General Curvilinear Motion &Motion of a Projectile

27
Emirate International University Dr. Abduljalil Al-Abidi Thermodynamics Mechatronics Engineering Department PET121 General Curvilinear Motion

Transcript of General Curvilinear Motion &Motion of a Projectile

Page 1: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

General Curvilinear Motion

Page 2: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.Since this path is often described in three dimensions, vector analysis willbe used to formulate the particle's position, velocity, and accelerationPosition. Consider a particle located at a

point on a space curve defined by the path function s(t), Fig. 12-16a. The position of the particle measured from a fixed point 0, will be designated by the position vector r = r(t)

Notice that both the magnitude and direction of this vector will change as the particle moves along the curve.

Page 3: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Displacement.

Suppose that during a small time interval ∆t the particle moves a distance ∆s along the curve to a new position, defined by r' = r + ∆rThe displacement ∆r represents the change in the particle's position and is determined by vector subtraction; i.e., ∆r = r' - r.

Velocity. During the time ∆t, the average velocity of the particle is

𝑣𝑎𝑣𝑔=∆𝑟∆ 𝑡

Page 4: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

The instantaneous velocity is determined from this equation by letting, and consequently the direction of ∆r approaches the tangent to the curve. Hence, or

Since dr will be tangent to the curve, the direction of v is also tangent to the curve . The magnitude of v, which is called the speed is obtained by realizing that the length of the straight line segment ∆r in Fig. 12-16b approaches the arc length ∆ s as ∆ t — 0, we have = , or

𝑣=𝑑 𝑠𝑑𝑡

Thus, the speed can be obtained by differentiating the path function s with respect to time.

Page 5: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Acceleration. If the particle has a velocity v at time t and a velocity v' = v + ∆v at t + ∆t Fig. 12-16 , then the average acceleration of the particle during the time interval ∆t is

where ∆ v = v' - v. To study this time rate of change, the two velocity vectors in Fig. 12-16d are plotted in Fig. 12-16e such that their tails are located at the fixed point 0' and their arrowheads touch points on a curve. This curve is called a hodograph, and when constructed, itdescribes the locus of points for the arrowhead of the velocity vector in the same manner as the path s describes the locus of points for the arrowhead of the position vector,

Instantaneous acceleration

𝑎𝑎𝑣𝑔=∆𝑣∆ 𝑡

𝑎=𝑑𝑣𝑑𝑡 =

𝑑2𝑟𝑑𝑡 2

Page 6: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Curvilinear Motion: Rectangular ComponentsPosition. If the particle is at point (x, y, z) on the curved path s shown in Fig. 12-17 a, then its location is defined by the position vector

When the particle moves, the x, y, z components of r will be functions of time; i.e., x = x(t), y = y(t), z = z(t),

so that r = r(t). At any instant the magnitude of r is defined from Eq. C-3 in Appendix C as

𝒓=𝑥𝑖+𝑦𝑗+𝑧𝑘

𝑟=√𝑥2+ 𝑦2+𝑧 2

And the direction of r is specified by the unit vector ur = r/r

Page 7: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Velocity. The first time derivative of r

yields the velocity of the particle. Hence,

𝒗=𝑑𝑟𝑑𝑡=

𝑑𝑑𝑡 (𝑥𝑖 )+ 𝑑

𝑑𝑡 (𝑦𝑗 )+ 𝑑𝑑𝑡 (𝑧𝑘 )

𝑣=𝑑𝑟𝑑𝑡=𝑣𝑥 𝑖+𝑣 𝑦 𝑗+𝑣 𝑧𝑘

When taking this derivative, it is necessary to account for changes in both the magnitude and direction of each of the vector's components. For example, the derivative of the i component of r is

𝑑𝑑𝑡 (𝑥𝑖 )= 𝑑𝑥

𝑑𝑡 𝑖+𝑑 𝑖𝑑𝑡 𝑥

The second term on the right side is zero, provided the x, y, z reference frame is fixed, and therefore the direction (and the magnitude) of i does not change with time

𝑣 𝑥= �̇� ,𝑣 𝑦= �̇� ,𝑣𝑧= �̇�

Page 8: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

The "dot" notation , , represents the first time derivatives of x = x(t), y = y(t), z = z(t), respectively. The velocity has a magnitude that is found from

𝑣=√𝑣𝑥❑2+𝑣 𝑦

❑2+𝑣 𝑧❑2

and a direction that is specified by the unit vector ur =

v/v.

Page 9: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Acceleration. The acceleration of the particle is obtained by taking the first time derivative of velocity equation (or the second time derivative of displacement equation Eq. 12-10). We have

Here ax, ay, az represent, respectively, the first time derivatives of vx =

vx(t), vy = vy(t), vz = vz(t),or the second time derivatives of the functions x = x(t), y = y(t), z = z(t). The acceleration has a magnitude

𝒂=𝑑𝑣𝑑𝑡 =𝑎𝑥 𝑖+𝑎𝑦 𝑗+𝑎 𝑧𝑘

𝑎=√𝑎𝑥❑2+𝑎𝑦

❑2+𝑎𝑧❑2

and a direction specified by the unit vector ua = a/a

Page 10: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Important Points• Curvilinear motion can cause changes in both the

magnitude and direction of the position, velocity, and acceleration vectors.

• The velocity vector is always directed tangent to the path.

• In general, the acceleration vector is not tangent to the path, but rather, it is tangent to the hodograph.

• If the motion is described using rectangular coordinates, then the components along each of the axes do not change direction, only their magnitude and sense (algebraic sign) will change.

• By considering the component motions, the change in magnitude and direction of the particle's position and velocity are automatically taken into account.

Page 11: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Coordinate System .• A rectangular coordinate system can be used to solve problems for which

the motion can conveniently be expressed in terms of its x, y, z componentes.

Kinematic Quantities.• Since rectilinear motion occurs along each coordinate axis, the motion

along each axis is found using v = ds/ dt and a = dv/ dt; or in cases where the motion is not expressed as a function of time, the equation

• a ds = v dv can be used.• In two dimensions, the equation of the path y = f(x) can be used to relate

the x and y components of velocity and acceleration by applying the chain rule of calculus.

• Once the x, y, z components of v and a have been determined, the magnitudes of these vectors are found from the Pythagorean theorem, Eq. B-3, and their coordinate direction angles from the components of their unit vectors.

Page 12: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Motion of a Projectile

Page 13: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Consider a projectile launched at point (xo, yo), with an initial velocity of vo, having components (vo)x and (vo)y,If the air resistance is ignored , the only force acting on the projectile is its weight, which causes the projectile to have a constant downward acceleration of approximately ac = g = 9.81 m/s2

Page 14: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Horizontal Motion. Since ax = 0, application of the constant acceleration equations

𝑣=𝑣𝑜+𝑎𝑐𝑡→𝑣𝑥=(𝑣𝑜 )𝑥¿𝑥=𝑥𝑜+𝑣𝑜𝑡+

12 𝑎𝑐

𝑡 2→ 𝑥=𝑥𝑜+𝑣𝑜𝑡¿𝑣2= (𝑣𝑜 )2+2𝑎𝑐 (𝑥−𝑥𝑜 )→𝑣𝑥= (𝑣𝑜 )𝑥¿

The first and last equations indicate that the horizontal component of velocity always remains constant during the motion.

Page 15: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Vertical Motion . Since the positive y axis is directed upward, then ay = -g. Applying

𝑣=𝑣𝑜+𝑎𝑐𝑡→𝑣 𝑦=(𝑣𝑜 )𝑦−𝑔𝑡(+↑)

𝑦=𝑦𝑜+𝑣𝑜 𝑡+12 𝑎𝑐

𝑡2→ 𝑦=𝑦𝑜+(𝑣𝑜 )𝑦𝑡−12𝑔𝑡

2(+↑)

)(+↑)

To summarize, problems involving the motion of a projectile can have at most three unknowns since only three independent equations can be written; that is, one equation in the horizontal direction and two in the vertical direction. Once Vx and Vy are obtained, the resultant velocity v, which is always tangent to the path, can be determined by the vector sum.

Page 16: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Procedure for AnalysisCoordinate System

• Establish the fixed x, y coordinate axes and sketch the trajectory of the particle. Between any two points on the path specify the given problem data and identify the three unknowns. In all cases the acceleration of gravity acts downward and equals 9.81 m/s2. The particle's initial and final velocities should be represented in terms of their x and y components.

• Remember that positive and negative position, velocity, and acceleration components always act in accordance with their associated coordinate directions.Kinematic Equations• Depending upon the known data and what is to be determined, a

choice should be made as to which three of the following four equations should be applied between the two points on the path to obtain the most direct solution to the problem.

• Apply Horizontal Motion as well as vertical motion equations

Page 17: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

EXAMPLES & PROBLEMS

Page 18: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

12.74 The velocity of a particle is given by v = { 16t2i + 4t3j + (5t + 2)k} m/s, where t is in seconds. If the particle is at the origin when t = 0, determine the magnitude of the particle's acceleration when t = 2 s. Also, what is the x, y, Z coordinate position of the particle at this instant?

𝑎=√𝑎𝑥❑2+𝑎𝑦

❑2+𝑎𝑧❑2

Position: The position expressed in Cartesian vector form can be obtained by

𝑑𝑟=𝑣 𝑑𝑡→∫𝑑𝑟=∫ (16 𝑡 2𝑖+4 𝑡3 𝑗+(5 𝑡+2 )𝑘)𝑑𝑡𝑟=16

3𝑡 3𝑖+ 4

4𝑡4 𝑗+( 5

2𝑡2+2 𝑡  )𝑘

𝑟=163

23 𝑖+ 44

24 𝑗+( 52

2∗2+2∗2  )𝑘

𝑎=𝑑𝑣𝑑𝑡 =

𝑑𝑑𝑡 (16 𝑡2𝑖+4 𝑡3 𝑗+(5 𝑡+2 )𝑘   ) 𝑎= (32 𝑡 𝑖+12𝑡 2 𝑗+5𝑘   )

𝑎=√642+482+52=80.2𝑚 /𝑠2At t = 2s

At t = 2s𝑟=42.7 𝑖+16 𝑗+14𝑘

𝑎= (64 𝑖+48 𝑗+5𝑘   )

Page 19: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

12-81. A particle travels along the circular path from A to B in 1 s. If it takes 3 s for it to go from A to C, determine its average velocity when it goes from B to C.

𝑟𝑏=𝑟 sin 45 𝑖+¿¿

𝑟𝑐=28.97 𝑖+22.24 j

𝑟𝑏=21.21 𝑖+8.79 𝑗

∆𝑟=𝑟 𝑐−𝑟 𝑏= (28.97−21.21 ) 𝑖+(22.24−8.79 ) 𝑗=7.76 𝑖+13.45 j

𝑟𝑐=𝑟 sin 75 𝑖+¿¿

𝑣𝑎𝑣𝑔=∆𝑟∆ 𝑡 =

7.76 𝑖+13.45 j  3−1 =3.88 𝑖+6.725 𝑗∆𝑟=7.76 𝑖+13.45 j

∆𝑟=𝑟 𝑐−𝑟 𝑏= (28.97 𝑖+22.24 j   )− (21.21 𝑖+8.79 𝑗   )

Page 20: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

EX.1 At any instant the horizontal position of the weather balloon in Fig. 12-1Sa is defined by x = (8t) ft, where t is in seconds. If the equation of the path is y = x2/10, determine the magnitude and direction of the velocity and the acceleration when t = 2 s.

Page 21: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

The velocity component in the x direction is, x = 8t

𝑣 𝑥=�̇�=𝑑𝑑𝑡 (8 𝑡 )=8 𝑓𝑡 /𝑠

To find the relationship between the velocity components we will use the chain rule of calculus

𝑣 𝑦= �̇�=𝑑𝑑𝑡

(𝑦 )= 𝑑𝑑𝑡 ( 𝑥

2

10 )=2 𝑥 �̇�10

=2∗8∗ 1610

=25.6 𝑓𝑡 /𝑠

𝑣=√𝑣𝑥❑2+𝑣 𝑦

❑2=√82+25.62 𝑣=26.8 ft /s

𝜃=tan− 1 𝑣 𝑦

𝑣 𝑥= tan−1 25.6

8=72.6 °

Page 22: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

𝑎𝑥=�̇�𝑥=𝑑𝑑𝑡 8=0 𝑓𝑡

𝑠2

𝑎𝑦= �̇� 𝑦=𝑑𝑑𝑡 ( 2𝑥 �̇�

10 )=2 �̇� �̇�10

+ 2 �̇� �̈�10

=2∗8∗810

+ 2∗8∗010

12.8

𝑎=√𝑎𝑥❑2+𝑎𝑦

❑2=√02+12.82=12.8𝜃= tan− 1 𝑎𝑦

𝑎𝑥=tan−1 12.8

0=90 °

Page 23: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Ex. 2 A sack slides off the ramp, shown in Fig. 12-21, with a horizontal velocity of 12

m/s. If the height of the ramp is 6 m from the floor, determine the time needed for the sack to strike the floor and the range R where sacks begin to pile up

Page 24: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Dataay = -9.81 m/s2, ax = 0, voy = 0 m/s2, vox = + 12, y= - 6, x = Rt ?????, R ???

𝑦=𝑦𝑜+(𝑣𝑜 )𝑦𝑡−12 𝑔𝑡

2→ 𝑦=− 12𝑔𝑡

2

−6=− 12 9.81 𝑡2→𝑡=1.11 𝑠

𝑥=𝑥𝑜+𝑣𝑜𝑡→𝑅=0+12∗1.11=13.3𝑚

The origin of coordinates is established at the beginning of the path, point

Page 25: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

12.23 Determine the speed at which the basketball at A must be thrown at the angle of 30° so that it makes it to the basket at B.

(𝑣𝑜 )𝑦=𝑣𝑜sin 30→ (𝑣𝑜 )𝑦=0.5𝑣𝑜

(𝑣𝑜 )𝑥=𝑣𝑜 cos30→ (𝑣𝑜 )𝑥=0.866𝑣𝑜

yo = 1. 5 m, xo=0, x= 10 m , y = 3 m, ay = -9.81 m/s2, ax = 0

𝑦=𝑦𝑜+(𝑣𝑜 )𝑦𝑡−12 𝑔𝑡

2→

Page 26: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

Page 27: General Curvilinear Motion &Motion of a Projectile

Emirate International University

Dr. Abduljalil Al-Abidi Thermodynamics

Mechatronics Engineering Department

PET121

12.98 The golf ball is hit at A with a speed of vA =40 m/s and directed at an angle of 30° with the horizontal as shown figure. Determine the distance d where the ball strikes the slope at B

𝑦=𝑦𝑜+(𝑣𝑜 )𝑦𝑡−12 𝑔𝑡

2→0.196 𝑑=20 𝑡− 12∗9.81𝑡 2

𝜃=𝑡𝑎𝑛1 15→𝜃=11.3(𝑣𝑜 )𝑦=𝑣𝑜sin 30→ (𝑣𝑜 )𝑦=20𝑚𝑠

(𝑣𝑜 )𝑥=𝑣𝑜 cos30→ (𝑣𝑜 )𝑥=34.64 𝑚𝑠 𝑥=𝑑cos11.3→𝑥=0.98 𝑑𝑦=𝑑sin 11.3→ 𝑦=0.196 𝑑

Dataay = -9.81 m/s2, ax = 0, yo = 0 mxo = 0t ?????, R ???