FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS...

66
FYS3400 - Vår 2020 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/FYS3410/v17/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17 - 20) Andrej Kuznetsov delivery address: Department of Physics, PB 1048 Blindern, 0316 OSLO Tel: +47-22857762, e-post: [email protected] visiting address: MiNaLab, Gaustadaleen 23a

Transcript of FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS...

Page 1: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400 - Vår 2020 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/FYS3410/v17/index.html

Pensum: Introduction to Solid State Physics

by Charles Kittel (Chapters 1-9 and 17 - 20)

Andrej Kuznetsov

delivery address: Department of Physics, PB 1048 Blindern, 0316 OSLO

Tel: +47-22857762,

e-post: [email protected]

visiting address: MiNaLab, Gaustadaleen 23a

Page 2: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

2020 FYS3400 Lecture Plan (based on C.Kittel’s Introduction to SSP, Chapters 1-9, 17-20 + guest lectutes)

Module I – Periodity and Disorder (Chapters 1-3, 19, 20) calender week

To 23/1 12-13 Introduction. Crystal bonding. 3

On 22/1 10-12 Periodicity and lattices. Lattice planes and Miller indices. Reciprocal space. 4

To 23/1 12-13 Bragg diffraction and Laue condition

On 29/1 10-12 Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zones 5

To 30/1 12-13 Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies

On 5/2 10-12 Mechanical properties of solids. Diffusion phenomena in solids 6

To 6/2 12-13 Summary of Module I

Module II – Phonons (Chapters 4, 5, and 18 pp.557-561)

On 12/2 10-12 Vibrations in monoatomic and diatomic chains of atoms; examples of dispersion relations in 3D 7

To 13/2 12-13 Periodic boundary conditions (Born – von Karman); phonons and its density of states (DOS)

On 19/2 10-12 Effect of temperature - Planck distribution; Lattice heat capacity: Dulong-Petit, Einstein, and Debye models 8

To 20/2 12-13 Comparison of different lattice heat capacity models

On 26/2 10-12 Thermal conductivity and thermal expansion 9

To 27/2 12-13 Summary of Module II

Module III – Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)

On 4/3 10-12 Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D 10

To 5/3 12-13 Effect of temperature – Fermi-Dirac distribution; Heat capacity of FEFG in 3D

On 11/3 10-12 DOS of FEFG in 2D - quantum wells, DOS in 1D – quantum wires, and in 0D – quantum dots 11

To 12/3 12-13 Transport properties of electrons

teaching free week 12

Module IV – Disordered systems (guest lecture slides)

On 25/3 10-12 Electronic/thermal phenomena in disordered systems (Joakim Bergli) 13

To 26/3 12-13 Advanced theory of disordered systems (Marcel Moura and Gaute Linga??)

On 1/4 10-12 Electronic/thermal phenomena in disordered systems (Joakim Bergli) 14

To 2/4 10-12 Advanced theory of disordered systems (Marcel Moura and Gaute Linga??)

Easter 15

On 15/4 10-12 Advanced theory of disordered systems (Marcel Moura and Gaute Linga??) 16

To 16/4 12-13 Advanced theory of disordered systems (Marcel Moura and Gaute Linga??)

Module V – Semiconductors (Chapters 8, 9 pp 223-231, and 17, 19)

On 22/4 10-12 Origin of the band gap; Nearly free electron model; Kronig-Penney model 1

To 23/4 12-13 Effective mass method for calculating localized energy levels for defects in crystals

On 29/4 10-12 Intrinsic and extrinsic electrons and holes in semiconductors 18

To 30/4 12-13 Carrier statistics in semiconductors

On 6/5 10-12 p-n junctions 19

To 07/5 12-13 Optical properties of semiconductors (Inhwan Lee)

On 13/5 10-12 Advanced optoelectronic devices (Inhwan Lee) 20

Summary and repetition

To 14/5 12-13 Repetition - course in a nutshell

Exam: oral examination

Tentatively week 21 or week 22

Page 3: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3410: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 4: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 5: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Page 6: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Page 7: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Page 8: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Page 9: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Elastic waves in lattices

Vibrations

Phonon DOS

Planck distribution

Thermal properties: heat capacity and conductance,

thermal expansion

Page 10: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Electron waves in lattices

Free electrons

Electron DOS

Fermi-Dirac distribution

Elastic waves in lattices

Vibrations

Phonon DOS

Planck distribution

Elecronic properties: Electron concentration and transport,

contribution to the heat capacity

Thermal properties: heat capacity and conductance,

thermal expansion

Page 11: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Electron waves in lattices

Free electrons

Electron DOS

Fermi-Dirac distribution

Elastic waves in lattices

Vibrations

Phonon DOS

Planck distribution

Elecronic properties: Electron concentration and transport,

contribution to the heat capacity

Thermal properties: heat capacity and conductance,

thermal expansion

Advanced theory and novel materials properties

Page 12: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Electron waves in lattices

Free electrons

Electron DOS

Fermi-Dirac distribution

Elastic waves in lattices

Vibrations

Phonon DOS

Planck distribution

Elecronic properties: Electron concentration and transport,

contribution to the heat capacity

Thermal properties: heat capacity and conductance,

thermal expansion

Advanced theory and novel materials properties

Disordered

systems

Disordered

systems

Disordered

systems

Disordered

systems

Page 13: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

The "physics" part can be reduced to

Waves in Periodic Lattices

Two questions: (i) why in periodic lattices?

(ii) why waves?

Firstly, let’s discuss (i); check the following question/inputs for the discussion:

What is know from previous courses on how atoms do order into solids?

Might atoms get into periodic lattice or just equally well may gather chaotically?

Both amorphous materials and crystals can be found in nature, but what are criteria for

the structures formed?

What does the intuition tell? What are the scientific insights?

Use NaCl as an example to explain atoms ordering.

Page 14: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

NaCl as an example to explain atoms ordering

Page 15: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Two questions: (i) why in periodic lattices?

(ii) why waves?

Secondly, let’s discuss (ii); check the following question/inputs for the discussion:

Why do we talk about waves at all, are there waves inside the crystals?

Or possibly, we are after waves exposed on crystals to be used as probes to collect the

information?

Anyhow, even waves having different nature, its interaction principles with a periodic

lattice are common, e.g. in terms of the Bragg’s diffraction law;

Typically, waves are characterized with wave vectors k = 2π/λ; notably k is given in

units of the reciprocal length; How to plot k at lattice points, than?

Use the reciprocal space to visualize the wave-lattice interactions !!

The "physics" part can be reduced to

Waves in Periodic Lattices

Page 16: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Energy level diagram for a

chain of atoms with one atom

per unit cell and a lengt of N

unit cells

Quantu

m

oscillato

rs

Classical

oscillators

En

erg

y

TNkENE B31

Any energy state is accessible for

any oscillator in form of kBT, i.e. no

distribution function is applied and

the total energy is

temperature

Example on how the structure determines thermal properties

– to be followed within Module II

Page 17: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Any energy state is

accessible for any

oscillator in form of kBT,

i.e. no distribution

function is necessary, so

that

Energy level diagram for a

chain of atoms with one atom

per unit cell and a lengt of N

unit cells

Quantum

oscillators

Classical

oscillators

En

erg

y

TNkENE B31

Any energy state is accessible for

any oscillator in form of kBT, i.e. no

distribution function is applied and

the total energy is

Not all energies are accessible, but only those

in quants of ħωn, and Planck distribution is

employed to calculate the occupancy at

temperature T, so that

nNE 3

1

133)(3

/

0

/

0

/

0Tk

n

TkE

n

TkE

n

n

nnB

Bn

Bn

eN

e

eE

NEEfNE

temperature

temperature

Example on how the structure determines thermal properties

– to be followed within Module II

Page 18: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Energy level diagram for a

chain of atoms with one atom

per unit cell and a lengt of N

unit cells

Energy level

diagram for

one harmonic

oscillator

nNE 3

max

min

)(3 nDdE

Example on how the structure determines thermal properties

– to be followed within Module II

Page 19: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Multiple Quantum Wells

(MQWs)

repetitions of

ZnO/ZnCdO/Zn

O

1.5nm

Quantum properties electrons at the excited

state

Bulk properties electrons at the ground

state

”blue shift”

Vishnukanthan, et.al Solar Energy, 106, 82(2014)

”blue shift”

PL: optical excitation and subsequent

radiative carrier recombination

Example on how the structure and the size of the crystal

determines its optoelectronic properties – to be followed

within Module IV

Page 20: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Photoluminescence

C

B

V

B

E

D E

A hn

hn

hn

EXCITATION •Photo generation •Electrical injection

E

g

Photons

Example on how the structure and the size of the crystal

determines its optoelectronic properties – to be followed

within Module IV

Page 21: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Multiple Quantum Wells

(MQWs)

repetitions of

ZnO/ZnCdO/Zn

O

1.5nm

Quantum properties electrons at the excited

state

Bulk properties electrons at the ground

state

”blue shift”

Vishnukanthan, et.al Solar Energy, 106, 82(2014)

”blue shift”

PL: optical excitation and subsequent

radiative carrier recombination

Example on how the structure and the size of the crystal

determines its optoelectronic properties – to be followed

within Module IV

Page 22: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 23: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Semiconductor physics at UiO

NEC ion implantor

HRXRD

SIMS

ZnO MOCVD

UiO clean room area

Labs

temperature/time

resolved PL

DLTS

6 Professors

4 Adm/technical staff

~ 10 Post docs

~ 15 PhD students and ~ 10 Msc students

Micro- and Nanotechnology Laboratory (MiNaLab)

Halvlederfysikk ved UiO / MiNa-Lab

Page 24: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

SiC ZnO

GaN Si

Cu2O

Solar cells

High temperature sensors

Transparent electronics

Multi-junction solar cells

Thermoelectrics Ga2O3

Semiconductor Physics at UiO

…application-motivated basic research…

LED’s

Displays

Quantum compuper materials

Power electronics

Ionizing radiation detectors

Page 25: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 26: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Ionic bonding

Page 27: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

It costs 5.1 eV for Na to ionize

and 3.6 eV for Cl to

accomodate an extra electron

so that the ”balance” is:

5.1 - 3.6 = 1.5 eV.

Ionic bonding

What is the driving force for the bonding than?!

Coulomb attraction, of course!

𝑬 = −𝒆𝟐/𝟒𝝅𝜺𝟎𝒂

Page 28: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Ionic bonding

Page 29: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Metallic bonding

Page 30: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion
Page 31: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 32: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Miller indices of lattice planes

• The indices of a crystal plane (h,k,l) are defined to be a set of integers with no common

factors, inversely proportional to the intercepts of the crystal plane along the crystal

axes:

Page 33: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Indices of Planes: Cubic Crystal

Page 34: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

Miller indices of lattice planes

Page 35: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

Miller indices of lattice planes

Page 36: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

Miller indices of lattice planes

Page 37: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

Miller indices of lattice planes

Page 38: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

Miller indices of lattice planes

Page 39: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

(002)

Miller indices of lattice planes

Page 40: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

(002)

Miller indices of lattice planes

Page 41: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

(002)

(101)

Miller indices of lattice planes

Page 42: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

(002)

(101)

(101)

Miller indices of lattice planes

Page 43: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and

consider some lattice planes

(001)

(100)

(002)

(101)

(101)

(102)

Miller indices of lattice planes

Page 44: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 45: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Bragg diffraction – constructive interference for the wave

interacting with crystal planes

The conditions leading to diffraction are given by the Bragg's law, relating the

angle of incidence of the radiation (θ) to the wavelength (λ) of the incident

radiation and the spacing between the crystal lattice planes (d):

2 d sin (θ) = n λ

Page 46: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

k′

-k

k K k hkl

hkl 2

2| |sin

sin

K is perpendicular to the (hkl)

plane, so can be defined as:

K hkl

2

nsin

Laue condition

Page 47: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

k′

-k

k K k hkl

hkl 2

2| |sin

sin

K is perpendicular to the (hkl)

plane, so can be defined as:

K hkl

2

nsin

G is also perpendicular to (hkl) so n G

Ghkl

hkl

Laue condition

Page 48: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

k′

-k

k K k hkl

hkl 2

2| |sin

sin

K is perpendicular to the (hkl)

plane, so can be defined as:

K hkl

2

nsin

G is also perpendicular to (hkl) so n G

Ghkl

hkl

KG

Ghkl

hkl hkl

2

sin and G

dfrom previoushkl

hkl

1

Laue condition

Page 49: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Laue condition

k′

-k

k K k hkl

hkl 2

2| |sin

sin

K is perpendicular to the (hkl)

plane, so can be defined as:

K hkl

2

nsin

G is also perpendicular to (hkl) so n G

Ghkl

hkl

KG

Ghkl

hkl hkl

2

sin and G

dfrom previoushkl

hkl

1

Kd

Ghkl hklhkl

2 sin

But Bragg: 2dsin =

K = Ghkl the Laue condition

Page 50: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 51: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized

by the normal vector and the interplanar spacing :

Defining a different lattice in reciprocal space whose points lie at positions

given by the vectors

hkln̂ hkld

x

y

z

hkld

hkln̂

hkl

hklhkl

d

nG

ˆ2

These vectors are parallel

to the [hkl] direction but

has magnitude 2/dhkl,

which is a reciprocal

distance

Page 52: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

The reciprocal lattice is composed of all points lying at positions

from the origin, so that there is one point in the reciprocal lattice for

each set of planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction. Is there a benefit for defining such

a reciprocal lattice?

YES, the reciprocal lattice simplifies the interpretation of x-ray diffraction

from crystals because:

hklG

• Diffraction pattern is not a direct

representation of the crystal

lattice

• Diffraction pattern is a

representation of the reciprocal

lattice

Reciprocal lattice

Page 53: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Vc = a1•(a2 x a3) – volume of a unit cell

Definition of reciprocal translation vectors

b3 = (a1 x a2) 2π/Vc

G = v1b1 + v2b2 + v3b3

Reciprocal lattice

Generallizing,we introduce a set of new unit

vectors so that they are normal to the plains

determined by the previously introduced

translation vectors

b1 = (a2 x a3) 2π/Vc

a3

a2

b1

b2 = (a3 x a1) 2π/Vc

Page 54: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is

determined by a set of vectors with specific magnitudes just having a bit unusual

dimentions – 1/length. It is actually relatively straightforward – as long as we

understood the definitions – to schetch the reciprocal lattice.

d100

a2

a1

γ

d010

Reciprocal lattice

Page 55: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

The important part is that b1 should be normal to a plain

determined by [a2 x a3] and having a magnitude of 1/a1 –

just by definition - or 1/d100, where d100 is the interplain

distance between (100) family of plains. NB, for any plain

from (100) familly the point in the reciprocal space is

exactly the same meaning that any reciprocal lattice point

represents its own family of plains in the real space.

2π/a1 = 2π/d100

b1 a2

a1

Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is

determined by a set of vectors with specific magnitudes just having a bit unusual

dimentions – 1/length. It is actually relatively straightforward – as long as we

understood the definitions – to schetch the reciprocal lattice.

(100)

Page 56: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

The important part is that b1 should be normal to a plain

determined by [a2 x a3] and having a magnitude of 1/a1 –

just by definition - or 1/d100, where d100 is the interplain

distance between (100) family of plains. NB, for any plain

from (100) familly the point in the reciprocal space is

exactly the same meaning that any reciprocal lattice point

represents its own family of plains in the real space.

Similar excercise can be done with vector b2 which points

out to a reciprocal lattice point representing (010) family of

plains.

In adition (110) family of plaines in the real space would

naturally result in to (110)-points in the reciprocal space.

The procedure can be repeated any type of plain cuts in the

real space

1/d100

1/d010

b1 a2

a1

Reciprocal lattice

b2

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is

determined by a set of vectors with specific magnitudes just having a bit unusual

dimentions – 1/length. It is actually relatively straightforward – as long as we

understood the definitions – to schetch the reciprocal lattice.

(010)

(100)

(110)

Page 57: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

000

Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is

determined by a set of vectors with specific magnitudes just having a bit unusual

dimentions – 1/length. It is actually relatively straightforward – as long as we

understood the definitions – to schetch the reciprocal lattice.

222 lkh

adhkl

Page 58: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

200

000

Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is

determined by a set of vectors with specific magnitudes just having a bit unusual

dimentions – 1/length. It is actually relatively straightforward – as long as we

understood the definitions – to schetch the reciprocal lattice.

Page 59: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices.

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400;

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.

Page 60: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion
Page 61: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Ideal Crystal

• An ideal crystal is a periodic array of structural units, such as atoms or molecules.

• It can be constructed by the infinite repetition of these identical structural units in space.

• Structure can be described in terms of a lattice, with a group of atoms attached to each

lattice point. The group of atoms is the basis.

Bravais Lattice

• An infinite array of discrete points with an arrangement and orientation that

appears exactly the same, from any of the points the array is viewed from.

• A three dimensional Bravais lattice consists of all points with position vectors R that

can be written as a linear combination of primitive vectors. The expansion

coefficients must be integers.

Primitive Unit Cell • A primitive cell or primitive unit cell is a volume of space that when translated

through all the vectors in a Bravais lattice just fills all of space without either

overlapping itself or leaving voids.

• A primitive cell must contain precisely one lattice point.

Page 62: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Primitive (a1,a2) and not primitive (a1’’’,a2’’’) translation vectors

Crystal structure II

Page 63: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Wigner-Seitz Primitive Cell: Full symmetry of

Bravais Lattice

Page 64: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

2-D lattices

Page 65: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

3-D lattices Cubic

a=b=c

abg90°

Hexagonal

a=b≠c

ab 90° ; g120°

Tetragonal

a=b≠c

abg90°

Rhombohedral

a=b=c=

abg≠90°

Orthorhombic

a≠b≠c

a=b=g=90°

Monoclinic

a≠b≠c

ag90°≠b

Triclinic

a≠b≠c

a≠b≠g≠90

Page 66: FYS3400 - Vår 2020 (Kondenserte fasers fysikk)Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion

Primitive Cell:

FCC Lattice