Fungsi Unode

download Fungsi Unode

of 190

description

Unode

Transcript of Fungsi Unode

  • DOI-N08152

    NEC Corporation 7-1, Shiba 5-Chome, Minato-Ku, Tokyo 108-8001, JapanTEL: +81-3-3454-1111FAX: +81-3-3798-1510

    TELEX: NECTOK J22686EMAIL: [email protected]

    SpectralWaveUNIVERSAL NODE

    BROAD BAND MANAGER

    FUNCTIONAL DESCRIPTION

  • DOI-N08152

    The information in this document was approved by the engineer(s) listed below,and was intended to be complete and accurate at the time of printing. However,information is subject to change.

    This document contains proprietary information of NEC Corporation, and is not to be disclosed or used except in accordance with applicable agreements. Please contact NEC Corporation or the project contractor.

    Copyright 2001, 2002 by NEC CorporationAll rights reserved.

    Printed in Japan

    1st Edition July 2001, approved by H. Momiji of NEC-1ONW/1DD2nd Edition September 2001, approved by K. Sakamoto of NEC-1ONW/1DD3rd Edition September 2001, approved by K. Sakamoto of NEC-1ONW/1DD4th Edition February 2002, approved by K. Sakamoto, S. Fukunaga of NEC-1ONW/1DD5th Edition May 2002, approved by S. Fukunaga of NEC-1ONW/1DD6th Edition July 2002, approved by S. Fukunaga, H. Takeda of NEC-1ONW/1DD7th Edition September 2002, approved by H. Momiji of NEC-1ONW/1DD

  • DOI-N08152FUNCTIONAL DESCRIPTIONSpectralWave U-Node BBM

    Contents

    1. SIGNAL INTERFACE FUNCTION 1-1

    1.1 Overhead Process ...............................................................................1-21.1.1 Regenerator Section (RS) ................................................................... 1-21.1.2 Multiplex Section (MS) [Line (L)] ......................................................... 1-41.1.3 Higher Order Path (VC-4) & Lower Order Path (VC-3) ........................ 1-61.1.4 Higher Order Path (VC-3) .................................................................... 1-91.1.5 Lower Order Path (VC-12) ................................................................. 1-121.1.6 DS3 Interface Frame ......................................................................... 1-14

    1.1.6.1 Frame Format ....................................................................... 1-14

    1.1.6.2 DS3 Mapping ........................................................................ 1-15

    1.1.7 GFP Frame Process .......................................................................... 1-161.1.7.1

    GFP Frame Format ............................................................... 1-161.1.7.2

    GFP Mapping ........................................................................ 1-171.2 Trace Function ..................................................................................1-18

    1.2.1 16-Byte Mode .................................................................................... 1-191.2.2 64-Byte Mode .................................................................................... 1-191.2.3 1-Byte Mode ...................................................................................... 1-191.2.4 Trace Message Character ................................................................. 1-20

    1.3 Signal Label Function .......................................................................1-211.3.1 SDH Path C2 Byte Codes ................................................................. 1-211.3.2 SDH Path V5 Byte Codes .................................................................. 1-221.3.3 SONET STS Path Signal Label Assignments ................................... 1-23

    2. CROSSCONNECT 2-1

    2.1 Crossconnect Process Capacity .......................................................2-12.1.1 Matrix Capacity .................................................................................... 2-1Contents- i -

    2.1.2 Lower Order Crossconnect .................................................................. 2-42.1.2.1

    Crossconnection between Main Shelf and EXTWB Shelf ...... 2-42.1.2.2

    Crossconnection between EXTWB Shelves ........................... 2-82.2 Crossconnect Level ..........................................................................2-10

    2.2.1 Crossconnect Termination Point ....................................................... 2-10

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3 Crossconnect Types .........................................................................2-112.3.1 Higher Order Path ............................................................................. 2-11

    2.3.1.1 1-Way ................................................................................... 2-11

    2.3.1.2 2-Way ................................................................................... 2-12

    2.3.2 Lower Order Path .............................................................................. 2-122.3.2.1

    1-Way ................................................................................... 2-132.3.2.2

    2-Way ................................................................................... 2-142.3.3 Supplementary Explanation ............................................................... 2-152.3.4 Idle Signal Processing ....................................................................... 2-16

    2.4 Time Slot Management .....................................................................2-172.4.1 Assignments for Main Shelf Front ..................................................... 2-17

    2.5 Virtual Concatenation .......................................................................2-192.5.1 Overview ............................................................................................ 2-192.5.2 Crossconnect Levels ......................................................................... 2-192.5.3 Crossconnect ..................................................................................... 2-20

    2.5.3.1 GBE Package ....................................................................... 2-20

    2.5.3.2 GBEM Package .................................................................... 2-20

    2.5.3.3 Crossconnection Images ...................................................... 2-20

    3. PROTECTION 3-1

    3.1 Package Protection .............................................................................3-43.1.1 Switching Configuration ....................................................................... 3-43.1.2 Switching Mode ................................................................................... 3-43.1.3 Lockout Mode ...................................................................................... 3-53.1.4 Switching Status .................................................................................. 3-5

    3.2 Line Protection ....................................................................................3-63.2.1 Switching Configuration ....................................................................... 3-63.2.2 Applicable Interface Package .............................................................. 3-63.2.3 Linear Protection ................................................................................. 3-7

    3.2.3.1 Linear Protection Mode ........................................................... 3-7

    3.2.3.2 Switching Mode ...................................................................... 3-9

    3.2.3.3 Switching Status ................................................................... 3-10Contents- ii -

    3.2.3.4 Maintenance ......................................................................... 3-10

    3.2.4 Ring Protection .................................................................................. 3-113.2.4.1

    Ring Protection Mode ........................................................... 3-133.2.4.2

    Switching Mode .................................................................... 3-14

  • DOI-N08152FUNCTIONAL DESCRIPTION3.2.4.3 Switching Status ................................................................... 3-15

    3.2.4.4 Maintenance ......................................................................... 3-15

    3.3 Path Protection ..................................................................................3-163.3.1 Switching Mode ................................................................................. 3-16

    3.3.1.1 Switching Status ................................................................... 3-17

    3.3.1.2 Maintenance ......................................................................... 3-17

    3.4 Interlocking Ring Protection ............................................................3-183.5 Overhead (OH) Protection ................................................................3-19

    3.5.1 Objects for OH Protection .................................................................. 3-193.5.2 Types of OH Protection ..................................................................... 3-19

    4. SYNCHRONIZATION 4-1

    4.1 Synchronization ..................................................................................4-14.1.1 Clock Interface ..................................................................................... 4-1

    4.1.1.1 External Timing Incoming ................................................... 4-1

    4.1.1.2 External Timing Outgoing ................................................... 4-1

    4.1.1.3 SDH [SONET] Line Timing ..................................................... 4-2

    4.1.1.4 2M Line Timing ....................................................................... 4-2

    4.1.2 Timing Mode ........................................................................................ 4-34.1.3 Clock Features .................................................................................... 4-4

    4.2 Timing Source Control .......................................................................4-54.2.1 Quality Level ........................................................................................ 4-54.2.2 Priority Level Setting ............................................................................ 4-54.2.3 SSM Control ........................................................................................ 4-6

    4.3 Timing Source Selection ....................................................................4-74.3.1 External Output Timing Source Switching Modes ............................... 4-74.3.2 External Output Message Translation Modes ..................................... 4-74.3.3 Signal Fail ............................................................................................ 4-74.3.4 Hold-off Time ....................................................................................... 4-84.3.5 SSM Hold-off Time .............................................................................. 4-84.3.6 Wait-to-Restore Time .......................................................................... 4-8Contents- iii -

    4.3.7 Switching Control ................................................................................. 4-84.4 Precautions ..........................................................................................4-9

    4.4.1 Timing Loop Example .......................................................................... 4-9

  • DOI-N08152FUNCTIONAL DESCRIPTION5. CONFIGURATION MANAGEMENT 5-1

    5.1 Configuration Management Object ...................................................5-15.1.1 NODE (NE: Network Element) ............................................................. 5-25.1.2 SHELF ................................................................................................. 5-25.1.3 Package (PKG) .................................................................................... 5-3

    5.1.3.1 SINFM PKG ............................................................................ 5-4

    5.1.3.2 Slot Number ............................................................................ 5-4

    5.1.4 CPU ..................................................................................................... 5-65.1.5 Facility ................................................................................................. 5-75.1.6 External Clock (EXTCLK) .................................................................... 5-75.1.7 Switch Group ....................................................................................... 5-85.1.8 Synchronization ................................................................................. 5-105.1.9 Overhead Access Channel (OHCH) .................................................. 5-105.1.10 Data Communication Channel (DCC) .............................................. 5-10

    5.1.10.1 OHC/OHCEXT Package Type and DCC ........................... 5-11

    5.1.10.2 COM Package Type and DCC ........................................... 5-11

    5.1.11 HKC/HKA .......................................................................................... 5-115.1.12 V.11 Port ........................................................................................... 5-11

    5.2 Service State ......................................................................................5-125.2.1 Service State Definition ..................................................................... 5-12

    5.2.1.1 Primary Service State (PST) ................................................. 5-12

    5.2.1.2 Secondary Service State (SST) ............................................ 5-12

    5.3 Other Administration States ............................................................5-135.3.1 Port Mode .......................................................................................... 5-135.3.2 Mode Mismatch ................................................................................. 5-13

    5.4 Memory Backup ................................................................................5-145.4.1 Overview ............................................................................................ 5-145.4.2 Memory Configuration ....................................................................... 5-14

    5.5 Starting up NE ...................................................................................5-165.5.1 Hot Start ............................................................................................ 5-165.5.2 Cold Start ........................................................................................... 5-16Contents- iv -

    5.6 Inventory ............................................................................................5-175.6.1 Package Inventory ............................................................................. 5-175.6.2 NE Information Inventory ................................................................... 5-17

  • DOI-N08152FUNCTIONAL DESCRIPTION5.7 Object AIDs ........................................................................................5-185.7.1 Node .................................................................................................. 5-185.7.2 Shelf .................................................................................................. 5-195.7.3 Package ............................................................................................. 5-205.7.4 Line Facility ........................................................................................ 5-215.7.5 Package Protection Switch Group ..................................................... 5-225.7.6 Line Protection Switch Group ............................................................ 5-235.7.7 Synchronization ................................................................................. 5-245.7.8 Path Facility ....................................................................................... 5-25

    5.7.8.1 Higher-Order Path ................................................................ 5-25

    5.7.8.2 Lower-Order Path (to/from SDH) .......................................... 5-26

    5.7.8.3 Lower-Order Path (to/from PDH) .......................................... 5-26

    5.7.9 Path Monitor ...................................................................................... 5-275.7.9.1

    Higher-Order Path ................................................................ 5-275.7.9.2

    Lower-Order Path ................................................................. 5-285.7.10 Path Termination Point .................................................................... 5-29

    5.7.10.1 Higher-Order Path .............................................................. 5-29

    5.7.10.2 Lower-Order Path ............................................................... 5-29

    5.7.11 External Clock Input ......................................................................... 5-305.7.12 Housekeeping Alarm ........................................................................ 5-305.7.13 Housekeeping Control ..................................................................... 5-305.7.14 V11 User Channel Port .................................................................... 5-305.7.15 Overhead Access Channel .............................................................. 5-315.7.16 Data Communication Channel (DCC Port) ...................................... 5-315.7.17 Virtual Concatenation (GBEM) ......................................................... 5-315.7.18 Channel ID (GBEM) ......................................................................... 5-315.7.19 CPU ................................................................................................. 5-325.7.20 Profile ............................................................................................... 5-335.7.21 Memory Card .................................................................................... 5-335.7.22 Temporary Memory ........................................................................... 5-335.7.23 All ...................................................................................................... 5-33

    6. PERFORMANCE MONITORING 6-1Contents- v -

    6.1 Performance Monitoring (PM) Type ..................................................6-16.1.1 Physical Layer ..................................................................................... 6-1

  • DOI-N08152FUNCTIONAL DESCRIPTION6.1.2 Regenerator Section Layer (Section Layer) ........................................ 6-26.1.3 Multiplex Section Layer (Line Layer) ................................................... 6-36.1.4 DS3 Line Layer .................................................................................... 6-56.1.5 E12/E31/E32 Line Layer ...................................................................... 6-66.1.6 GBE Line Layer ................................................................................... 6-76.1.7 GBEM Line Layer ................................................................................ 6-96.1.8 HPT3 Layer ....................................................................................... 6-116.1.9 HPTM3 Layer .................................................................................... 6-126.1.10 VCT Layer ......................................................................................... 6-136.1.11 HP Monitor ........................................................................................ 6-146.1.12 LP Monitor ......................................................................................... 6-166.1.13 HPT ................................................................................................... 6-176.1.14 LPT ................................................................................................... 6-196.1.15 Multiplex Section Protection .............................................................. 6-216.1.16 AU Path ............................................................................................. 6-226.1.17 SES Threshold .................................................................................. 6-23

    6.2 PM Data Management .......................................................................6-246.2.1 PM Data Type .................................................................................... 6-246.2.2 Data Reliability ................................................................................... 6-24

    6.3 TCA Function .....................................................................................6-256.3.1 TCA Threshold .................................................................................. 6-25

    6.4 IPPM Management ............................................................................6-266.4.1 Monitor Point ..................................................................................... 6-26

    6.4.1.1 Monitor Points for STMn Interface ........................................ 6-26

    6.4.1.2 Monitor Points for PSWWB (EXTWB Shelf) ......................... 6-26

    6.4.2 Accumulation ..................................................................................... 6-27

    7. FAULT MANAGEMENT 7-1

    7.1 Monitored Items ..................................................................................7-17.2 Management Parameters ....................................................................7-2Contents- vi -

    7.2.1 Alarm Severity ..................................................................................... 7-27.2.2 Delay/Stretch Time .............................................................................. 7-3

    7.3 Alarm Report .......................................................................................7-4

  • DOI-N08152FUNCTIONAL DESCRIPTION7.3.1 LED Process ........................................................................................ 7-47.3.2 Report to User Interface ...................................................................... 7-47.3.3 Office Alarm ......................................................................................... 7-4

    7.3.3.1 Office Alarm Type ................................................................... 7-4

    7.3.3.2 Delay/Stretch Process ............................................................ 7-5

    7.3.3.3 ACO Function ......................................................................... 7-5

    7.3.4 Processing Alarm Masks ..................................................................... 7-57.4 Offline Monitoring ...............................................................................7-6

    8. LOG FUNCTION 8-1

    8.1 Command Log .....................................................................................8-18.1.1 Mode of Logging .................................................................................. 8-1

    8.2 AO Buffer .............................................................................................8-28.2.1 Mode of Logging .................................................................................. 8-2

    9. MAINTENANCE OPERATION 9-1

    9.1 Loopback Function .............................................................................9-19.1.1 Line Loopback ..................................................................................... 9-1

    9.1.1.1 Facility Loopback .................................................................... 9-2

    9.1.1.2 Terminal Loopback ................................................................. 9-2

    9.1.1.3 Remote Loopback ................................................................... 9-3

    9.1.2 V.11 Port Loopback ............................................................................. 9-59.1.2.1

    Facility Loopback .................................................................... 9-59.1.2.2

    Terminal Loopback ................................................................. 9-59.2 Automatic Laser Shutdown ................................................................9-6

    9.2.1 Automatic Laser Shutdown (ALS) ....................................................... 9-69.2.1.1

    Exception for GBEM Package ................................................ 9-79.2.2 Automatic Power Shutdown (APSD) ................................................... 9-89.2.3 Lower-Level Optical Output (Reflected Alarm Detection) .................... 9-99.2.4 Forced Optical Output Shutdown ........................................................ 9-9Contents- vii -

    9.3 Overhead Access ..............................................................................9-109.3.1 User Channel Access ........................................................................ 9-10

    9.3.1.1 Accessible Facility ................................................................ 9-10

    9.3.1.2 Usable Overhead Byte .......................................................... 9-10

  • DOI-N08152FUNCTIONAL DESCRIPTION9.3.1.3 User Channel Loopback ....................................................... 9-10

    9.3.2 DCC LAPD Access ............................................................................ 9-119.3.3 Overhead Through ............................................................................ 9-119.3.4 Orderwire Access .............................................................................. 9-11

    9.3.4.1 Orderwire Interface ............................................................... 9-11

    9.3.4.2 Calling ................................................................................... 9-12

    9.4 Line Switch Exercise ........................................................................9-139.5 Housekeeping ....................................................................................9-14

    9.5.1 Housekeeping Alarm ......................................................................... 9-149.5.2 Housekeeping Control ....................................................................... 9-14

    9.6 Reset Function ..................................................................................9-159.6.1 How to Reset CPU ............................................................................ 9-159.6.2 Restart Level ..................................................................................... 9-15

    9.7 Path Test ............................................................................................9-169.7.1 Example of Operation ........................................................................ 9-169.7.2 Test Access Sending Function .......................................................... 9-179.7.3 Test Access Receiving Function ....................................................... 9-17

    10. SECURITY MANAGEMENT 10-1

    10.1 Type of User Account ......................................................................10-110.1.1 Super User ........................................................................................ 10-110.1.2 Normal User ...................................................................................... 10-1

    10.2 User Attributes .................................................................................10-110.2.1 User Identification (UID) .................................................................... 10-2

    10.2.1.1 Valid ASCII Characters for UID .......................................... 10-2

    10.2.2 Password (PID) ................................................................................. 10-310.2.2.1

    Valid Password ................................................................... 10-310.2.2.2

    Valid ASCII Characters for PID ........................................... 10-410.2.3 User Account Expiration ................................................................... 10-510.2.4 Password Aging ................................................................................ 10-510.2.5 Password Expiration ......................................................................... 10-5Contents- viii -

    10.2.6 User Privilege Code Level ................................................................ 10-510.3 Addition, Modification, and Deletion of Users ............................10-12

    10.3.1 Addition ........................................................................................... 10-12

  • DOI-N08152FUNCTIONAL DESCRIPTION10.3.2 Modification ..................................................................................... 10-1210.3.3 Deletion ........................................................................................... 10-12

    10.4 Accessing the Network Element ...................................................10-1310.4.1 Login ............................................................................................... 10-1310.4.2 Logout ............................................................................................. 10-13

    10.4.2.1 Manual Logout .................................................................. 10-13

    10.4.2.2 Automatic Logout .............................................................. 10-13

    10.4.2.3 Forced Logout ................................................................... 10-13Contents- ix -

  • DOI-N08152FUNCTIONAL DESCRIPTIONThis page is intentionally left blank.Contents- x - E

  • DOI-N08152FUNCTIONAL DESCRIPTION1. SIGNAL INTERFACE FUNCTIONThis section provides a description of the function for managing signal interface supported byU-Node BBM: access methods and input/output main signal operation. Physicalspecifications for interfaces are given in the General Information manual.

    U-Node BBM supports the following main signals:

    !SDH [SONET] Optical Signal STM-64 [OC-192] STM-16 [OC-48] STM-4 [OC-12] STM-1 [OC-3] STM-0

    !STM1e Signal

    !DS3 Signal

    !Gigabit Ethernet Signal

    !2M Signal

    !34M Signal

    !45M SignalSignal Interface Function1-1

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1 OVERHEAD PROCESS

    Descriptions given here show the overhead byte process managed by U-Node BBM.

    1.1.1 Regenerator Section (RS)The following table lists the functions related to the RS (Regenerator Section) overhead byteon the SDH [SONET] signal.

    ! A1, A2 ByteA1, A2 byte is used to synchronize the SDH [SONET] frame. If neither the A1 or A2pattern is detected, the frame goes out of synchronization, and the OOF (out of frame)alarm is issued.

    ! J0/C1 ByteJ0/C1 byte can be used as J0 byte or C1 byte, according to the users definition. In the J0mode, the connection of section layers can be verified by transferring the Section AccessPoint Identifier to a remote NE. Refer to the 1.2 Trace Function subsection for J0 byte.

    RS Overhead Process

    OH Byte Usage Related Functions

    A1, A2 Frame Synchronization PM Function (OOF)/Fault Management (LOF)

    J0/C1 Section TraceSTM-ID (STS-ID)

    Fault Management (TIM)

    Z0 Overhead Access Function

    NU(1row) Overhead Access Function

    B1 Section Error Monitor (BIP-8) PM Function (CV, etc.)E1 (1) USER-Ch

    (2) Section OrderwireOverhead Access Function

    F1 USER-Ch Overhead Access Function

    NU(2row) Overhead Access Function

    D1-3 Regenerator Section DCC Overhead Access Function

    Media Byte

    Unuse Byte Signal Interface Function Overhead Process1-2

  • DOI-N08152FUNCTIONAL DESCRIPTION! NU Byte (1st row, 2nd row)NU byte is used for the overhead byte access function. When this byte is not used,

    ! Receiving side: ignores the rows

    ! Sending Side: can insert the Idle Code to the rows

    ! B1 ByteB1 byte based on the BIP-8 is used to detect an error from the main signal. The detected biterror is used for the performance monitoring function and failure detection.

    ! E1 ByteE1 byte is used for the overhead byte access function. E1 byte can be used for theorderwire or a user channel that is between regenerator sections of -law or A-law. Whenthis byte is not used,

    ! Receiving side: ignores

    ! Sending Side: can insert the Silence Code (for the orderwire-use) can insert the Idle Code (for the data channel-use)

    ! F1 ByteF1 Byte is used for the overhead byte access function. F1 byte is also available for the userchannel. When this byte is not used,

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! D1-D3 ByteD1 through D3 bytes are used for the overhead byte access function. These three bytes areused together in communication as a Data Communication Channel (DCCr) signal at192 K. When these bytes are not used,

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle CodeSignal Interface Function Overhead Process1-3

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.2 Multiplex Section (MS) [Line (L)]

    ! B2 ByteThe error count is detected by using B2 byte based on BIP-n 24. The detected bit error isused for the performance monitoring function and failure detection. Refer to 6.Performance Monitoring section for details. Conditions detected as B2 alarms are:

    ! EXC: excessive bit error, causing main signal failure! DEG: degraded bit error, causing main signal deterioration

    ! K1, K2 ByteUpper 13 bits of K1, K2 byte are used for line protection. Lower 3 bits of K1, K2 byte areused for detecting MS-AIS alarm and transferring/detecting MS-RDI alarm. Refer to 3.Protection section for a detailed description on the line protection. If equipment failurerelated to the main signal is detected, an MS-AIS is inserted to the main signal.

    ! D4-D12 ByteD4 through D12 bytes are used for the overhead byte access function. These nine bytes areused together in communication as a Data Communication Channel (DDCm) at 576 K, oras the user channel. When these bytes are not used,

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    OH Byte Usage Related Functions

    B2 Line Error Monitor (BIP-n 24) Fault Management (EXC/DEG)/PM Func-tion

    K1 Line Switching Control Protection Function (APS Process)K2 Line Switching Control

    Line Status TransferProtection Function (APS Process)

    D4-12 (1) USER-Ch(2) Line DCC

    Overhead Access Function

    S1 Synchronization Status Synchronization Function (SSM Process)Z1/Z2 Overhead Access Function

    M1 Line Remote Side Error Display PM Function

    E2 (1) USER-Ch(2) Line Orderwire

    Overhead Access Function

    Unuse Byte Signal Interface Function Overhead Process1-4

  • DOI-N08152FUNCTIONAL DESCRIPTION! S1 ByteThe b1 to b4 bits of S1 byte are not used. The b5 to b8 bits are used to display thesynchronization status for timing source selection. Refer to the 4. Synchronization sectionfor synchronization using the S1 byte. When this byte is not used,

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! Z1 ByteZ1 byte is used for the overhead byte access function. When this byte is not used,

    ! Receiving side: ignores

    ! Sending Side: can insert the Idle Code

    ! Z2 ByteZ2 byte is used for the overhead byte access function. When this byte is not used,

    ! Receiving side: ignores

    ! Sending Side: can insert the Idle Code

    ! M1 ByteM1 byte outputs the number of errors detected by the B2 byte to a remote side on a frame-by-frame basis. This value is used at the far-end for its PM.

    ! E2 ByteE2 byte is used for the overhead byte access function. E2 byte can be used for theorderwire or the user channels that are between multiplex sections of -law or A-law.When this byte is not used,

    ! Receiving side: ignores

    ! Sending Side: can insert the Silence Code (for the use of orderwire) can insert the Idle Code (for the use of data channel)Signal Interface Function Overhead Process1-5

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.3 Higher Order Path (VC-4) & Lower Order Path (VC-3)

    NOTES:1. Detected at termination points.2. Detected at monitoring points.3. For Higher Order Path (VC-4) through EXTWB only.4. For Higher Order Path (VC-4) through GBEM only.

    ! J1 ByteThe connection of path layers can be verified by transferring the Path Access PointIdentifier to a remote NE. If the received byte and the expected value do not match, a J1-TIM alarm is issued. This byte, however, is not monitored at Lower Order Path Monitoringpoints for failure detection. Refer to the 1.2 Trace Function subsection for details.

    ! B3 ByteThe error count is detected by using B3 byte based on BIP-8. The detected bit error is usedfor the performance monitor function and failure detection. Refer to the 6. PerformanceMonitoring section for details. Conditions detected as B3 alarms are:

    ! EXC: excessive bit error, causing main signal failure! DEG: degraded bit error, causing man signal deterioration

    These alarms are monitored at monitoring points. Also, the Intermediate Path PerformanceMonitor (IPPM) function at monitoring points is supported.

    OH Byte Usage Related FunctionsJ1 Path Trace Failure Detecting Function (J1-TIM)B3 Path Error Monitor (BIP-8) PM FunctionC2 Signal label Failure Detecting Function (UNEQ, PDI,

    PLMNOTE 1, VC-AISNOTE 2)G1 SDH

    b1-b4: Path Remote Side Error (REI)b5: Path Remote Side Defect (RDI)b6-b8: Unused

    PM Function, Fault Management

    SONETb1-b4: Path Remote Side Error (REI)b5-b7: Path Remote Side Defect (RDI)b8: Unused

    F2

    H4 Position Identifier NOTE 3 Failure Detecting Function (LOM)

    Virtual Concatenation Multiframe NOTE4

    F3

    K3

    N1 Signal Interface Function Overhead Process1-6

  • DOI-N08152FUNCTIONAL DESCRIPTION! C2 ByteC2 byte indicates VC path configuration. A failure in the VC path configuration can bedetected by verifying the received C2 byte. When an EXTWB shelf is used to terminateHPT, the TUG structure label is output as a C2 byte. At VC-3 Lower Order PathTermination points, Async-VC-3 is output as a C2 byte. At monitoring points, only theUNEQ alarm is detected. Refer to the 1.3 Signal Label Function subsection for details.

    ! G1 ByteMonitoring the G1 byte enables Performance Monitoring at HPT termination points of theEXTWB shelf, and detection of the error status on a remote side. Intermediate PathPerformance Monitor (IPPM) function is also available. However, the use of this byte isnot available for the EXTWB shelfs Performance Monitoring function at Lower OrderPath Monitoring points. Refer to the 6. Performance Monitoring section and the 7. FaultManagement section for details.

    ! F2 ByteThis byte is not managed and the status of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! H4 ByteThis byte is not managed except for higher order path (VC-4) through EXTWB andGBEM. When not managed, the status of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    When an EXTWB shelf is used and the crossconnect level VC-12 exists, this byte is used asa multiframe position indicator at Higher Order Path Termination points. When thecrossconnect level VC-12 does not exist or the byte is not used at monitoring points, thestatus of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: outputs multiframe indicator

    When a GBEM package is used, this byte synchronizes multiframes in order to detectphase difference among each VC-4 path configuring virtual concatenation. Followingshows the H4 byte multiframe sequence:Signal Interface Function Overhead Process1-7

  • DOI-N08152FUNCTIONAL DESCRIPTION

    ! F3 ByteThis byte is not managed and the status of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! K3 ByteThis byte is not managed and the status of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! N1 ByteThis byte is not managed and the status of each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    H4 Byte Multiframe SequenceBit 1 Bit 2 Bit 3 Bit 4 1st Multiframe MFI1 (Bits 1 - 4) 1st Multiframe # 2nd Multiframe #

    Previous Frame (n1) n1

    2nd Multiframe Indicator MFI2 MSB (Bits 1 - 4) 0 0 0 0 0

    n

    2nd Multiframe Indicator MFI2 LSB (Bits 5 - 8) 0 0 0 1 1 Reserved (0000) 0 0 1 0 2 Reserved (0000) 0 0 1 1 3 Reserved (0000) 0 1 0 0 4 Reserved (0000) 0 1 0 1 5 Reserved (0000) 0 1 1 0 6 Reserved (0000) 0 1 1 1 7 Reserved (0000) 1 0 0 0 8 Reserved (0000) 1 0 0 1 9 Reserved (0000) 1 0 1 0 10 Reserved (0000) 1 0 1 1 11 Reserved (0000) 1 1 0 0 12 Reserved (0000) 1 1 0 1 13 Sequence Indicator SQ MSB (Bits 1 - 4) 1 1 1 0 14 Sequence Indicator SQ MSB (Bits 5 - 8) 1 1 1 1 15

    Next Frame (n+1) n+1Signal Interface Function Overhead Process1-8

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.4 Higher Order Path (VC-3)

    NOTES:1. Detected at termination points.2. Detected at monitoring points.3. For Higher Order Path (VC-3) through GBEM only.

    ! J1 ByteThe connection of path layers can be verified by transferring the Path Access PointIdentifier to a remote NE. If the received byte and the expected value do not match, a J1-TIM alarm is issued. Refer to the 1.2 Trace Function subsection for details.

    ! B3 ByteThe error count is detected by using B3 byte based on BIP-8. The detected bit error is usedfor the performance monitor function and failure detection. Refer to the 6. PerformanceMonitoring section for details. Conditions detected as B3 alarms are:

    ! EXC: excessive bit error, causing main signal failure! DEG: degraded bit error, causing man signal deterioration

    These alarms are monitored at monitoring points. Also, the Intermediate Path PerformanceMonitor (IPPM) function at monitoring points is supported.

    ! C2 ByteC2 byte indicates VC path configuration. A failure in the VC path configuration can bedetected by verifying the received C2 byte. When mapping the DS3 signal to a SONETsignal, and sending it to a remote node, the C2 byte outputs the DS3 asynchronous label.Refer to the 1.3 Signal Label Function subsection for details.

    OH Byte Usage Related FunctionsJ1 Path Trace Failure Detecting Function (J1-TIM)B3 Path Error Monitor (BIP-8) PM FunctionC2 Signal label Failure Detecting Function (UNEQ, PDI,

    PLMNOTE 1, VC-AISNOTE 2)G1 b1-b4: Path Remote Side Error (REI)

    b5-b7: Path Remote Side Defect (RDI)b8: Unused

    PM Function, Fault Management

    F2

    H4 Virtual Concatenation Multiframe NOTE3

    Z3

    Z4

    Z5 Signal Interface Function Overhead Process1-9

  • DOI-N08152FUNCTIONAL DESCRIPTION! G1 ByteMonitoring the G1 byte enables Performance Monitoring at HPT3 on the DS3 package, anddetection of the error status on a remote side. Intermediate Path Performance Monitor(IPPM) function is also available. Refer to the 6. Performance Monitoring section and the7. Fault Management section for details.

    ! F2 ByteThis byte is not managed since the U-Node BBM does not have path termination points.

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! H4 ByteThis byte is not managed except for a path through GBEM. When not managed, the statusof each side is as follows:

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    When a GBEM package is used, this byte synchronizes multiframes in order to detectphase difference among each VC-3 path configuring virtual concatenation. Followingshows the H4 byte multiframe sequence:

    H4 Byte Multiframe SequenceBit 1 Bit 2 Bit 3 Bit 4 1st Multiframe MFI1 (Bits 1 - 4) 1st Multiframe # 2nd Multiframe #

    Previous Frame (n1) n1 2nd Multiframe Indicator MFI2 MSB (Bits 1 - 4) 0 0 0 0 0

    n

    2nd Multiframe Indicator MFI2 LSB (Bits 5 - 8) 0 0 0 1 1 Reserved (0000) 0 0 1 0 2 Reserved (0000) 0 0 1 1 3 Reserved (0000) 0 1 0 0 4 Reserved (0000) 0 1 0 1 5 Reserved (0000) 0 1 1 0 6 Reserved (0000) 0 1 1 1 7 Reserved (0000) 1 0 0 0 8 Reserved (0000) 1 0 0 1 9 Reserved (0000) 1 0 1 0 10 Reserved (0000) 1 0 1 1 11 Reserved (0000) 1 1 0 0 12 Reserved (0000) 1 1 0 1 13 Sequence Indicator SQ MSB (Bits 1 - 4) 1 1 1 0 14 Sequence Indicator SQ MSB (Bits 5 - 8) 1 1 1 1 15

    Next Frame (n+1) n+1Signal Interface Function Overhead Process1-10

  • DOI-N08152FUNCTIONAL DESCRIPTION! Z3 ByteThis byte is not managed since the U-Node BBM does not have path termination points.

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! Z4 ByteThis byte is not managed since the U-Node BBM does not have path termination points.

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle Code

    ! Z5 ByteThis byte is not managed since the U-Node BBM does not have path termination points.

    ! Receiving Side: ignores

    ! Sending Side: can insert the Idle CodeSignal Interface Function Overhead Process1-11

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.5 Lower Order Path (VC-12)

    NOTES:1. Not detected at monitoring points.2. Detected at monitoring points.

    ! J2 ByteThe connection of path layers can be verified by transferring the Path Access PointIdentifier to a remote NE. If the received byte and the expected value do not match, a J2-TIM alarm is issued. This byte, however, is not monitored at Lower Order Path Monitoringpoints for failure detection. Refer to the 1.2 Trace Function subsection for details.

    ! V5 Byte

    Bits 1 and 2The error count is detected by using bits 1 and 2 based on BIP-2. The detected bit error isused for the performance monitor function and failure detection. Refer to the 6.Performance Monitoring section for details. Conditions detected as V5 alarms are:

    ! EXC: excessive bit error, causing main signal failure! DEG: degraded bit error, causing main signal deterioration

    Bit 3The number of errors detected based on BIP-2 is output to a remote side on a frame-by-frame basis. This value is used at the the far-end side for its PM. PM detection using thisbit at monitoring points is not supported.

    Bit 4This bit is not managed since the U-Node BBM does not have a process function using this bit.

    Bits 5 thru 7These bits indicate VC path configuration. A failure in the VC path configuration can bedetected by verifying the received bits 5 to 7 of the V5 byte. For VC-12, ASYNC-FLOATis output. Refer to the 1.3 Signal Label Function subsection for details.

    Bit 8By monitoring this bit, a path error status is output to a remote side as an RDI alarm. Thefar-end side detects the RDI alarm from this information and uses this bit for its PM.

    OH Byte Usage Related FunctionsJ2 Path Trace Failure Detecting Function (J2-TIM)V5 b1, b2: Path Error Monitor (BIP-2)

    b3: Path Remote Side Error (REI)b4: Unusedb5-b7: Signal Labelb8: Path Remote Side Defect (RDI)

    PM Function, Failure Detecting Function (UNEQ, PLMNOTE 1, PDI, VC-AISNOTE 2, RDI)

    K4

    N2 Signal Interface Function Overhead Process1-12

  • DOI-N08152FUNCTIONAL DESCRIPTION! K4 ByteThis byte is not managed since the U-Node BBM does not have a process function usingthis byte.

    ! N2 ByteThis byte is not managed since the U-Node BBM does not have a process function usingthis byte.Signal Interface Function Overhead Process1-13

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.6 DS3 Interface Frame

    1.1.6.1 Frame Format

    The DS3 signal is partitioned into multiframes (M-Frames) of 4760 bits each, then these M-Frames are divided into 7 M-Subframes having 680 bits each. Two types of framings aresupported as shown below:

    ! M13 Multiframe

    ! C-Bit Parity Multiframe

    An unframed DS3 is also available for the use of other purposes.

    Control Bit Usage

    X Bit Monitors remote alarms

    P Bit Monitors terminal section

    M Bit Patterns M-frame period (M0=0, M1-1)F Bit Patterns M-subframe period (F0=0, F1=1)C Bit Used for stuffing control

    S Bit Stuffing bit

    Control Bit Usage

    X Bit Monitors remote alarms

    P Bit Monitors errors in terminal section

    M Bit Patterns M-frame period (M0=0, M1-1)F Bit Patterns M-subframe period (F0=0, F1=1)C Bit Used for stuffing control

    AIC Bit Monitors frames (AIC=1)Nr Bit Unused (Nr=1FEAC Bit Monitors far-end failure/status

    CP Bit Monitors errors in terminal section

    FEBE Bit Monitors errors in far-end terminal section

    DLt Bit Unsupported (user channel for terminal section)S Bit Stuffing bitSignal Interface Function Overhead Process1-14

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.6.2 DS3 Mapping

    The DS3 signal is mapped to a payload (information bit) on STS-1 SPE signal. Followingshows the composition for mapping DS3 signal to STS-1 SPE signal, and STS-1 SPE signalto STS-1 signal:

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    R R C1 I 25 R R C2 I 25 R R C3 I 25

    STS

    POH

    FIXE

    D ST

    UFF

    FIXE

    D ST

    UFF

    28 BYTES 28 BYTES 28 BYTES

    BYTE:

    I = i i i i i i i i

    R = r r r r r r r r

    C1 = r r c i i i i i

    C2 = c c r r r r r r

    C3 = c c r r o o r s

    BIT:

    i: information (payload) bitr: fixed stuff bit

    c: stuff control bits: stuff opportunity bito: overhead communication channel bit

    680 BIT

    M-Subframe 1M-Subframe 2M-Subframe 3M-Subframe 4M-Subframe 5M-Subframe 6M-Subframe 7

    DS3 MULTIFRAME (M13 / C BIT PARITY / UNFRAMED)Signal Interface Function Overhead Process1-15

  • DOI-N08152FUNCTIONAL DESCRIPTION1.1.7 GFP Frame Process

    1.1.7.1 GFP Frame Format

    Following shows the GFP frame format:

    ! Core HeaderThis header is a fixed-length filed of four octets, and is used for frame synchronization andbasic data link:

    PLIPLI expresses the length of payload area (unit: octet), and its values are from 0 thru65535. Among these values, especially between 0 thru 3 indicates GFP controlframe.

    cHECcHEC is a 16-bit CRC obtained from PLI, and is used for frame synchronizationand correction of core header errors. Polynomial to obtain the value is:

    x16 + x15 + x12 + 1

    ! Payload HeaderThis header is a variable-length field of 4 thru 64 octets, and is used for managing specificdata link for upper protocol. Following three fields make up the he payload header:

    TypeType expresses classification of payloads (upper protocol).

    tHECtHEC is a 16 bit CRC obtained from the Type. Polynomial to obtain the value is:

    x16 + x15 + x12 + 1

    Field Usage

    GFP Frame Core Header PLI PDU Length Indicator

    cHEC Core Header Error Control

    Payload Header Type GFP Type Field

    tHEC Type Header Error Control

    Extension Header

    GFP Extension Header

    eHEC Extension Header Error Control

    Payload Information Header

    PDU Protocol Data Unit

    Payload FCS Payload Frame Check Sequence (unused)Signal Interface Function Overhead Process1-16

  • DOI-N08152FUNCTIONAL DESCRIPTION Extension HeaderThis header is defined by the Type field with logical topology as shown below:

    Null: No header is applied; used for logical point-to-point connection.Linear Frame: Used for logical point-to-point connection; supporting multiplepackets.

    eHECeHEC is a 16 bit CRC obtained from the Extension Header. Polynomial to obtainthe value is:

    x16 + x15 + x12 + 1

    ! Payload Information Field

    PDUThis filed stores upper protocol data. The size is the remaining where taking otherheaders from full length of GFP frame (min. 0, max. 65535 octets).

    Payload FCSPayload FCS is 32 bits CRC obtained by Payload field; this field is not used.

    1.1.7.2 GFP Mapping

    Frame-Mapped GFP is the process where recognizing frame partitions of upper protocol, andencapsulating each frame to GFP (Generic Framing Procedure). Following shows theprocess that Ethernet signal is mapped to GFP.

    Taking IFG (Inter Frame Gap), Preamble, and SFD (Start of Frame Delimiter) out of theEthernet frame, the remaining fields are stored in Payload field of GFP frame. Between GFPand Ethernet, the order of their bits are inverted because the bit order of GFP is MSB-First,and that of Ethernet is LSB-First.

    MAC frame that U-Node BBM supports are DIX (Ethernet), IEEE802.3, and IEEE802.1q.

    CORE HEADERPAYLOAD HEADERPAYLOAD FIELD

    PREAMBLESFB

    DESTINATION MACSOURCE MACLENGTH/TYPE

    FCS

    CLIENT DATA

    transmission bit order

    transmission bit order

    LSB MSB

    MSB LSB

    GFP

    IEEE802.3

    GFP FRAME

    ETHERNET MAC FRAME(IFG)Signal Interface Function Overhead Process1-17

  • DOI-N08152FUNCTIONAL DESCRIPTION1.2 TRACE FUNCTION

    The trace function is provided to monitor the connection status in each layer.

    The section trace using J0 byte includes the following modes: 1-byte mode, 16-byte mode,and 64-byte mode. The C1 mode without using the section trace function is available as well.The section trace (J0 byte) function is supported by an SDH [SONET] optical interface, suchas STM-64 [OC-192], STM-16 [OC-48], STM-4 [OC-12], STM-1 [OC-3], and STM-0, andan STM-1e electrical interface.

    The path trace using J1 byte includes the 16-byte mode and 64-byte mode. The J1 byte pathtrace supports the monitoring function to all the paths on the line facilities of STM-64[OC-192], STM-16 [OC-48], STM-4 [OC-12], STM-1 [OC-3], STM-0, and STM-1e.

    J1 byte is terminated at the Higher Order Path Termination points by the DS3 package or thePSW5WB/PSW10WB packages on the EXTWB shelf, in the 16-byte or 64-byte mode.

    For the Lower Order Path trace, J1 or J2 byte is terminated at the Lower Order PathTermination points by the PDH interface package in the 16-byte mode. However, the LowerOrder Path trace does not support the monitoring function at monitoring points.

    If the received value and the expected value specified by a user do not match, a TIM (traceindication mismatch) alarm is issued; this detection can be inhibited by a user definition.Signal Interface Function Trace Function1-18

  • DOI-N08152FUNCTIONAL DESCRIPTION1.2.1 16-Byte Mode

    The following is the frame configuration in the 16-byte mode:

    ! Within 15 characters of ASCII data (indicated as X in the above table) is assignedto the trace data.

    ! C1 to C7 (C1=MSB) at Byte # 1 are the results of the calculation from the foreframe CRC-7 (X7+X3+1). U-Node BBM automatically adds these CRCcalculation results to the user defined 15-byte data, then sends them out.

    1.2.2 64-Byte Mode

    The following is the frame configuration in the 64-byte mode:

    ! Within 62 characters of ASCII data is assigned to the trace data.

    ! The 64-byte data synchronizes the 64-byte frame by using the CR character of the#63-byte (0 DH) and the LF character of the #64-byte (0 AH).

    1.2.3 1-Byte Mode

    At the sending side, the user defined 1-byte data is output in binary. At the receiving side, thereceived bytes are converted to be indicated as numerals using 1 through 256.

    Byte # Value (bits 1 to 8)1 1 C1 C2 C3 C4 C5 C6 C7

    2 0 X X X X X X X

    3 0 X X X X X X X

    : : :

    16 0 X X X X X X X

    1 2 3 4 5 ........ 63 64

    CR LFSignal Interface Function Trace Function1-19

  • DOI-N08152FUNCTIONAL DESCRIPTION1.2.4 Trace Message Character

    To specify the section trace or path trace in the 16-byte mode or 64-byte mode describedabove, and to enter the expected value and transmitting value for the trace, use the followingASCII characters:

    Valid ASCII Characters for Trace Message

    MSB B6 0 0 0 0 1 1 1 1

    B5 0 0 1 1 0 0 1 1

    LSB B4 0 1 0 1 0 1 0 1

    B3 B2 B1 B0 0 1 2 3 4 5 6 7

    0 0 0 0 0 0 @ P p

    0 0 0 1 1 ! 1 A Q a q

    0 0 1 0 2 2 B R b r

    0 0 1 1 3 # 3 C S c s

    0 1 0 0 4 $ 4 D T d t0 1 0 1 5 % 5 E U e u

    0 1 1 0 6 & 6 F V f v

    0 1 1 1 7 7 G W g w

    1 0 0 0 8 ( 8 H X h x1 0 0 1 9 ) 9 I Y i y1 0 1 0 A J Z j z1 0 1 1 B + K [ k {1 1 0 0 C L l |1 1 0 1 D - = M ] m }1 1 1 0 E . N ^ n ~

    1 1 1 1 F / ? O _ oSignal Interface Function Trace Function1-20

  • DOI-N08152FUNCTIONAL DESCRIPTION1.3 SIGNAL LABEL FUNCTION

    The signal label function is provided to monitor the path configuration status. See thefollowing tables for the SDH/SONET path signal labels:

    1.3.1 SDH Path C2 Byte Codes

    The following shows the SDH signal labels for VC-4-64c, VC-4-16c, VC-4-4c, VC-4, andVC-3:

    Hex Code Description

    00 Unequipped or supervisoryunequipped

    01 Equipped NonSpecific

    02 TUG structure

    03 Locked TU-n

    04 Asynchronous mapping, or 34,368 kbit/s or 44,736 kbit/s into Container-3

    12 Asynchronous mapping, or 139,264 kbit/s into Container-4

    13 ATM mapping

    14 MAN (DQDB) mapping15 FDDI mapping

    16 HDLC according

    CF HDLC according

    FE Test signal, O.181 specific mapping

    AIS Alarm Indication SignalATM Asynchronous Transfer ModeDQDB Distributed Queue Dual BusFDDI Fiber Distributed Data InterfaceHDLC High-level Data Link ControlMAN Metropolitan Area NetworkTUG Tributary Unit GroupSignal Interface Function Signal Label Function1-21

  • DOI-N08152FUNCTIONAL DESCRIPTION1.3.2 SDH Path V5 Byte Codes

    The following shows the SDH signal labels for VC-12:

    Hex Code Description

    00 Unequipped

    01 Equipped NonSpecific

    02 Asynchronous mapping

    03 Bit synchronous

    04 Byte synchronous

    05 Extend signal label

    06 Test signal, O.181 specific mappingSignal Interface Function Signal Label Function1-22

  • DOI-N08152FUNCTIONAL DESCRIPTION1.3.3 SONET STS Path Signal Label Assignments

    The following shows the signal labels for STS-192c, STS-48c, STS-12c, STS-3c, and STS-1:

    At the receiving side, if a signal label 00 (unequipped) is detected, a UNEQ_RX (or UNEQfor HPT3) alarm is issued.

    If the values of the received signal label and the expected signal label do not match, a PLMFalarm is issued (for HPT3).

    If the detected signal label is FF (bit: all-1), a VC_AIS alarm is issued.

    If the detected signal label is FC, a PDI_RX (or PDI for HPT3) alarm is issued.

    At the sending side, 00 (unequipped) is inserted to an unused path. For the DS3 interface, 01(equipped) and 04 (asynchronous for DS3) can be specified as well.

    Hex Code Content of STS SPE

    00 Unequipped

    01 Equipped NonSpecific Payload

    02 VT-structured STS1 SPE

    03 Locked VT Mode

    04 Asynchronous mapping for DS3

    12 Asynchronous mapping for DS4NA

    13 Mapping for ATM

    14 Mapping for DQDB

    15 Asynchronous mapping for FDDI

    16 HDLC Over Sonet Mapping

    FE Test signal, O.181 specific mapping

    FC Non-VT-structured STS-1 SPE with a Payload Defect

    ATM Asynchronous Transfer ModeDQDB Distributed Queue Dual BusFDDI Fiber Distributed Data InterfaceHDLC High-level Data Link ControlSPE Synchronous Payload EnvelopeVT Virtual TributarySignal Interface Function Signal Label Function1-23

  • DOI-N08152FUNCTIONAL DESCRIPTIONThis page is intentionally left blank.Signal Interface Function1-24 E

  • DOI-N08152FUNCTIONAL DESCRIPTION2. CROSSCONNECTThis section provides an overview of the crossconnect function.

    2.1 CROSSCONNECT PROCESS CAPACITY

    The crossconnect function of U-Node BBM is performed by the PSW package (PSW40 orPSW80) mounted on the Main shelf and by the PSWWB package (PSW5WB or PSW10WB)mounted on the EXTWB shelf. The PSW package performs the Higher Order Crossconnectfunction, while the PSWWB package performs the Lower Order Crossconnect function.Refer to the 4.4 Common Packages subsection in the Provisioning manual for details.

    2.1.1 Matrix Capacity

    The following tables show the crossconnect capacity supported by U-Node BBM:

    ! PSW40 Package

    ! PSW80 Package

    Crossconnect Level Capacity

    VC-4 (STS-3C) 256 256VC-3 (STS-1) 768 768

    Crossconnect Level Capacity

    VC-4 (STS-3C) 512 512VC-3 (STS-1) 1536 1536Crossconnect Crossconnect Process Capacity2-1

  • DOI-N08152FUNCTIONAL DESCRIPTION! PSW5WB Package

    ! PSW10WB Package

    Crossconnect Level Capacity

    VC-12 2016 2016

    VC-3 96 96

    Crossconnect Level Capacity

    VC-12 4032 4032

    VC-3 192 192Crossconnect Crossconnect Process Capacity2-2

  • DOI-N08152FUNCTIONAL DESCRIPTIONThe following shows the connection between shelves. Numbers shown in the illustrationsindicate a reference number, counting one VC-3 [STS-1] as one channel time slot for thePSW40 and PSW80.

    Shelf Connection Image - PSW40

    Shelf Connection Image - PSW80

    38512

    4849

    337

    384 768

    INF1

    INF8

    PSW40 (MAIN)

    TIME SLOTS (1 TO 384) FOR

    SINF PKG SLOTS IN MAIN SHELF TIME SLOTS (385 TO 768) FOREXTENSION SHELF

    MAIN SHELF EXTENSION SHELF

    PORT 1 AND 2

    PORT 3 AND 4

    PORT 5 AND 6

    38512

    4849

    337

    384 768

    INF1

    INF8

    PSW80 (MAIN)

    MAIN SHELF EXTENSION SHELF

    12

    4849

    337

    384769

    1152

    12

    4849

    337

    3841153

    1536

    12

    4849

    337

    384Crossconnect Crossconnect Process Capacity2-3

  • DOI-N08152FUNCTIONAL DESCRIPTION2.1.2 Lower Order Crossconnect

    Lower Order Crossconnect is available by using an EXTWB shelf. However, the capacity ofthe Lower Order Crossconnect is limited. See the following for detailed information:

    2.1.2.1 Crossconnection between Main Shelf and EXTWB Shelf

    The following shows a crossconnect block diagram when connecting an EXTWB shelf to theMain shelf:

    The Main shelf and an EXTWB shelf are connected by a 10G bus line. In the EXTWB shelf,only the signals on the 10G bus line that execute Lower Order SW are connected to LOSW.

    STM-N

    Main Shelf

    HOSW

    PDH Signals

    EXTWB Shelf #1

    HOSW

    PDH Signals

    EXTWB Shelf #2

    HOSW

    LOSW LOSW

    Signals10G Bus

    HOSW:LOSW:

    Higher order switchLower order switch

    10G BusCrossconnect Crossconnect Process Capacity2-4

  • DOI-N08152FUNCTIONAL DESCRIPTIONUnder the configuration shown above, the following two types of connection are available:

    ! Add-Drop for PDH Signals

    ! Connecting STM-N Line Signal to Another STM-N Line through Lower OrderCrossconnection

    STM-N

    Main Shelf

    HOSW

    PDH Signal

    EXTWB Shelf

    HOSW HOSW

    LOSW LOSW

    Signal

    STM-N

    Main Shelf

    HOSW

    EXTWB Shelf

    HOSW HOSW

    LOSW LOSW

    Signal

    STM-NSignalCrossconnect Crossconnect Process Capacity2-5

  • DOI-N08152FUNCTIONAL DESCRIPTIONFor more detailed information, a block diagram for the PSWWB package on the EXTWBshelf is shown below:

    The PSWWB package connects a 10G signal line from the Main shelf and a 10G signal linefor the Downstream shelf via the through connection by default. Connection to the LowerOrder SW on the EXTWB shelf is available by specifying an AU signal on the 10G bus linethat enables connection to the Lower Order SW on the PSWWB package (by HPT Objectregistration). For connection with PDH interface packages, connection to the Lower OrderSW is also available by specifying a signal that enables connection (by registration of E12F,E31F, or E32F). Connection in the Lower Order Matrix is made depending on thecrossconnect map settings.

    PDH Interface

    10G BusMain Shelf DownstreamShelf10G Bus

    Lower Order5G (10G)Matrix

    5G (10G)

    NOTE: Items in parentheses should be appliedfor PSW10WB.

    PSW5WB (PSW10WB) PackageHigher Order SWCrossconnect Crossconnect Process Capacity2-6

  • DOI-N08152FUNCTIONAL DESCRIPTIONWhen connecting to the Lower Order SW, be aware that the Lower Order SW capacity islimited in order to perform crossconnection. The limited capacity depends on the PSWWBpackage as follows:

    Therefore, total capacity of signals sent from the Main shelf and PDH interface packages forLower Order SW should be less than the values in the table above.

    The minimum number of signals connected to the Lower Order SW from the Main shelf isAU4 (155M). The minimum number of signals connected to the Lower Order SW fromPDH interface packages is also 155M, and the combination of PDH signal channels is asfollows:

    The following table shows the capacity required for connecting to the Lower Order SW whenthe maximum number of PDH interface packages is registered on one EXTWB shelf:

    PSWWB Type Lower Order SW Capacity

    PSW5WB 5G

    PSW10WB 10G

    Package Combination of Minimum Unit (155M) Channels Connected to Lower Order SWE12 1 to 63 ch

    E31 1 to 3 ch

    4 to 6 ch

    E32 1 to 3 ch

    4 to 6 ch

    Package Capacity of Lower Order SW Maximum Number of Interface Channels

    E12 1.25G 504 ch

    E31 2.5G 48 ch

    E32 2.5G 48 chCrossconnect Crossconnect Process Capacity2-7

  • DOI-N08152FUNCTIONAL DESCRIPTION2.1.2.2 Crossconnection between EXTWB Shelves

    This subsection explains how to connect two or more EXTWB shelves to the Main shelf. Forconnection between the Main and EXTWB shelves, the following two types of connectionare available.

    ! When One EXTWB Shelf Is Directly Connected to the Main Shelf

    ! When Two EXTWB Shelves Are Directly Connected to the Main Shelf

    Main ShelfSTM-N EXTWBShelf

    PDH Signal

    Signal 10G Bus

    Main ShelfSTM-N

    EXTWBShelf

    PDH Signal

    Signal 10G Bus

    EXTWBShelf

    PDH Signal

    10G BusCrossconnect Crossconnect Process Capacity2-8

  • DOI-N08152FUNCTIONAL DESCRIPTIONWhen two EXTWB shelves are directly connected to the Main shelf, the capacity forconnection between the PSW package (PSW40 or PSW80) and the EXTWB shelves is 20G.Two main signal 10G ports on the faceplate of the PSW package are used to connect withEXTWB shelves. The table below shows the available combination of ports:

    Package Port Combination for ConnectingTwo EXTWB Shelves

    PSW40 Port 1, Port 2

    PSW80 Port 1, Port 2

    Port 3, Port 4

    Port 5, Port 6Crossconnect Crossconnect Process Capacity2-9

  • DOI-N08152FUNCTIONAL DESCRIPTION2.2 CROSSCONNECT LEVEL

    ! For an SDH input signal, the signal is mapped into a time slot by VC-4, VC-4-4c,VC-4-16c, VC-4-64c, or VC-4-7V level.

    ! When using an EXTWB shelf, SDH signals can be mapped into a time slot by VC-3 orVC-12 level.

    ! For a SONET input signal, the signal is mapped into a time slot by STS-1, STS-3c,STS-12c, STS-48c, STS-192c, or STS-3c-7V level.

    ! For an SDH-Japan input signal, the signal is mapped into a time slot by VC-3, VC-4,VC-4-4c, VC-4-16c, VC4-64c, or VC-4-7V level.

    Each signal level indicates the following bit rates:

    2.2.1 Crossconnect Termination Point

    The path band level and the operation mode within the path band should be selected whenspecifying the crossconnect termination points:

    ! Path Band LevelFor the Higher Order Crossconnect, select a path band level from AU-3 [STS-1], AU-4[STS-3c], AU-4-4c [STS-12c], AU4-16c [STS-48c], AU-4-64c [STS-192c], and AU-4-7V[STS-3c-7V]. When the input signal is SDH, AU-3 [STS-1] level cannot be selected.For the Lower Order Crossconnect, select a path band level from TU12 and TU3.

    ! Operation ModeThe following two modes are provided for the Higher Order Crossconnect:

    ! AUTO: The path band level to be managed varies according to the input signallevels received within the specified levels, where alarm detection andperformance monitoring are performed.

    ! FIX: Alarm detection and performance monitoring are enabled only when aninput signal of the specified level is received.

    SIGNAL LEVEL BIT RATES SIGNAL LEVEL BIT RATESVC-12 [STS-1] 2 Mbit/s VC-4-4c [STS-12c] 600 Mbit/sVC-3 [LPT] 50 Mbit/s VC-4-16c [STS-48c] 2.5 Gbit/sVC-3 [STS-1] 50 Mbit/s VC-4-64c [STS-192c] 10 Gbit/sVC-4 [STS-3c] 150 Mbit/s VC-4-7V [STS-3c-7V] 1.05 Gbit/sCrossconnect Crossconnect Level2-10

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3 CROSSCONNECT TYPES

    2.3.1 Higher Order Path

    The U-Node BBM Main shelf has the following crossconnect types:

    ! 1-Way LXC (Local Cross-Connect) PPS (Path Protection Selector)

    ! 2-Way LXC (Local Cross-Connect) PPS (Path Protection Selector)

    2.3.1.1 1-Way

    The following illustrations show examples of one-way crossconnect types:

    Example 1: 1-Way Local Crossconnect (LXC)

    Example 2: 1-Way Crossconnect Path Protection Switching (PPS)

    A BCrossconnect Crossconnect Types2-11

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3.1.2 2-Way

    The following illustrations show examples of two-way crossconnect types:

    Example 1: 2-Way Local Crossconnect (LXC)

    Example 2: 2-Way Crossconnect Path Protection Switching (PPS)

    2.3.2 Lower Order Path

    The U-Node BBM EXTWB shelf has the following crossconnect types:

    ! 1-Way Add Drop LXC (Local Cross-Connect) Loopback PPS (path Protection Selector)

    ! 2-Way Add-Drop LXC (Local Cross-Connect) Loopback PPS (Path Protection Selector)

    A B

    A BCrossconnect Crossconnect Types2-12

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3.2.1 1-Way

    The following illustrations show examples of one-way crossconnect types:

    HOSW: Higher order switchLOSW: Lower order switch

    Crossconnect Type Without PPS With PPS

    Add

    Drop

    LXC

    Loopback

    Main EXTWBLOSW

    HOSW

    STM-N

    PDH

    Main EXTWBLOSW

    HOSW

    STM-N

    PDH

    Main EXTWBLOSW

    HOSW

    STM-N

    PDH

    Main EXTWBLOSW

    HOSW

    STM-N

    Main EXTWBLOSW

    HOSW

    STM-N

    Main EXTWBLOSW

    HOSW

    PDHCrossconnect Crossconnect Types2-13

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3.2.2 2-Way

    The following illustrations show examples of two-way crossconnect types:

    HOSW: Higher order switchLOSW: Lower order switch

    Crossconnect Type Without PPS With PPS

    Add-Drop

    LXC

    Loopback

    Main EXTWBLOSW

    HOSW

    STM-N

    PDH

    Main EXTWBLOSW

    HOSW

    STM-N

    PDH

    Main EXTWBLOSW

    HOSW

    STM-N

    Main EXTWBLOSW

    HOSW

    STM-N

    Main EXTWBLOSW

    HOSW

    PDHCrossconnect Crossconnect Types2-14

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3.3 Supplementary Explanation! For the Higher Order Crossconnect, multiple crossconnect settings that share the same

    start crossconnect point can be specified. The illustration below (at left) shows anexample of the path when interlocking is performed. This path can be set by performingtwo steps, as shown in the illustration below (" to #).

    ! To set the following Broadcast crossconnect type, multiple crossconnect settings must bedone.

    1-Way Crossconnect - Broadcast

    ! The path shown below can be achieved by performing multiple 1-Way PPS settings:

    1-Way Crossconnect PPS Broadcast

    ! In a Ring interface, a connection to the same ring can be set only as Through, which hasno protection configuration.

    " #

    1-Way (LXC) 1-Way (PPS)

    = +A

    B

    C

    A BA B

    C

    AB

    A B

    C

    A

    = +

    D E

    C

    D E

    A B

    C D

    = +AB

    D

    C

    B

    DCrossconnect Crossconnect Types2-15

  • DOI-N08152FUNCTIONAL DESCRIPTION2.3.4 Idle Signal Processing

    When the path has not been connected, the idle signal interlocking with a facility per line canbe specified as follows:

    ! For SDH Interface

    ! For SONET Interface

    ! For JAPAN Interface

    An idle signal for each crossconnect that matches the registered Band Level for thecrossconnect point is output.

    Until you register each line facility and put it into the In-Service state, the signal is notoutput.Crossconnect Crossconnect Types2-16

  • DOI-N08152FUNCTIONAL DESCRIPTION2.4 TIME SLOT MANAGEMENT

    ! PSW capacity in U-Node BBM is numbered as 1 CH per 50M unit.

    ! The number is assigned to the slot in which the interface package is mounted.

    Main Shelf supports 20G (384 CH) capacity. If PSW40 package is mounted, Extension Shelfsupports 20G (384 CH) capacity. If PSW80 package is mounted, Extension Shelf supports60G (1152 CH) capacity.

    2.4.1 Assignments for Main Shelf Front

    The following tables show the relationship between the slot position on the shelf and the timeslot number (VC#).

    CHANNEL ASSIGNMENTS MAIN PSW TIME SLOT #PORT SLOT TS #

    1 1 1 1

    48 482 1 49

    48 963 1 97

    48 1444 1 145

    48 1925 1 193

    48 2406 1 241

    48 2887 1 289

    48 3368 1 337

    48 384

    STM-0 STM-1 STM-4 STM-161 LINE-1 LINE-1 VC #1 LINE-1 VC #1 LINE-1 VC #12 (blank) VC #2 VC #2 VC #23 (blank) VC #3 VC #3 VC #34 LINE-2 LINE-2 VC #1 VC #4 VC #45 (blank) VC #2 VC #5 VC #56 (blank) VC #3 VC #6 VC #67 LINE-3 LINE-3 VC #1 VC #7 VC #78 (blank) VC #2 VC #8 VC #89 (blank) VC #3 VC #9 VC #9

    10 LINE-4 LINE-4 VC #1 VC #10 VC #1011 (blank) VC #2 VC #11 VC #1112 (blank) VC #3 VC #12 VC #1213 LINE-5 LINE-5 VC #1 LINE-2 VC #1 VC #13

    24 LINE-8 LINE-8 VC #3 VC #12 VC #24

    48 LINE-16 LINE-16 VC #3 LINE-4 VC #12 VC #4849 LINE-1 LINE-1 VC #1 LINE-1 VC #1 LINE-1 VC #150 (blank) VC #2 VC #2 VC #251 (blank) VC #3 VC #3 VC #352 LINE-2 LINE-2 VC #1 VC #4 VC #453 (blank) VC #2 VC #5 VC #554 (blank) VC #3 VC #6 VC #655 LINE-3 LINE-3 VC #1 VC #7 VC #756 (blank) VC #2 VC #8 VC #857 (blank) VC #3 VC #9 VC #958 LINE-4 LINE-4 VC #1 VC #10 VC #1059 (blank) VC #2 VC #11 VC #1160 (blank) VC #3 VC #12 VC #1261 LINE-5 LINE-5 VC #1 LINE-2 VC #1 VC #13

    72 LINE-8 VC #3 VC #12 VC #24

    96 LINE-16 VC #3 LINE-4 VC #12 VC #48

    337 LINE-1 LINE-1 VC #1 LINE-4 VC #1 LINE-4 VC #1

    384 LINE-16 VC #3 LINE-4 VC #12 LINE-4 VC #48Crossconnect Time Slot Management2-17

  • DOI-N08152FUNCTIONAL DESCRIPTION

    CHANNEL ASSIGNMENTSSHELF PORT TS #EXTENSION SHELF

    1 1 385

    4849

    9697

    144145

    192 5762 1 577

    4849

    9697

    144145

    192 768

    STM-0 STM-1 [OC-3] STM-4 [OC-12] STM-16 [OC-48] STM-64 [OC-192]1 LINE-1 LINE-1 VC #1 LINE-1 VC #1 LINE-1 VC #1 LINE-1 VC #12 (blank) VC #2 VC #2 VC #2 VC #23 (blank) VC #3 VC #3 VC #3 VC #34 LINE-2 LINE-2 VC #1 VC #4 VC #4 VC #45 (blank) VC #2 VC #5 VC #5 VC #56 (blank) VC #3 VC #6 VC #6 VC #67 LINE-3 LINE-3 VC #1 VC #7 VC #7 VC #78 (blank) VC #2 VC #8 VC #8 VC #89 (blank) VC #3 VC #9 VC #9 VC #9

    10 LINE-4 LINE-4 VC #1 VC #10 VC #10 VC #1011 (blank) VC #2 VC #11 VC #11 VC #1112 (blank) VC #3 VC #12 VC #12 VC #1213 LINE-5 LINE-5 VC #1 LINE-2 VC #1 VC #13 VC #13

    24 LINE-8 VC #3 VC #12 VC #24 VC #24

    48 LINE-16 VC #3 LINE-4 VC #12 VC #48 VC #4849 LINE-1 LINE-1 VC #1 LINE-1 VC #1 LINE-1 VC #1 VC #4950 (blank) VC #2 VC #2 VC #2 VC #5051 (blank) VC #3 VC #3 VC #3 VC #5152 LINE-2 LINE-2 VC #1 VC #4 VC #4 VC #5253 (blank) VC #2 VC #5 VC #5 VC #5354 (blank) VC #3 VC #6 VC #6 VC #5455 LINE-3 LINE-3 VC #1 VC #7 VC #7 VC #5556 (blank) VC #2 VC #8 VC #8 VC #5657 (blank) VC #3 VC #9 VC #9 VC #5758 LINE-4 LINE-4 VC #1 VC #10 VC #10 VC #5859 (blank) VC #2 VC #11 VC #11 VC #5960 (blank) VC #3 VC #12 VC #12 VC #6061 LINE-5 LINE-5 VC #1 LINE-2 VC #1 VC #13 VC #61

    72 LINE-8 VC #3 VC #12 VC #24 VC #72

    96 LINE-16 VC #3 LINE-4 VC #12 VC #48 VC #96

    192 LINE-16 VC #3 LINE-4 VC #12 LINE-4 VC #48 VC #192Crossconnect Time Slot Management2-18

  • DOI-N08152FUNCTIONAL DESCRIPTION2.5 VIRTUAL CONCATENATION

    2.5.1 Overview

    Virtual concatenation allows better use of bandwidth by taking multiple channels as onechannel when transporting data. For example, if accommodating a Gigabit Ethernet signalwith the legacy contiguous concatenation, VC-4-16c is to be used allocating 2.5G bandwidth(42% efficiency). However, with virtual concatenation, using VC-4-7v (7 channels of VC-4)allocates only 1.05G bandwidth, and leaves the additional bandwidth within container forother links (96% efficiency).

    Each GBEM package supports up to four channels, which is available for up to 2.5Gbandwidth (VC-3-48v or VC-4-16v).

    U-Node BBM supports this virtual concatenation only for Gigabit Ethernet signals.

    NOTE: U-Node BBM provides GBEM package with two ports (for two channels) and with fourports (for four channels).

    2.5.2 Crossconnect Levels

    U-Node BBM supports the following as the minimum unit of crossconnection level:

    ! GBE Package VC-4 (unit: 50M)

    ! GBEM Package VC-3 (unit: 50M, for SONET use only) VC-4 (unit: 150M) VC-4-4c (unit: 600M) VC-4-16c (unit: 2.5G)Crossconnect Virtual Concatenation2-19

  • DOI-N08152FUNCTIONAL DESCRIPTION2.5.3 Crossconnect

    2.5.3.1 GBE Package

    Its virtual concatenation level that can take in GBE interface is:

    VC-4-Xv (X = 1 thru 7)The VC-4-7v can carry the full wire rate of GBE interface.

    2.5.3.2 GBEM Package

    For the virtual concatenation, in order to make selection available from bandwidth of 50M to2.5G, virtual concatenation termination point (VCT) must be registered.

    Available VC (AU) path(s) within GBEM package can be registered for a VCT. Up to fourVCTs can be registered. Registering necessary VCs (AUs) for VCT specifies its virtualconcatenation.

    2.5.3.3 Crossconnection Images

    ! GBE Package

    LINE#1

    LINE#2

    LINE#3

    LINE#4

    VCT#1

    VCT#2

    VCT#3

    VCT#4

    AU #1AU #2AU #3

    AU #16

    LINE#1

    LINE#2

    LINE#3

    LINE#4

    VCT#1

    VCT#2

    VCT#3

    VCT#4

    AU #1AU #2AU #3

    AU #16

    GBEM GBEM

    SDH [SONET]NETWORK

    LINE#1

    LINE#2

    GBE PSW

    SINF

    SINFCrossconnect Virtual Concatenation2-20

  • DOI-N08152FUNCTIONAL DESCRIPTION! GBEM Package

    Crossconnection can be be arranged in the same way shown for GEBM package. Also, asshown below, it can be arranged for protection configuration:

    Working line and Protecting line can belong to the different SINF as well:

    LINE#1

    LINE#2

    LINE#3

    LINE#4

    VCT#1

    VCT#2

    VCT#3

    VCT#4

    SINF

    SINF

    W

    P

    W: WORKP: PROTECTION

    LINE#1

    LINE#2

    LINE#3

    LINE#4

    VCT#1

    VCT#2

    VCT#3

    VCT#4

    SINF

    SINF

    W

    P

    W: WORKP: PROTECTION

    W

    PCrossconnect Virtual Concatenation2-21

  • DOI-N08152FUNCTIONAL DESCRIPTIONThis page is intentionally left blank.Crossconnect2-22 E

  • DOI-N08152FUNCTIONAL DESCRIPTION3. PROTECTIONThis section describes the protection function performed by U-Node BBM. The followingtable shows the protection types available in U-Node BBM.

    The following illustration shows the front view of the Main and EXT16 shelves and anexample of the protection setting for each interface package:

    Type of Protection Object Method NotePackage PSW40/80 Package 1+1

    ESW PackagePSW5WB/10WB PackageSTM1E Package None/1+1 DS3 Package None/1+1 E31/32 Package None/1:1 E3 THR PKG must be used for Non-

    Protection. E3/E32 TRM PKG must be used for Protection.

    E12 Package None/1:n (n = 1 to 8) E1 THR PKG is for Non-Protection. E1 TRM PKG is for Protection.

    Line Transmission Line(Linear Network)

    None/1+1/1:1(SDH/SONET/JAPAN)

    Transmission Line(Ring Network)

    MS-SPRing [BLSR](4 Fiber/2 Fiber)

    Path VC/STS Path SNC/P(including UPSR)

    Set up separate from lines.

    OH RS Overhead [Section Overhead]MS Overhead [Line Overhead]

    Interlocking with Linear Protec-tion, Ring Protection.

    MSC

    SSC

    OHC

    INF (1)

    INF (2)

    INF (3)

    INF (4)

    PSW (W

    )

    PSW (P)

    INF (5)

    INF (6)

    INF (7)

    INF (8)

    Linear / 2F Ring / INF PKG Protection

    4F Ring Protection

    PSW PKG ProtectionProtection3-1

  • DOI-N08152FUNCTIONAL DESCRIPTIONThe following illustration shows the front view of the EXT64 shelf and an example of theprotection setting for each INF package.

    The following illustration shows the front view of the EXTWB shelf and an example of the1:1 protection setting for each INF (E31/E32) package.

    NOTE: To configure E31/E32 protection, E3 TRM or E32 TRM package must be installed.

    COM

    INF

    (1)

    INF

    (2)

    INF

    (3)

    INF

    (4)

    4F Ring

    2F Ring

    1:1 PKG Protection

    PSWWB PKG Protection

    SCW

    B

    SSCW

    B

    INF (P)IN

    F

    INF

    INF

    INF

    PSWW

    B (W)

    PSWW

    B (P)

    INF

    INF

    INF

    INF

    Slot # 1 2 7 8 9 10 11 12 13 14 15 16 17Protection3-2

  • DOI-N08152FUNCTIONAL DESCRIPTION1:N PKG Protection configuration consists of N (INF) working slots #8 thru #11 and #14thru #7) and one (INF) protection slot #7. The protection configuration also requires E1TRM package(s). The following illustration shows the slots used for each 1:N PKGprotection configuration (N = 1 to 8).

    NOTE: Shaded bars indicate the slots in which E12 packages must be mounted for each 1:Npackage protection configuration.

    P W1 W4W2 W3 W8 W5W7 W6

    INF

    (P)

    INF

    INF

    INF

    INF

    INF

    INF

    INF

    INF

    Slot # 7 8 9 10 11 14 15 16 17

    1:1

    1:2

    1:3

    1:4

    1:5

    1:6

    1:7

    1:8

    P

    P

    P

    P

    P

    P

    P

    P W4

    W2

    W3 W8

    W5

    W7 W6

    W1

    W1

    W1

    W1

    W1

    W1

    W1

    W1

    W2

    W2

    W2

    W2

    W2

    W2

    W3

    W3

    W3

    W3

    W3

    W4

    W4

    W4

    W4

    W5

    W5

    W5

    W6

    W6

    W7Protection3-3

  • DOI-N08152FUNCTIONAL DESCRIPTION3.1 PACKAGE PROTECTION

    This subsection describes package protection.

    3.1.1 Switching Configuration

    1+1 Package Protection Nonrevertive configuration applies to the PSW40, PSW80, ESW,PSW5WB and PSW10WB packages, and to interface packages (DS3, STM1E). 1:NPackage Protection configuration applies to the E12, E31 and E32 packages (N = 1 for E31and E32, N = 1 to 8 for E12). STM1E, DS3, E12, E31 and E32 packages can also be used inan unprotected configuration.

    3.1.2 Switching Mode

    There are two types of switching modes: the manual switch operated by the user, and theautomatic switch carried out by package alarm detection. The types of manual switchoperated by the user are shown below:

    Forced Switch (FSW): switching is operational regardlessNOTE of failure status. Manual Switch (MSW): switching is operational in Normal status.

    Switching priority of PSW40 and PSW80 packages:

    FSW > Automatic Switch > MSWNOTE: The switching operations of the ESW packages (EXT16 shelf), and PSW5WB/10WB

    packages (EXTWB shelf), are carried out in conjunction with PSW40/80 packages onthe Main shelf. When a failure has occurred in the ESW/PSW5WB/10WB package orthe ESW/PSW5WB/10WB package is removed, the PSW40/80 packages on the Mainshelf takes place switching operation, which is followed by ESW/PSW5WB/PSW10WBpackages.

    Switching priority of STM1E, DS3, E12, E31 and E32 packages:

    Automatic Switch (P)NOTE > FSW > Automatic Switch (W)NOTE > MSWNOTE: For STM1E/DS3 package, if an Automatic Switch has been carried out by a failure at

    its protection (P) side, the Forced Switch operation is disabled. For E12/E31/E32package, however, FSW and MSW that switch from the protection side (P) to theworking side (W) are not provided.Protection Package Protection3-4

  • DOI-N08152FUNCTIONAL DESCRIPTION3.1.3 Lockout Mode

    The Lockout mode holds the switching status (no switch operation is available) regardless ofthe current switching status; this mode can be set by the user. The Lockout mode, however,is not available to execute for ESW, PSW5WB and PSW10WB packages directly. As in theswitching operation, these packages will be in the lockout mode when the PSW40/80packages in the Main shelf is set into the lockout mode.

    3.1.4 Switching Status

    The switching status and the online package can be confirmed via the CID. The ONLINELED (green) on front of a package lights up when the package is in the online mode, andgoes out when the package is in the offline mode. The maintenance LEDs (yellow) on therack top and MSC package light up when the switching command (Lockout, Forced Switch,or Manual Switch) is successfully completed by the user. Protection Package Protection3-5

  • DOI-N08152FUNCTIONAL DESCRIPTION3.2 LINE PROTECTION

    This subsection describes optical line facility protection.

    3.2.1 Switching Configuration

    You must specify interface packages that configure line protection. There are two protectionmethods as shown below:

    Two INF PKGs Protection: 2F MS-SPRing, 1+1 Linear, 1:1 Linear Four INF PKGs Protection: 4F MS-SPRing

    To configure the protection (Linear, 2F MS-SPRing [2F-BLSR]) by using two packages, thefollowing packages must be paired:

    INF 1 and 2 INF 3 and 4 INF 5 and 6 INF 7 and 8

    To configure the protection (4F MS-SPRing [4F-BLSR]) by using four packages, thefollowing packages must be paired:

    INF 1, 2, 3, and 4 INF 5, 6, 7, and 8

    3.2.2 Applicable Interface Package

    $: Supported.: Not Supported.* Optical stick is mounted on SINFM package.

    50M* 150M * 600M* 2.4G 10G

    Linear $ $ $ $ $

    2F-Ring [BLSR] $ $

    4F-Ring [BLSR] $ $Protection Line Protection3-6

  • DOI-N08152FUNCTIONAL DESCRIPTION3.2.3 Linear Protection

    The following illustration shows the protection setup in multi-line interface packages (SINFMPKG) (150 M 16):

    3.2.3.1 Linear Protection Mode

    In the linear protection mode, the following switch type and APS mode are selectable perline:

    ! Switch Type 1+1 Unidirectional, Nonrevertive 1+1 Bidirectional, Nonrevertive 1:1 Bidirectional, Revertive

    ! APS Mode ITU-T SONET JAPAN

    Main Shelf

    INF (1)

    INF (2)

    INF (3)

    INF (4)

    INF (5)

    INF (6)

    INF (7)

    INF (8)

    Line 16

    Line 1

    Protection Type Setting Unit

    Protection Line

    Work Line

    SWGrpProtection Line Protection3-7

  • DOI-N08152FUNCTIONAL DESCRIPTION! 1+1 Unidirectional Linear Protection

    The following illustration shows 1+1 Unidirectional Linear Protection Operation:

    NOTE: You cannot set a path to the protection side.

    ! 1+1 Bidirectional Linear Protection

    The following illustration shows 1+1 Bidirectional Linear Protection Operation:

    NOTE: You cannot set a path to the protection side.

    Optical Interface

    Optical Interface

    WORKING LINE

    PROTECTION LINE

    Optical Interface

    Optical Interface

    WORKING LINE

    PROTECTION LINE

    ONLINE

    Optical Interface

    Optical Interface

    WORKING LINE

    PROTECTION LINE

    Optical Interface

    Optical Interface

    WORKING LINE

    PROTECTION LINE

    ONLINEProtection Line Protection3-8

  • DOI-N08152FUNCTIONAL DESCRIPTION! 1:1 Bidirectional Linear Protection

    The following illustration shows 1:1 Bidirectional Linear Protection Operation:

    NOTE: You can set a path to the protection line in normal operation (SLA Mode).

    3.2.3.2 Switching Mode

    There are two types of switching modes: the command switch operated by the user, and theautomatic switch carried out by line failure detection. The following table shows switchingcommands:

    Command Definition

    Lockout of protection (LKOP) LKOP inhibits the switching of service to the protection unit.