Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water...

10
Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page v — # vii Contents Preface xxxi Acknowledgments xxxv About the Companion Website xxxvii 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance . Total Resistance . Phenomenological Subdivision . Practical Subdivision .. Froude’s hypothesis .. ITTC’s method . Physical Subdivision .. Body forces .. Surface forces . Major Resistance Components 3 Fluid and Flow Properties . A Word on Notation . Fluid Properties .. Properties of water .. Properties of air .. Acceleration of free fall . Modeling and Visualizing Flow . Pressure 4 Fluid Mechanics and Calculus . Substantial Derivative . Nabla Operator and Its Applications .. Gradient .. Divergence .. Rotation .. Laplace operator 5 Continuity Equation . Mathematical Models of Flow . Infinitesimal Fluid Element Fixed in Space List of Figures List of Tables xxvii xvii COPYRIGHTED MATERIAL

Transcript of Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water...

Page 1: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page v — #j

j j

j

vii

Contents

Preface xxxiAcknowledgments xxxvAbout the Companion Website xxxvii

1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools

2 Ship Resistance . Total Resistance . Phenomenological Subdivision . Practical Subdivision .. Froude’s hypothesis .. ITTC’s method . Physical Subdivision .. Body forces .. Surface forces . Major Resistance Components

3 Fluid and Flow Properties . A Word on Notation . Fluid Properties .. Properties of water .. Properties of air .. Acceleration of free fall . Modeling and Visualizing Flow . Pressure

4 Fluid Mechanics and Calculus . Substantial Derivative . Nabla Operator and Its Applications .. Gradient .. Divergence .. Rotation .. Laplace operator

5 Continuity Equation . Mathematical Models of Flow . Infinitesimal Fluid Element Fixed in Space

List of FiguresList of Tables xxvii

xvii

COPYRIG

HTED M

ATERIAL

Page 2: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page vi — #j

j j

j

viii Contents

. Finite Control Volume Fixed in Space . Infinitesimal Element Moving With the Fluid . Finite Control Volume Moving With the Fluid . Summary

6 Navier-Stokes Equations . Momentum . Conservation of Momentum .. Time rate of change of momentum .. Momentum flux over boundary .. External forces .. Conservation of momentum equations . Stokes’ Hypothesis . Navier-Stokes Equations for a Newtonian Fluid

7 Special Cases of the Navier-Stokes Equations . Incompressible Fluid of Constant Temperature . Dimensionless Navier-Stokes Equations

8 Reynolds Averaged Navier-Stokes Equations (RANSE) . Mean and Turbulent Velocity . Time Averaged Continuity Equation . Time Averaged Navier-Stokes Equations . Reynolds Stresses and Turbulence Modeling

9 Application of the Conservation Principles . Body in a Wind Tunnel . Submerged Vessel in an Unbounded Fluid .. Conservation of mass .. Conservation of momentum

10 Boundary Layer Theory . Boundary Layer .. Boundary layer thickness .. Laminar and turbulent flow .. Flow separation . Simplifying Assumptions . Boundary Layer Equations

11 Wall Shear Stress in the Boundary Layer . Control Volume Selection . Conservation of Mass in the Boundary Layer . Conservation of Momentum in the Boundary Layer .. Momentum flux over boundary of control volume .. Surface forces acting on control volume .. Displacement thickness .. Momentum thickness . Wall Shear Stress

Page 3: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page vii — #j

j j

j

Contents ix

12 Boundary Layer of a Flat Plate . Boundary Layer Equations for a Flat Plate . Dimensionless Velocity Profiles . Boundary Layer Thickness . Wall Shear Stress . Displacement Thickness . Momentum Thickness . Friction Force and Coefficients

13 Frictional Resistance . Turbulent Boundary Layers . Shear Stress in Turbulent Flow . Friction Coefficients for Turbulent Flow . Model–Ship Correlation Lines . Effect of Surface Roughness . Effect of Form . Estimating Frictional Resistance

14 Inviscid Flow . Euler Equations for Incompressible Flow . Bernoulli Equation . Rotation, Vorticity, and Circulation

15 Potential Flow . Velocity Potential . Circulation and Velocity Potential . Laplace Equation . Bernoulli Equation for Potential Flow

16 Basic Solutions of the Laplace Equation . Uniform Parallel Flow . Sources and Sinks . Vortex . Combinations of Singularities .. Rankine oval .. Dipole . Singularity Distributions

17 Ideal Flow Around A Long Cylinder . Boundary Value Problem .. Moving cylinder in fluid at rest .. Cylinder at rest in parallel flow . Solution and Velocity Potential . Velocity and Pressure Field .. Velocity field .. Pressure field . D’Alembert’s Paradox . Added Mass

Page 4: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page viii — #j

j j

j

x Contents

18 Viscous Pressure Resistance . Displacement Effect of Boundary Layer . Flow Separation

19 Waves and Ship Wave Patterns . Wave Length, Period, and Height . Fundamental Observations . Kelvin Wave Pattern

20 Wave Theory . Overview . Mathematical Model for Long-crested Waves .. Ocean bottom boundary condition .. Free surface boundary conditions .. Far field condition .. Nonlinear boundary value problem . Linearized Boundary Value Problem

21 Linearization of Free Surface Boundary Conditions . Perturbation Approach . Kinematic Free Surface Condition . Dynamic Free Surface Condition . Linearized Free Surface Conditions for Waves

22 Linear Wave Theory . Solution of Linear Boundary Value Problem . Far Field Condition Revisited . Dispersion Relation . Deep Water Approximation

23 Wave Properties . Linear Wave Theory Results . Wave Number . Water Particle Velocity and Acceleration . Dynamic Pressure . Water Particle Motions

24 Wave Energy and Wave Propagation . Wave Propagation . Wave Energy .. Kinetic wave energy .. Potential wave energy .. Total wave energy density . Energy Transport and Group Velocity

25 Ship Wave Resistance . Physics of Wave Resistance . Wave Superposition . Michell’s Integral

Page 5: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page ix — #j

j j

j

Contents xi

. Panel Methods

26 Ship Model Testing . Testing Facilities .. Towing tank .. Cavitation tunnel . Ship and Propeller Models .. Turbulence generation .. Loading condition .. Propeller models . Model Basins

27 Dimensional Analysis . Purpose of Dimensional Analysis . Buckingham 𝜋-Theorem . Dimensional Analysis of Ship Resistance

28 Laws of Similitude . Similarities .. Geometric similarity .. Kinematic similarity .. Dynamic similarity .. Summary . Partial Dynamic Similarity .. Hypothetical case: full dynamic similarity .. Real world: partial dynamic similarity .. Froude’s hypothesis revisited

29 Resistance Test . Test Procedure . Reduction of Resistance Test Data . Form Factor 𝑘 . Wave Resistance Coefficient 𝐶𝑊 . Skin Friction Correction Force 𝐹𝐷

30 Full Scale Resistance Prediction . Model Test Results . Corrections and Additional Resistance Components . Total Resistance and Effective Power . Example Resistance Prediction

31 Resistance Estimates – Guldhammer and Harvald’s Method . Historical Development . Guldhammer and Harvald’s Method .. Applicability .. Required input .. Resistance estimate . Extended Resistance Estimate Example .. Completion of input parameters

Page 6: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page x — #j

j j

j

xii Contents

.. Range of speeds .. Residuary resistance coefficient .. Frictional resistance coefficient .. Additional resistance coefficients .. Total resistance coefficient .. Total resistance and effective power

32 Introduction to Ship Propulsion . Propulsion Task . Propulsion Systems .. Marine propeller .. Water jet propulsion .. Voith Schneider propeller (VSP) . Efficiencies in Ship Propulsion

33 Momentum Theory of the Propeller . Thrust, Axial Momentum, and Mass Flow . Ideal Efficiency and Thrust Loading Coefficient

34 Hull–Propeller Interaction . Wake Fraction . Thrust Deduction Fraction . Relative Rotative Efficiency

35 Propeller Geometry . Propeller Parts . Principal Propeller Characteristics . Other Geometric Propeller Characteristics

36 Lifting Foils . Foil Geometry and Flow Patterns . Lift and Drag . Thin Foil Theory .. Thin foil boundary value problem .. Thin foil body boundary condition .. Decomposition of disturbance potential

37 Thin Foil Theory – Displacement Flow . Boundary Value Problem . Pressure Distribution . Elliptical Thickness Distribution

38 Thin Foil Theory – Lifting Flow . Lifting Foil Problem . Glauert’s Classical Solution

39 Thin Foil Theory – Lifting Flow Properties . Lift Force and Lift Coefficient . Moment and Center of Effort

Page 7: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page xi — #j

j j

j

Contents xiii

. Ideal Angle of Attack . Parabolic Mean Line

40 Lifting Wings . Effects of Limited Wingspan . Free and Bound Vorticity . Biot–Savart Law . Lifting Line Theory

41 Open Water Test . Test Conditions . Propeller Models . Test Procedure . Data Reduction

42 Full Scale Propeller Performance . Comparison of Model and Full Scale Propeller Forces . ITTC Full Scale Correction Procedure

43 Propulsion Test . Testing Procedure . Data Reduction . Hull–Propeller Interaction Parameters .. Model wake fraction .. Thrust deduction fraction .. Relative rotative efficiency .. Full scale hull–propeller interaction parameters . Load Variation Test

44 ITTC 1978 Performance Prediction Method . Summary of Model Tests . Full Scale Power Prediction . Summary . Solving the Intersection Problem . Example

45 Cavitation . Cavitation Phenomenon . Cavitation Inception . Locations and Types of Cavitation . Detrimental Effects of Cavitation

46 Cavitation Prevention . Design Measures . Keller’s Formula . Burrill’s Cavitation Chart . Other Design Measures

Page 8: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page xii — #j

j j

j

xiv Contents

47 Propeller Series Data . Wageningen B-Series . Wageningen B-Series Polynomials . Other Propeller Series

48 Propeller Design Process . Design Tasks and Input Preparation . Optimum Diameter Selection .. Propeller design task .. Propeller design task . Optimum Rate of Revolution Selection .. Propeller design task .. Propeller design task . Design Charts . Computational Tools

49 Hull–Propeller Matching Examples . Optimum Rate of Revolution Problem .. Design constant .. Initial expanded area ratio .. First iteration .. Cavitation check for first iteration .. Second iteration .. Final selection by interpolation . Optimum Diameter Problem .. Design constant .. Initial expanded area ratio .. First iteration .. Cavitation check for first iteration .. Second iteration .. Final selection by interpolation .. Attainable speed check

50 Holtrop and Mennen’s Method . Overview of the Method .. Applicability .. Required input . Procedure .. Resistance components .. Total resistance .. Hull–propeller interaction parameters . Example .. Completion of input parameters .. Resistance estimate .. Powering estimate

51 Hollenbach’s Method . Overview of the method .. Applicability

Page 9: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page xiii — #j

j j

j

Contents xv

.. Required input . Resistance Estimate .. Frictional resistance coefficient .. Mean residuary resistance coefficient .. Minimum residuary resistance coefficient .. Residuary resistance coefficient .. Correlation allowance .. Appendage resistance .. Environmental resistance .. Total resistance . Hull–Propeller Interaction Parameters .. Relative rotative efficiency .. Thrust deduction fraction .. Wake fraction . Resistance and Propulsion Estimate Example .. Completion of input parameters .. Powering estimate

Index

Page 10: Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship ... · 1 Ship Hydrodynamics . Calm Water Hydrodynamics . Ship Hydrodynamics and Ship Design . Available Tools 2 Ship Resistance

Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page xiv — #j

j j

j