Gamma-Ray Burstsicc.ub.edu/congress/FAA60/presentacions/meszaros.pdf · • Long history:...

51
Peter Mészáros, Pennsylvania State University Felix Aharonian Fest, Barcelona, 2012 Gamma-Ray Bursts Recent results

Transcript of Gamma-Ray Burstsicc.ub.edu/congress/FAA60/presentacions/meszaros.pdf · • Long history:...

  • Peter Mészáros,Pennsylvania State University

    Felix Aharonian Fest, Barcelona, 2012

    Gamma-Ray Bursts

    Recent results

  • 2

    Fermi

  • 3

    !"#$%&'(#)#*+,#-./-#0'(12&2(02#3.45.65-./-7##########################################################################################################################################################8

    !"#$%&!"#$%&!"#$%&'&(')*+$,'-'),')(,!"#$%&'&(')*+$,'-'),')(,

    . /0&$!#1$%&'&(',$2345$!"#,$6$7&-89$20-:;$)+$'0&$*?

    . /0&$

  • Mészáros

    20 0 20 40 60 80 100

    Co

    un

    ts/b

    in

    0

    500

    1000

    1500

    Co

    un

    ts/s

    ec

    0

    1000

    2000

    3000

    Time since trigger (s)0 5 10 15

    Co

    un

    ts/b

    in

    0

    500

    1000

    1500

    0.0

    3.6

    7.7

    15.8

    54.7

    100.8

    a b c d e

    4 + NaI

    3GBM NaI

    (8 keV-260 keV)

    20 0 20 40 60 80 100

    Co

    un

    ts/b

    in

    0

    200

    400

    Co

    un

    ts/s

    ec

    0

    500

    1000

    Time since trigger (s)0 5 10 15

    Co

    un

    ts/b

    in

    0

    200

    4000GBM BGO

    (260 keV-5 MeV)

    20 0 20 40 60 80 100

    Co

    un

    ts/b

    in

    0

    100

    200

    300

    Co

    un

    ts/s

    ec

    0

    200

    400

    600

    Time since trigger (s)0 5 10 15

    Co

    un

    ts/b

    in

    0

    100

    200

    300LAT

    (no selection)

    20 0 20 40 60 80 100

    Co

    un

    ts/b

    in

    0

    5

    Co

    un

    ts/s

    ec

    0

    5

    10

    15

    Time since trigger (s)0 5 10 15

    Co

    un

    ts/b

    in

    0

    5

    10LAT

    (> 100 MeV)

    Time since trigger (s)-20 0 20 40 60 80 100

    Co

    un

    ts/b

    in

    0

    1

    2

    3

    Co

    un

    ts/s

    ec

    0

    2

    4

    6

    Time since trigger (s)0 5 10 15

    Co

    un

    ts/b

    in

    0

    0.5

    1

    1.5LAT

    (> 1 GeV)

    Abdo, A. and Fermi coll., 09,Sci. 323:1688

    GRB 080916c

    Light-curveE!

    Note :GeV photons!“lag”

    behind MeV!

    GBM

    GBM

    LAT

    LAT

    LAT

  • Mészáros

    GRB 080916C

    • “Band” (broken power-law) fits, joint GBM/LAT, in all time intervals

    • “Soft-to-hard” spectral time evolution

    • Long-lived (103 s) GeV afterglow

    • No evidence for 2nd spectr. comp. (in some cases)

    Spectrum : up to ~10 GeV (obs.)

  • Mészáros

    Evidence of the “extra components”

    Joint spectral fit (of binned data) :GBM100MeV

    GRB 090902BAbdo et al. 2009,ApJ, 706L, 138A

    GRB 090510Ackermann, et al. 2010, ApJ, 716, 1178

    !Constrains main keV-MeV component!Spectral evolution during prompt phase!Additional PL component seen at high and low energies

    12

    But:

    (in some cases)

    in other bursts,

  • Mészáros pan05

    Jets in GRBs → int. & ext. shocks

    8

    ↙internal shocks

    ↙external shock

    Int. & ext. shocks,

    accelerate electrons

    e,B !" (leptonic);

    and

    accel. protons too (?)

    p"!#, " (hadronic)

  • Theoretical Issues:

    • Are single-component spectrum at GeV due to internal or external shocks? - or other, such as photosphere, ..?

    • Are photons of purely leptonic or hadronic origin, or mixed?

    • Besides delay providing QG upper limits (based on zero intra-source GeV-MeV delay): what are the astrophysical causes of delay?

    • Is 2nd component a " zone/rad.mech. than 1st? Do we need at least a two-zone model?

  • A “leptonic” model:

    • Photosphere: prompt, variable MeV broken PL spectr.• IS occurs at r!1015 cm (high ") : Sy=XR, IC(UP)=GeV

    Toma, Wu, Mészáros, 2011, MN 415:1663

    ! !

    !"#$#%&"'(')*+,)-+$'(+*.)%"#/0)#1)$"')234)5'$

    (,'/67879)/:

    (-6787;

  • Photosphere + Internal Shock leptonic model, cont.

    ! !

    !"#$%&$'%()*+,-"./(0#"(-1+(1231(&$"4#'(5#$%(,$)+

    612)(023."+(%#+)('#-(-$7+(2'-#($,,#.'-(-1+()+,#'%$"4(+/2))2#'(&4(-1+(+8+9(*$2")(,"+$-+%(&4(-1+(12319+'+"34($&)#"*-2#'(:$'%(-1+(,$),$%+(*"#,+));?

  • Mészáros

    Hadronic model: 090902B– 5 –

    based on a likelihood analysis of the combined GBM and LAT data under the assumption

    of a Band function plus an additional power-law (Abdo et al. 2009c).

    ε!"ε#$%&'()*+,)-.

    ε$%&/.

    &0&10234

    56789

    :;

  • Mészáros

    Paradigm shift• OLD: internal + external shock (weak phot.)• Photosphere: low rad. effic., wrong spectrum • Internal sh.: good for variability, easy to model ; but

    poor radiative efficiency

    • External sh.: was, and is, favored for afterglow model• NEW: phot. + external shock (weak int.sh.)• Photosphere: if dissipative, good rad. efficiency• (Internal shock: if magnetic, may be absent)• External shock: most of GeV and soft afterglow

  • Mészáros

    Evolving Fireball paradigm:

    " 2005

    !2005

  • p-n collisions below phot.

    • Long history: Derishev-Kocharovsky 89, Bahcall-Meszaros 00, Rossi et al 04, etc

    • Either p-n decoupling or internal colls. $ relative p-n streaming, inelastic colls.

    • Highly effective dissipation (involves baryons directly)- can get >50% efficiency

    • Sub-photospheric dissipation can give strong photospheric component

    Beloborodov, ’10, MN 407:1033

    A hadronic “thermal” photosphere PL spectrum?

  • p-n coll.$e±$ photosphere %-spectrum

    • The result is a thermal peak at the ~MeV Band peak, plus

    • a high energy tail due to the non-thermal e± , whose slope is comparable to that of the observed Fermi bursts with a “single Band” spectrum

    • The “second” higher energy component (when observed) must be explained with something else

    GeV#

    &MeV

  • A leptonic magnetic photosphere + external shock model

    MeV GeV

    'Leptonic photosph. spectrum extend to "ph me ~50-100 MeV' Ext. shock upscattering spectrum extend to "es %e,KN me $TeV

    Veres & Mészáros ‘12, ApJ 755:12

  • Magnetic-dominated GRB jets

    • Dynamics of expansion " ~ r1/3 $ " ~ const• Dissipative (mag.) scattering photosphere $

    results in broken PL MeV spectrum

    • No internal shocks expected• Magnetiz. param. ( drops to ~ o(1) at rdecel• External shock present (forward; +reverse?) $both shocks up-scatter photospheric MeV $to GeV -TeV range

    Veres & Mészáros, 2012, ApJ 755:12

  • Phot+ExtSh : Single (Band) PL Veres & Mészáros, ‘12, ApJ 755:12

  • Phot+ExtSh : Band + 2nd comp.Veres & Mészáros ‘12, ApJ 755:12

  • Magnetic Photosphere (Leptonic) Fit Results

    • Good fits obtained: can reproduce either 1- or 2-component observed spectra with same model

    • In some bursts (e.g. 080916C, where 2nd comp. is “absent” (or rather, possible evidence for it is

  • 090510Amagphot

    P. Veres, BB Zhang & Mészáros, 1210.7811

  • 090510Abarphot

    P. Veres, BB Zhang & Mészáros, 1210.7811

  • 080916C magphot

    P. Veres, BB Zhang & Mészáros, 1210.7811

    χ2 =113.6/98

  • 080916C barphot

    χ2 =129.7/98

    P. Veres, BB Zhang & Mészáros, 1210.7811

  • Or else: Internal Shocks Redux:

    modified internal shocks

    • Magnetic dissipation regions, R~ 1015 cm, allow GeV

    photons - but hard to calculate quantitatively details of

    reconnection, acceleration and spectrum, e.g. McKinney-

    Uzdensky ‘12, MN 419:573, Zhang & Yan ’11, ApJ 726:90

    • Baryonic internal shocks, protons are 1st order Fermi

    accelerated, and secondaries are subsequently re-

    accelerated by 2nd order Fermi (‘slow heating”), e.g.

    Murase et al, 2012, ApJ 746:164 - more susceptible to

    quantitative analysis, e.g. as follows

    26

    currently of two main types:

  • Hadronic int. shock: more detailed

    ↙ Afterglow FS: X-ray, etc.;RS: Opt. flash

    Prompt#' Orig: Waxman & Bahcall ’97 for neutrino prod. in internal shocks

    '↙ Asano & PM, 09-12 on, calculate second’y photons &second’y neutrinos

  • Numerical time dependence of

    photon & neutrino secondaries

    • Generic dissipation region at a radius R~1014-1016 cm (could be Int.Sh. or mag. diss. region, etc.)

    • Numerical Monte Carlo one-zone rad. transfer model with all EM & # physics

    • $Fermi/LAT param. E"iso~2.1054, Lp/Le=20, %=600, R~1016cm, z=4.5

    28ε!"#$%

    ε&'ε(!"#)*+,-.+/%

    012./

    314/

    510/

    34/50/

    678125

    30. 308 304 309 303030:30

    30:;

    30:9

    30:<

    30:4

    (Asano & PM ’12, ApJ 757:115)

    "

  • “Moderate” hadronic case

    29

    ε!"#$%

    ε&'ε(!"#)*+,-.%

    /0)#12!3#45678,

    9:;)678,

    :?@A

    BC. BCD BCE BCF BCBC BCB.BC>BC

    BC>G

    BC>F

    “Typical” GRB params., E"iso~5.1050 erg, Lp/Le=10, %=800, R~1014cm

    • Predict complying nu-flux, at >1016 eV - may be detectable in future

    • Predict larger 2nd photon component than does leptonic model, in all bursts and

    starting in the prompt phase - perhaps hard to detect if low photon stats.?

    • UHECR flux from escaped neutrons: not sufficient, if Lp/Le=10 - need more work!

    Asano & PM ’12, ApJ 757:115)

    "

    #

    n

  • Fermi/LAT hadronic case

    • For very bright, rare bursts (

  • Some observed photon energies and redshifts

    Eobs(GeV) z

    13.2 4.357.5 3.575.3 0.7431.3 0.9033.4 1.8219.6 2.102.8 0.8974.3 1.37

    • Even z>4 bursts result in Eobs~10 GeV photons

    •Some z~1 bursts produce Eobs)30 GeV photons

    ( 130 GeV in rest frame!)

    •⇒ encouraging for low Eth CTs: HAWC, CTA...

  • What about UHE CR, NU?

    • Shocks present in HE non-thermal %-ray sources (or else: magnetic reconnection).

    • Electrons are definitely accelerated• %-rays usually attributable to leptonic

    mechanisms (synchrotron, inv. Compton)

    • But: UHECR must be accelerated somewhere. Likely (?) in same shocks as the e- in one of these HE %-ray sources- but which?

  • Mészáros pan05

    Jets in GRBs → int. & ext. shocks

    33

    ↙internal shocks

    ↙external shock

    Int. & ext. shocks,

    accelerate electrons

    e,B !" (leptonic);

    and if

    accel protons too,

    p"!# (hadronic)

  • Mészáros, NOW 04

    !s from p! from int. & ext. shocks

    • !-res.: E’p E’! ~0.3GeV2 in comoving frame, in lab:

    " Ep # 3x106 $2

    2 GeV

    " E! # 1.5x102 $2

    2 TeV

    • Internal shock p!MeV "

    ~100 TeV νs• ( External shock p!UV " ~

    0.1-1 EeV νs )• Diffuse flux: det. w. km3Waxman, Bahcall 97 & 99 PRL

    Internal shock(prompt)

    External shock

    ( NOTE: internal shock ! old paradigm )

  • 35

    currently instrumented

    AMANDA

    Deep CoreEiffel Tower

    324 m

    IceTopIceCube

    Digital Optical Module (DOM)

    5160 DOMs on 86 strings

    160 tank ice-Cherenkov surface! air shower array (IceTop) –"! see talk by T. Gaisser

    Includes DeepCore infill array! (sensitivity to lower energies)

    79 strings deployed to date in 6 construction seasons

    (2010)

    ( 79/86 complete)

  • 36

    Alexander Kappes, NUSKY, Trieste, 24.06.2011

    c

    GRBs with IceCube

    • GCN-satellite triggered searches

    very low background ! 1 event can be significant !

    • Individual modeling of neutrino fluxes(fireball model)

    • Measured parameters: ! spectrum, (redshift)

    • Average parameters: "jet (316), tvar (10 (1) ms), Liso (1052 (51) erg), !B (0.1), !e (0.1), fe/p (0.1)

    15

    On-time (blind) Off-timeOff-time

    T0prompt

    precursor (~100 s)

    wide window (several hours)

    background

    IC59: 98 bursts in northern sky

    (Kappes et al, NUSKY, June 2011)

    Being tested here : internal shock

    prompt #-burst (WB97 simplified)

  • IC40+59 search for VHE nus

    from 190 GRB (105 northern)

    • Analyze 190 GRBs

    localized w. "-rays

    betw, Tstart & Tend

    • Use the WB’97 and

    Guetta’04 proton

    acceleration model in

    internal shocks, with

    E-2 spectr, &p/&e=10,

    and p"!'-res !#µ

    • Nu-flux normalized

    by obs. "-ray flux, get

    F# for 190 (right axis),

    and diffuse flux (all)

    assuming 677 yr-1

    37

    Nature 484:351 (2012), the Icecube collab.; Abbasi and 242 others (incl. P.M.)

    (A) Model dependent search

    Model

    0.27

    Data is factor 0.27 below model F# at 90% CL

  • IC59 model-indep. search• Searched 190 GRB

    @ "-trigger ± 't window up to 1 day, also using ( spectra & params

    • Two candidate events seen at low signif., probably due to (other) CRs

    • $ Results shown are for E-2 spectra as function of 't

    • Right axis is data

    deficit below F# model

    38

    Nature 484:351 (2012)

    UL % CL is similar as for model dep. search

  • IC59 2-year conclusions (190 GRBs)

    • The fireball (more accurately: internal shock) model overpredicts the TeV-PeV nu-flux by a factor 3.7 ,(asuming Lp/Le=10, '-res only, Lorentz %~300-600)

    • In the same model, the 95% CL nu-flux allowed by the data falls below 2-3" of what expected if GRBs contribute most of GZK UHECR flux.

    • In these models, either Lp/Le must be substantially below factor 3-10 assumed here, or the production efficiency of neutrinos is lower than was assumed.

    39

    Nature 484:351 (2012)

  • Conclusion on the conclusions:

    • These are conservatively stated conclusions

    • The first time VHE nus have put a significant constraint on a well-calculable astrophysical UHECR-UHENU model, at 90-95% CL

    • This is very valuable

    • Icecube is doing exciting astrophysics

    • A significant first step towards GZK physics

    40

  • Some model details ....

    41

    p"!' interaction of a Band-" spec. with an E-2 proton spec.

    (WB 97)

    "

    p

    #

  • However ...

    • IC22-59 analysis used a simplified version of WB97 , which

    results in overestimated model nu-fluxes

    • Assumed F#IC /Fp = (1/8) f),b , where 1/8 because 1/2 p"

    lead to )+ and each #µ carries 1/4 E), and f),b=f) (E=Eb)

    • But f) (E) = f),b is OK only for Eb < E

  • Graphically....

    • fC: energy of all photons approx. by break energy

    • f* : 0.7 (rounding error in one eq.)

    • f+ : 2/3(negelected width of '-res.)

    • Cs : correct en. loss of second’s & E-dep of proton mfp43

    Even using the (old paradigm) int. shock

    model, the simplifications have an effect

    • IC-FC: IceCube Fball. Calc.

    • RFC: “Revised” Fball.Calc. #

    • NFC: Numerical Fball.Calc.

    (Hümmer et al ’11, PRL 108:231101)

  • In summary .... • Even when using old paradigm of internal shock, but more detailed physics (incl. multi-pion and Kaon production, ( cool’g. break for ), µ, and numerical as opposed to analytical calcul.)

    • ⇒ F! predictions below IC40+59 !

    44

    (" Hümmer et al,

    ’11, PRL 108:231101)

    (see also

    Li, ’12, PRD 85:027301 ;

    He, et al ’12, ApJ 752:29)

  • • Internal shock model use is expedient: best documented so

    far, and easy to calculate # reason why its use is widespread

    • But ... int. shocks known (past 10 years) to have difficulties

    for gamma-ray phenomenology (efficiency, spectrum, etc)

    • And, acceleration rate of protons vs. electrons is unknown;

    are protons injected into accel. process at = or ( rate as

    electrons? Only energy restriction on model is Lp/Le " 10.

    • Alternatives to internal shock: being investigated - but so far,

    are less easy to calculate. Progress, however, is being made.

    • Even if GRB are not GZK sources, model indep. searches

    leave possibility of lower, observable nu-fluxes from GRB

    45

    Note also that.....

  • #µ from mag.dis.phot. + ext.sh.

    46

    Gao, Asano, Mészáros ’12, JCAP i.p. (1210.1186)

  • Compare mag.phot, bar.phot, int.shock @ var. , (or %)

    47

    (tvar=1 ms)

    Gao et al, arXiv 1210.1186

  • Diffuse nu from MPh, Bph, IS, ,=300 & IC3 lim.

    48Gao et al, arXiv 1210.1186

  • Diffuse nu from MPh, Bph, IS, ,=1000 & IC3 lim.

    49

    Gao, Asano, Mészáros ’12, JCAP ..(1210.1186)

  • Models and IC3 next steps:

    • Need 3-5 years data accumulation to test the current (Fermi & Swift "-ray tested) models

    • Will have to redo the IC3 statistical model fit evaluation of upper limits for these newer (non-WB) models, whose neutrino spectra and model parameters are different

    50

  • Outlook

    • Observational prospects for ground-based multi-GeV astrophysics of GRB are encouraging - there are enough bursts that show photons there!

    • If GRB spectra reaching TeV are detected, this would provide new constraints on hadronic vs. leptonic GRB models - but much further theoretical work is needed to specify models

    • Of course, GeV-TeV neutrino observations could clinch this issue - further address GRB-GZK UHECR contrib.

    • Will be able to constrain particle acceleration / shock parameters, compactness of emission region (dimension, mag.field,.), etc.