Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

49
Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory

Transcript of Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Page 1: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

THE DARK MATTER PROBLEM

Konrad Kuijken

Leiden Observatory

Page 2: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Overview

• Evidence for dark matter– Cosmic Microwave Background Radiation– The Milky Way– Galaxy dynamics– Gravitational lensing

• Alternatives

• What is it?

• Prospects

Page 3: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Last scattering surface at z~1100– Inhomogeneities at 1:105

level– Power spectrum powerful

probe of cosmology

Page 4: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Early fluctuations in density– Grow gently at first– Start to oscillate when

enter horizon– Photons escape at last

scattering when H atoms form and free electrons disappear (T~3000K).

– Tnow / Tlast scatt defines redshift of CMB

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Wavelength

Tim

e

horizon

Page 5: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Early fluctuations in density– Grow gently at first– Start to oscillate when

enter horizon– Photons escape at last

scattering when H atoms form and free electrons disappear (T~3000K).

Peak 2

Peak 3

Peak 1

More baryons

PotentialDensity photons + plasma

Higher overdensities (same pressure, more inertia)

x

Page 6: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Early fluctuations in density– Grow gently at first– Start to oscillate when

enter horizon– Photons escape at last

scattering when H atoms form and free electrons disappear (T~3000K).

Ho

rizo

n c

ross

ing

Las

t sc

atte

rin

g

Peak 1

Peak 2

Peak 3

Time

More baryons

Page 7: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Spectrum of fluctuations in the CMB (WMAP)– baryon/photon ratio

enhances peaks 1,3,5,…– Strong measurement of

baryon density

– Consistent with Big Bang Nucleosynthesis

(Wayne Hu)

Page 8: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB• Constraints on dark

matter content: measurement of matter/radiation equality– Radiation: a-4

– Matter: a-3

– Crossover near z~3000 (before last scattering!)

– Changes horizon crossing times for different fluctuation wavelengths

– Moves peaks in CMB angular spectrum!

– Higher (early) peaks move more than 1st (last) peak.

• 1st peak mostly constrains curvature

Horizon crossing

Las

t sc

atte

rin

g

Peak 1

Peak 2

Peak 3

Time

Page 9: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

CMB

• Parameter constraints on matter content from CMB

– Universe close to flat

– Assume exactly flat strong constraint on m

– Otherwise strong degeneracy between m, (and H0)

Spergel et al. 2003

Page 10: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Structure formation

• Gravitational instability causes large-scale structure– Without dark matter, get insufficient structure growth– Foam-like LSS follows out of CDM

Page 11: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Structure formation

• Gravitational instability causes large-scale structure– Without dark matter, get insufficient structure growth

– Foam-like LSS follows out of CDM

– Good agreement with observations down to few-Mpc scales

• Combined constraints from CMB (initial conditions) + present-day LSS (in galaxies!) give best constraints on total (cold dark) matter density

m h2.

• Result: 23% dark matter, 4% baryons, 73% dark energy

QuickTime™ and a decompressor

are needed to see this picture.

Page 12: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Galaxy dynamics

• General evidence for stronger gravitational fields around galaxies than can be explained– by plausible stellar population M/L ratios– by the shape of the light distribution

• Galaxies are not WYSIWYG – But bathed in extended mass distributions -- dark halos

Page 13: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

• Tricky:– Radial velocities see no solid-body rotation, need distances– Proper motions are local, require absolute frame

• HI rotation curve:

• Proper motions:– (A-B)=220km/s / 8kpc (Sgr A*)– (A-B)=216km/s / 8kpc (HIPP)

The Rotation Curve of the Milky WayThe Rotation curve is roughly flat out to 20kpc. No Keplerian fall-off.

But rotation curves in other galaxies are much better measured

Page 14: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Vertical kinematics

• Unique 3-D measurements of the potential – Solar neighbourhood:

• Vertical kinematics (Oort problem) – Distribution fn.: f(z,vz)=f(Ez)=f((z)+vz

2/2)

– Read off f from velocities at low z (where =0)– Vary to reproduce density at high z

z

Vz E=const.Local disk mass consistent with stars and gas observed

(Siebert et al 2003; Kuijken & Gilmore 1989,1991)

Page 15: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

How much mass resides in the disk?

• Simple model: Mestel disk• Flat rotation curve• Predicts at sun

• Measurements of total mass density:

Σ( )R V GRcirc= 2 2π

185 2M pcsun

dA/dF Bienayme 2000

dA/dF Holmberg & Flynn 2001

dK Kuijken 1991, Siebert & al. 2003

gK Flynn & Fuchs 1994

Census

Σ1 1 70 5. kpc = ±

0 0 076 0 015= ±. .

0 010 0 01= ±. .

Σ = ±52 13Σ = ±49 9

0 010 0 02= ±. .

Page 16: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Flattening of the Halo

• Local potential ~ E4 (disk+halo)

• Flaring of HI layer: halo axis ratio ~0.8– At large radii vertical confining gravity mostly halo

Depends strongly on adopted Galactic

constants!

(Olling & Merrifield)

Page 17: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Rotation curves of spirals

• Rotation curves: ‘extra gravity’ in outskirts of galaxies

• Extra gravity: extra massExtra gravity: extra mass

halo

Page 18: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

PNe and dark matter around elliptical galaxies

• PN.S project (PI N. Douglas)

– Slitless spectroscopy through narrow-band 5007 filter: find emission-line objects

– Simultaneous counterdispersed images: deduce position and velocity at once.

– Programme to study nearby elliptical galaxies

• Advantage of PNe: – probe large radii (integrated light too faint for

spectroscopy)– Represent old stellar population (?)

Page 19: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

PN.S optical design: slitless spectroscopy through narrow-band filter

Shutter

Focal plane calibration mask

O[III] filter (tiltable = tuneable)

gratings

Page 20: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

undispersed field[O III] filter, slitless,dispersed 0°

[O III] filter, slitless,dispersed 180°

PN

star

positions & velocities in one go!

PNe with counter-dispersed imaging

Page 21: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

reconstructed field;velocity = ½ separation

[O III] filter, slitlessdispersed 0°

[O III] filter, slitless,dispersed 180°

positions & velocities in one go!

PNe with counter-dispersed imaging

Page 22: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

WHT+PN.S:

March 2002

3 hrs :

197 PN velocities

to 7 Reff ,

v = 20 km/s

E1 , MB = -20.0

D = 11 Mpc

PNe in NGC 3379

Page 23: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

isotropic constant-M/L Hernquist model

long-slit data(Statler & Smecker-Hane

1999)

29 PNe Ciardullo et al. (1993)

NGC 3379: Dispersion profile

197 PNe from PN.S197 PNe from PN.S

Page 24: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

NGC 821,

NGC 3379,

NGC 4494:

PN p(R)

declining with R

NGC 821,

NGC 3379,

NGC 4494,

NGC 4697:

PN p(R)

declining with R

Combined dispersion profiles

isotropic constant-M/L Hernquist model

Page 25: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Interpreting the Kinematics:Orbital anisotropy

• Radial orbits• at large R, most of

the motion in plane of sky

• Low velocity dispersion cf circular speed

• Peaked velocity distributions

• Tangential orbits• at large R, much of

the motion in line of sight

• High velocity dispersion cf circular speed

• Flat velocity distributions

which?

Page 26: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Velocity distribution shaperelates to orbit anisotropy

Van der Marel & Franx 1993

Page 27: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

NGC 3379: orbit models

PN velocities

LOSVDs shown

in radial bins:

• data• simulated from

data• model

• ~isotropic orbits

Page 28: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

NGC 3379: orbit models

• best fit

• permitted

• excluded

Circular velocity

profile:

Page 29: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Results:• constant M/L ruled out at 1 • flat rotation curve ruled out at 6

NGC 3379: orbit models

• cumulative M/L at 5 Reff : = 6 - 9• cf. models of stellar pop M/L: = 4 - 9

(Gerhard et al. 2001, after Maraston 1998)

• at virial radius: non-baryonic fraction = 48 - 86% cf. cosmological fraction = 85 - 86%

(Spergel et al. 2003)

dark matter at large radius?

Page 30: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Caution

• Orbital anisotropy hard to measure– Need 100s of velocities or accurate spectra

• Assumed spherical symmetry– What if we see a face-on disk or triaxial galaxy?

• PNe trace overall stellar population?– If colder component, density more concentrated– Underestimate mass if don’t correct density

Page 31: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Caution

• Dekel et al. (2005) disk merger simulations – Make ‘young’ stars

during simulation– Colder, tighter

component– Trace PNe?

dark halo

stars

Enc

lose

d m

ass

r/Reff

Page 32: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Caution• Orbital anisotropy hard to measure

– Need 100s of velocities or accurate spectra

• Assumed spherical symmetry– What if we see a face-on disk or triaxial galaxy?

• PNe trace overall stellar population?– If colder component, density more concentrated– Underestimate mass if don’t correct density

• Are the dynamics in equilibrium?

Page 33: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Outer envelope of M87 (Weil et al. 1997)

30’ (135kpc)30’ (135kpc)

• Flattened outer envelopeFlattened outer envelope

• Asymmetric Asymmetric unrelaxed unrelaxed

Page 34: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Dynamical consequences of dark matter in galaxies

• Static: – rotation curves, dispersion profiles

• Dynamics: – Disk stability (Ostriker & Peebles 1970)

– Angular momentum exchange with bars, warps (Athanassoula 2003, Kuijken&Dubinski 1995)

– Mergers:• Dynamical friction (energy loss to dark halo)

– e.g., LMC or Sgr orbit

Page 35: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Gravitational lensing• No dynamical equilibrium assumptions• Direct measurement of projected mass distribution

– Cluster masses (X-ray, dynamics, lensing) agree

• Weak shear: measure shapes of halos as well as overall power spectrum of dm (not average density though)

`Lens pushes sources away’

`Radial squeezing’

Page 36: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Page 37: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Alternative• MOND (Milgrom 1984)

– Below accelerations of ca 10-10 gravity gets stronger: ((|g/a0|)g)=4G where g= and 1 for large g

– (x) x for small x gives for weak accelerations g(GMa0/r2)1/2 1/r

– Relativistic version ‘TeVeS’ (Bekenstein 2004)

TAK!

• Rotation curve shapes and amplitudes well-explained

• Pioneer effect?• Naturally explains Tully-Fisher

NIE!

• Cosmic expansion as if there is no dark matter

• Unclear how well it does on clusters• Halo shapes?• Galaxy stability?

Excuse me?Przepraszam?

Page 38: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Co to jest?

• Baryons?– Nucleosynthesis and CMB bounds– Brown dwarf, cool white dwarf counts

• Compact objects (MACHO’s)?– Microlensing experiments– LMC results (MACHO, EROS): 0-20% of dark halo can

be made up of objects with masses of planets-stars– Detailed interpretation complex because of unknown 3-

D structure of LMC.

Nie!!

Page 39: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

M31 microlensing

• Pixel lensing• Higher optical depth than to LMC• Compare near & far side of disk

– Very different M31 halo path lengths– Discriminate MW vs M31 halo vs M31 disk– Constrain M31 halo flattening

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 40: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

MEGA project (Crotts, P.I.; de Jong, PhD thesis)

• INT monitoring, 1999-2004• Find variables in PSF-matched difference

images• 14 events• Consistent with lensing by bulge and disk

only• AGAPE team used same data,

claim ~ 20% halo fraction

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 41: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Doubts

• Let’s detect the particle!

• Has dynamical friction against a dark halo ever been seen?– Satellites (clouds), bars,

warps, polar ring formation

• Do all galaxies have dark halos?– NGC 3379

• What are the shapes of dark halos?

Prospects

• Direct detection experiments continue

• Improved constraints from CMB

• PNe as tracers of outer dynamics probe galaxy halos

• Weak lensing measurements for projected shapes and radial profiles

ZŁY DOBRY

Page 42: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

The KIDS survey and dark matter• VST/OmegaCAM survey

• 1700 sq deg. ugriz + YJHK• Median z ~ 0.8• Weak lensing

– Galaxy halo masses, radii, shapes– Power spectrum of large-scale mass

distribution– Evolution of angular diameter distance

• Halo objects– Faint high proper-motion stars (white,

brown dwarfs)

Page 43: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

• Overlaps:– UKIDSS– SDSS– 2dFGRS– CFHLS– COSMOS

• 960 sq deg.

2dFGRSSDSS DR2

CFHLS

KIDS(Leiden, Groningen, Munchen, Bonn, Paris, Naples, Imperial, Edinburgh, Cambridge)

Page 44: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

• Overlaps:– 2dFGRS– VISTA!

• 720 sq deg.

• Perfect for VLT and AAT, APEX, ALMA

2dFGRS

KIDS(Leiden, Groningen, Munchen, Bonn, Paris, Naples, Imperial, Edinburgh, Cambridge)

Page 45: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

KIDS vs. SDSS

Page 46: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Weak gravitational lensing

`Lens pushes sources away’

`Radial squeezing’

80,000,000 background galaxies

200,000 foreground galaxies (z<0.2)

Page 47: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Galaxy-galaxy lensing45 sq. deg from RCS survey (Hoekstra, Yee, Gladders 2004)

Galaxy-mass correlation

Halo radii

Halo shapes

KIDS:

7x smaller errors (#pairs)

Good photo-z’s (b/g), spectroscopic z’s (lenses)

Study effect by galaxy type

Page 48: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

‘w’ (weak lensing)

• Weak lensing constraints– Lensing effect depends on relative distances

of source and lens

– Measure lensing strength as function of redshift

– Deduce distance as function of redshift– Geometrical test of expansion history: w (5%)– Needs well-controlled photo-z’s!

Page 49: Gdansk Jul 02 2005 THE DARK MATTER PROBLEM Konrad Kuijken Leiden Observatory.

Gdansk Jul 02 2005

Summary • Dark matter is with us

– CMB, large-scale structure formation– Galaxy dynamics– Gravitational lensing

• It is mostly non-baryonic– CMB, nucleosynthesis arguments

• Halos do not consist of MACHO’S– Microlensing experiments to LMC and M31

• Evidence for ‘live’ dark halos would be nice– Shapes– Dynamical friction

• Laboratory detection of a DM particle would be nice!

PNe as astrophysical tool!