∑∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

−++Jj Ii Jj Ii Ww Kk Jj Ww

jkwkijwijij fdfcCSTCP

∑ ∑∑ ∑∈ ∈∈ ∈

=Kk Ww

jkwIi Ww

ijw ff Jj ∈∀

0=−∑ ∑∈ ∈

kJj Ww

jkw Sf Kk ∈∀

∑∈

=Ww

ijwiwijw ff'

'λ WwJjIi ∈∀∈∀∈∀ ,,

∑ ∑ ∑∈ ∈ ∈

=−Jj Jj Ww

jkwkwjkw fZf'

' 0 WwKk ∈∀∈∀ ,

Min Z =

s.t.

⎥⎥⎥⎥

⎢⎢⎢⎢

=

≤ ∑ ∑∈ ∈

ii

Jj Wwijw

loi

CST

ffYST

α ⎥⎥⎥

⎢⎢⎢

==

¬

00

i

ijw

i

CSTf

YSTIi ∈∀

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=∈∈∀=

∈∈∀=¬

0,,0

,,0

j

jkw

ijw

j

CPWwKkf

WwIifYP

Jj ∈∀

upijwjkw

kj fff ≤≤≤≤ ,0;10 ζ

,,;,0 falsetrueYPYSTCPCST jiji ∈≤

Generalized Disjunctive ProgramProcess superstructure

S1

S2

S3

S4

S5

P1

P2

P3

P4

1

2

3

Stream i Pool j Product k

Optimal structure

Z* = -4.640

S1

S2

S5

P1

P3

1

2

3

Stream i Pool j Product k

N of cont. vars. : 76N of disc. vars. : 9N of bilinear terms: 24

Case Study II: Pooling network design

Page 65: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

65

Carnegie Mellon

51% 51% 204 399 Nodes

99.7%Bound contraction

24.90%499.86400.66Initial Lower BoundExample 1

Relative Improvement

Global OptimizationTechnique using

proposed relaxation

Global OptimizationTechnique using Lee &Grossmann relaxation

9%9%683 748 Nodes

8%Bound contraction

0.90%-5468-5515Initial Lower BoundExample 2

Relative Improvement

Global OptimizationTechnique using

proposed relaxation

Global OptimizationTechnique using Lee &Grossmann relaxation

Performance

Page 66: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

66

Carnegie Mellon

Conclusions

Unified Linear GDP with Disjunctive Programming- Developed DP equivalent formulation for GDP- Developed a family of MIP reformulations for GDP- Developed a hierarchy of relaxations for GDP- Numerical results have shown great improvement in lower bound

for strip packing problem

Nonconvex GDPs- Spatial branch and bound methods can be developed- Tighter lower bounds can be obtained in bilinear problems by

applying basic steps

GDP modeling framework- Provides a logic-based framework for discrete-continuous optimization- big-M and convex hull alternative formulations different relaxations- Solution methods: reformulation, branch and bound, decomposition

Page 67: Generalized disjunctive programming: A framework …...Ignacio E. Grossmann Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213, USA Generalized

67

Carnegie Mellon

Open Cyberinfrastructure for Mixed-integer Nonlinear Programming: Collaboration and Deployment via Virtual Environments

CMU: Grossmann, Biegler, Belotti, Cornuejols, Margot, Ruiz, SahinidisIBM: Lee, Wächter

(a) Create a library of optimization problems in different application areas in which one or several alternative models are presented with their derivation. In addition, each model has one or several instances that can serve to test various algorithms.

(b) Provide a mechanism for researchers and users to contribute towards the creation of the library ofoptimization problems.

(c) Provide a forum of discussion for algorithm developers and application users where alternativeformulations can be discussed as well as performance and comparison of algorithms.

(d) Provide information on MINLP tutorials and bibliography to disseminate this information.

General Goals

Major emphasisCollect optimization problems in which alternative model formulations aredocumented with corresponding computational results(engineering, finance, operations management, biology)