Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog...

124
Fonctions Monog` enes Divergent series GAC PC GC FS BB Overconvergence Fonctions Monog` enes William T. Ross University of Richmond Fonctions Monog` enes University of Richmond

Transcript of Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog...

Page 1: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes

William T. Ross

University of Richmond

Fonctions Monogenes University of Richmond

Page 2: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 3: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 4: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 5: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number to

1− 1 + 1− 1 + 1− · · ·?

Fonctions Monogenes University of Richmond

Page 6: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 1:

1− 1 + 1− 1 + 1− 1 · · ·

Let sn be the n-th partial sum

sn =

0, n even;1, n odd.

and so (via Cauchy’s definition of convergence of series) this seriesdiverges.

Fonctions Monogenes University of Richmond

Page 7: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 1:

1− 1 + 1− 1 + 1− 1 · · ·

Let sn be the n-th partial sum

sn =

0, n even;1, n odd.

and so (via Cauchy’s definition of convergence of series) this seriesdiverges.

Fonctions Monogenes University of Richmond

Page 8: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 1:

1− 1 + 1− 1 + 1− 1 · · ·

Let sn be the n-th partial sum

sn =

0, n even;1, n odd.

and so (via Cauchy’s definition of convergence of series) this seriesdiverges.

Fonctions Monogenes University of Richmond

Page 9: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 1:

1− 1 + 1− 1 + 1− 1 · · ·

Let sn be the n-th partial sum

sn =

0, n even;1, n odd.

and so (via Cauchy’s definition of convergence of series) this seriesdiverges.

Fonctions Monogenes University of Richmond

Page 10: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 2: Cesaro

1− 1 + 1 · · · = limn→∞

s0 + s1 + · · ·+ sn

n + 1

= limn→∞

1 + 0 + 1 + 0 + · · · 1n + 1

=1

2

Fonctions Monogenes University of Richmond

Page 11: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 2: Cesaro

1− 1 + 1 · · · = limn→∞

s0 + s1 + · · ·+ sn

n + 1

= limn→∞

1 + 0 + 1 + 0 + · · · 1n + 1

=1

2

Fonctions Monogenes University of Richmond

Page 12: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 2: Cesaro

1− 1 + 1 · · · = limn→∞

s0 + s1 + · · ·+ sn

n + 1

= limn→∞

1 + 0 + 1 + 0 + · · · 1n + 1

=1

2

Fonctions Monogenes University of Richmond

Page 13: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 2: Cesaro

1− 1 + 1 · · · = limn→∞

s0 + s1 + · · ·+ sn

n + 1

= limn→∞

1 + 0 + 1 + 0 + · · · 1n + 1

=1

2

Fonctions Monogenes University of Richmond

Page 14: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 3: Abel

1− 1 + 1− 1 + 1 · · ·= lim

x→1−(1− x + x2 − x3 + · · · )

= limx→1−

1

1 + x

=1

2

Fonctions Monogenes University of Richmond

Page 15: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 3: Abel

1− 1 + 1− 1 + 1 · · ·= lim

x→1−(1− x + x2 − x3 + · · · )

= limx→1−

1

1 + x

=1

2

Fonctions Monogenes University of Richmond

Page 16: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 3: Abel

1− 1 + 1− 1 + 1 · · ·= lim

x→1−(1− x + x2 − x3 + · · · )

= limx→1−

1

1 + x

=1

2

Fonctions Monogenes University of Richmond

Page 17: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 3: Abel

1− 1 + 1− 1 + 1 · · ·= lim

x→1−(1− x + x2 − x3 + · · · )

= limx→1−

1

1 + x

=1

2

Fonctions Monogenes University of Richmond

Page 18: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 19: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 20: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 21: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 22: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 23: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 24: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Answer # 4: CalletLet m < n

1 + x + x2 + · · · xm−1

1 + x + x2 + · · · xn−1

=1− xm

1− xn

= (1− xm)(1 + xn + x2n + x3n + · · · )= 1− xm + xn − xm+n + x2n − · · ·

Evaluate both sides at x = 1 to get

1− 1 + 1− 1 + · · · =m

n

Fonctions Monogenes University of Richmond

Page 25: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number S to

a0 + a1 + a2 + · · ·?

Cauchy

Sdef= lim

n→∞(a0 + a1 + · · ·+ an)

Abel

SAdef= lim

x→1−(a0 + a1x + a2x2 + · · · )

Cesaro

SCdef= lim

n→∞

s0 + s1 + · · ·+ sn

n + 1

TheoremIf S exists, then S = SA = SC .

Fonctions Monogenes University of Richmond

Page 26: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number S to

a0 + a1 + a2 + · · ·?

Cauchy

Sdef= lim

n→∞(a0 + a1 + · · ·+ an)

Abel

SAdef= lim

x→1−(a0 + a1x + a2x2 + · · · )

Cesaro

SCdef= lim

n→∞

s0 + s1 + · · ·+ sn

n + 1

TheoremIf S exists, then S = SA = SC .

Fonctions Monogenes University of Richmond

Page 27: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number S to

a0 + a1 + a2 + · · ·?

Cauchy

Sdef= lim

n→∞(a0 + a1 + · · ·+ an)

Abel

SAdef= lim

x→1−(a0 + a1x + a2x2 + · · · )

Cesaro

SCdef= lim

n→∞

s0 + s1 + · · ·+ sn

n + 1

TheoremIf S exists, then S = SA = SC .

Fonctions Monogenes University of Richmond

Page 28: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number S to

a0 + a1 + a2 + · · ·?

Cauchy

Sdef= lim

n→∞(a0 + a1 + · · ·+ an)

Abel

SAdef= lim

x→1−(a0 + a1x + a2x2 + · · · )

Cesaro

SCdef= lim

n→∞

s0 + s1 + · · ·+ sn

n + 1

TheoremIf S exists, then S = SA = SC .

Fonctions Monogenes University of Richmond

Page 29: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

How do we assign a number S to

a0 + a1 + a2 + · · ·?

Cauchy

Sdef= lim

n→∞(a0 + a1 + · · ·+ an)

Abel

SAdef= lim

x→1−(a0 + a1x + a2x2 + · · · )

Cesaro

SCdef= lim

n→∞

s0 + s1 + · · ·+ sn

n + 1

TheoremIf S exists, then S = SA = SC .

Fonctions Monogenes University of Richmond

Page 30: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Uses of divergent series

Theorem (du Bois Reymond - 1873)

If f is continuous on [0, 2π] with f (0) = f (2π) with FS

(∗) a0

2+∞∑

n=1

an cos(nθ) + bn sin(nθ),

then the FS of f need not converge pointwise.

Fonctions Monogenes University of Richmond

Page 31: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Poisson)

If f ∈ C [0, 2π] with FS (*), then

f (θ) = limr→1−

a0

2+∞∑

n=1

rnan cos(nθ) + rnbn sin(nθ)

Fonctions Monogenes University of Richmond

Page 32: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Fejer - 1904)

If f ∈ C [0, 2π], then σn(f )→ f uniformly.

σn(f , θ) =s0(f , θ) + · · ·+ sn(f , θ)

n + 1

Fonctions Monogenes University of Richmond

Page 33: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Fatou - 1906)

If f ∈ L1[0, 2π] with FS (*), then

f (θ) = limr→1−

a0

2+∞∑

n=1

rnan cos(nθ) + rnbn sin(nθ)

a.e.

Fonctions Monogenes University of Richmond

Page 34: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Lebesgue - 1920)

If f ∈ L1[0, 2π], then σn(f )→ f a.e.

Fonctions Monogenes University of Richmond

Page 35: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Generalized Analytic Continuation

We want to explore ways in which

f |Ωj , j = 1, 2, · · ·

can be related beyond analytic continuation.

I Ω is a disconnected open set in CI Ωj : j = 1, 2, · · · are the connected components of Ω.

I f ∈ Mer(Ω).

Fonctions Monogenes University of Richmond

Page 36: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Generalized Analytic Continuation

We want to explore ways in which

f |Ωj , j = 1, 2, · · ·

can be related beyond analytic continuation.

I Ω is a disconnected open set in CI Ωj : j = 1, 2, · · · are the connected components of Ω.

I f ∈ Mer(Ω).

Fonctions Monogenes University of Richmond

Page 37: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Generalized Analytic Continuation

We want to explore ways in which

f |Ωj , j = 1, 2, · · ·

can be related beyond analytic continuation.

I Ω is a disconnected open set in CI Ωj : j = 1, 2, · · · are the connected components of Ω.

I f ∈ Mer(Ω).

Fonctions Monogenes University of Richmond

Page 38: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Generalized Analytic Continuation

We want to explore ways in which

f |Ωj , j = 1, 2, · · ·

can be related beyond analytic continuation.

I Ω is a disconnected open set in CI Ωj : j = 1, 2, · · · are the connected components of Ω.

I f ∈ Mer(Ω).

Fonctions Monogenes University of Richmond

Page 39: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 40: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 41: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 42: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 43: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 44: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 45: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 46: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 47: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 48: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 49: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Overview of GAC

I Define six types of continuationsI analytic continuation (the ’gold standard’)I pseudocontinuationI Goncar continuationI continuation via formal mult. of seriesI Bochner-Bohnenblust continuationI continuation via overconvergence

I how these compare to analytic continuation

I how they prove themselves useful

I how they can be unified

Fonctions Monogenes University of Richmond

Page 50: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Poincare - 1883)

Let e iθn be a dense sequence in T = |z | = 1 and cn be anabs. summable sequence in C \ 0. Define

f (z) =∞∑

n=1

cn

1− e−iθnz∈ Hol(C \ T).

Then f does not have an AC across any e iθ.

Fonctions Monogenes University of Richmond

Page 51: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

1− e−iθnz

Still...

f (re iθ)− f (1

re iθ) =

∫1− r 2

|re iθ − e it |2dµ(e it), dµ =

∑n>1

cnδe iθn .

Fatou’s theorem (1906):

limr→1−

∫1− r 2

|re iθ − e it |2dµ(e it) =

dθ(e iθ) a.e.

Fonctions Monogenes University of Richmond

Page 52: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

1− e−iθnz

Still...

f (re iθ)− f (1

re iθ) =

∫1− r 2

|re iθ − e it |2dµ(e it), dµ =

∑n>1

cnδe iθn .

Fatou’s theorem (1906):

limr→1−

∫1− r 2

|re iθ − e it |2dµ(e it) =

dθ(e iθ) a.e.

Fonctions Monogenes University of Richmond

Page 53: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

1− e−iθnz

Still...

f (re iθ)− f (1

re iθ) =

∫1− r 2

|re iθ − e it |2dµ(e it), dµ =

∑n>1

cnδe iθn .

Fatou’s theorem (1906):

limr→1−

∫1− r 2

|re iθ − e it |2dµ(e it) =

dθ(e iθ) a.e.

Fonctions Monogenes University of Richmond

Page 54: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Actually] lim

z→ζ

|z|<1

f (z) = ] limz→ζ

|z|>1

f (z) a.e. ζ ∈ T

Fonctions Monogenes University of Richmond

Page 55: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Pseudocontinuation

Let f ∈ Mer(D),F ∈ Mer(De). If

] limz→ζ

|z|<1

f (z) = ] limz→ζ

|z|>1

F (z) a.e. ζ ∈ T

then f and F are pseudocontinuations of each other.

Fonctions Monogenes University of Richmond

Page 56: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Lusin-Privalov)

If f ∈ Mer(D) and

] limz→ζ

f (z) = 0 ∀ ζ ∈ E ⊂ T

with |E | > 0, then f ≡ 0.

Corollary

If f ∈ Mer(D) has a PC F ∈ Mer(De) and f has an AC across e iθ,then this AC must be F .

Fonctions Monogenes University of Richmond

Page 57: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Lusin-Privalov)

If f ∈ Mer(D) and

] limz→ζ

f (z) = 0 ∀ ζ ∈ E ⊂ T

with |E | > 0, then f ≡ 0.

Corollary

If f ∈ Mer(D) has a PC F ∈ Mer(De) and f has an AC across e iθ,then this AC must be F .

Fonctions Monogenes University of Richmond

Page 58: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Example

log(1− z) does not have a pseudocontinuation F/G ∈ Mer(De).

Fonctions Monogenes University of Richmond

Page 59: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of pseudocontinuations

I cyclic vectors for the backward shift operator

Bf =f − f (0)

z

on the Hardy space (Douglas-Shapiro-Shields - 1970)

I rational approximation with pre-assigned poles (Walsh 1935,Tumarkin 1966)

I Darlington synthesis problem (Douglas-Helton, Arov - 1971)

Fonctions Monogenes University of Richmond

Page 60: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of pseudocontinuations

I cyclic vectors for the backward shift operator

Bf =f − f (0)

z

on the Hardy space (Douglas-Shapiro-Shields - 1970)

I rational approximation with pre-assigned poles (Walsh 1935,Tumarkin 1966)

I Darlington synthesis problem (Douglas-Helton, Arov - 1971)

Fonctions Monogenes University of Richmond

Page 61: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of pseudocontinuations

I cyclic vectors for the backward shift operator

Bf =f − f (0)

z

on the Hardy space (Douglas-Shapiro-Shields - 1970)

I rational approximation with pre-assigned poles (Walsh 1935,Tumarkin 1966)

I Darlington synthesis problem (Douglas-Helton, Arov - 1971)

Fonctions Monogenes University of Richmond

Page 62: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of pseudocontinuations

I cyclic vectors for the backward shift operator

Bf =f − f (0)

z

on the Hardy space (Douglas-Shapiro-Shields - 1970)

I rational approximation with pre-assigned poles (Walsh 1935,Tumarkin 1966)

I Darlington synthesis problem (Douglas-Helton, Arov - 1971)

Fonctions Monogenes University of Richmond

Page 63: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Gap theorems

Theorem (Hadamard - 1892)

The gap series ∑n

2−nz2n

does not have an AC across any e iθ

Theorem (H. S. Shapiro - 1968)

The gap series ∑n

2−nz2n

does not have a PC across any arc of T

Fonctions Monogenes University of Richmond

Page 64: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Gap theorems

Theorem (Hadamard - 1892)

The gap series ∑n

2−nz2n

does not have an AC across any e iθ

Theorem (H. S. Shapiro - 1968)

The gap series ∑n

2−nz2n

does not have a PC across any arc of T

Fonctions Monogenes University of Richmond

Page 65: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Gap theorems

Theorem (Hadamard - 1892)

The gap series ∑n

2−nz2n

does not have an AC across any e iθ

Theorem (H. S. Shapiro - 1968)

The gap series ∑n

2−nz2n

does not have a PC across any arc of T

Fonctions Monogenes University of Richmond

Page 66: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Fabry - 1898)

The gap series ∑n

2−nzn2

does not have an AC across any e iθ

Theorem (Aleksandrov - 1997)

The gap series ∑n

2−nzn2

does not have a PC across any arc of T

Fonctions Monogenes University of Richmond

Page 67: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Theorem (Fabry - 1898)

The gap series ∑n

2−nzn2

does not have an AC across any e iθ

Theorem (Aleksandrov - 1997)

The gap series ∑n

2−nzn2

does not have a PC across any arc of T

Fonctions Monogenes University of Richmond

Page 68: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Borel series

Theorem (Borel - 1917)

Let zn be a seq. of points in C with |zn| → 1 and

|cn| ≤ exp(exp(−n2),

and define

f (z) =∞∑

n=1

cn

z − zn

If f |D has an analytic continuation f to a neighborhood Uw with|w | > 1, then

f (z) =∞∑

n=1

cn

z − zn, z ∈ Uw .

Fonctions Monogenes University of Richmond

Page 69: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Borel series

Theorem (Borel - 1917)

Let zn be a seq. of points in C with |zn| → 1 and

|cn| ≤ exp(exp(−n2),

and define

f (z) =∞∑

n=1

cn

z − zn

If f |D has an analytic continuation f to a neighborhood Uw with|w | > 1, then

f (z) =∞∑

n=1

cn

z − zn, z ∈ Uw .

Fonctions Monogenes University of Richmond

Page 70: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Borel series

Theorem (Borel - 1917)

Let zn be a seq. of points in C with |zn| → 1 and

|cn| ≤ exp(exp(−n2),

and define

f (z) =∞∑

n=1

cn

z − zn

If f |D has an analytic continuation f to a neighborhood Uw with|w | > 1, then

f (z) =∞∑

n=1

cn

z − zn, z ∈ Uw .

Fonctions Monogenes University of Richmond

Page 71: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

z − zn.

Theorem (Walsh - 1930)

Same conclusion as Borel but with

limn→∞

n√|cn| = 0.

Theorem (Goncar - 1967)

Same conclusion as Borel but with

lim supn→∞

n√|cn| < 1.

Fonctions Monogenes University of Richmond

Page 72: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

z − zn.

Theorem (Walsh - 1930)

Same conclusion as Borel but with

limn→∞

n√|cn| = 0.

Theorem (Goncar - 1967)

Same conclusion as Borel but with

lim supn→∞

n√|cn| < 1.

Fonctions Monogenes University of Richmond

Page 73: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

f (z) =∞∑

n=1

cn

z − zn.

Theorem (Walsh - 1930)

Same conclusion as Borel but with

limn→∞

n√|cn| = 0.

Theorem (Goncar - 1967)

Same conclusion as Borel but with

lim supn→∞

n√|cn| < 1.

Fonctions Monogenes University of Richmond

Page 74: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Wolff, Denjoy, Beurling, etc. gave examples of Borel series

f (z) =∞∑

n=1

cn

z − zn

withf |D ≡ 0 but f |De 6≡ 0.

In these examples,lim supn→∞

n√|cn|= 1.

Fonctions Monogenes University of Richmond

Page 75: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Wolff, Denjoy, Beurling, etc. gave examples of Borel series

f (z) =∞∑

n=1

cn

z − zn

withf |D ≡ 0 but f |De 6≡ 0.

In these examples,lim supn→∞

n√|cn|= 1.

Fonctions Monogenes University of Richmond

Page 76: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Goncar continuation

I Let A = compact set which separates the plane

I Ωj : j = 1, 2, · · · = connect. comp. of Ac

I Rn = rat. funct., poles in A, deg(Rn) 6 n

DefinitionIf f ∈ Hol(Ac), we say f |Ωj is a Goncar continuation of f |Ωk ifthere are rational functions (as above) with

supK⊂Ωk∪Ωj

limn→∞

supz∈K|f (z)− Rn(z)|1/n < 1

Fonctions Monogenes University of Richmond

Page 77: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Goncar continuation

I Let A = compact set which separates the plane

I Ωj : j = 1, 2, · · · = connect. comp. of Ac

I Rn = rat. funct., poles in A, deg(Rn) 6 n

DefinitionIf f ∈ Hol(Ac), we say f |Ωj is a Goncar continuation of f |Ωk ifthere are rational functions (as above) with

supK⊂Ωk∪Ωj

limn→∞

supz∈K|f (z)− Rn(z)|1/n < 1

Fonctions Monogenes University of Richmond

Page 78: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Goncar continuation

I Let A = compact set which separates the plane

I Ωj : j = 1, 2, · · · = connect. comp. of Ac

I Rn = rat. funct., poles in A, deg(Rn) 6 n

DefinitionIf f ∈ Hol(Ac), we say f |Ωj is a Goncar continuation of f |Ωk ifthere are rational functions (as above) with

supK⊂Ωk∪Ωj

limn→∞

supz∈K|f (z)− Rn(z)|1/n < 1

Fonctions Monogenes University of Richmond

Page 79: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Goncar continuation

I Let A = compact set which separates the plane

I Ωj : j = 1, 2, · · · = connect. comp. of Ac

I Rn = rat. funct., poles in A, deg(Rn) 6 n

DefinitionIf f ∈ Hol(Ac), we say f |Ωj is a Goncar continuation of f |Ωk ifthere are rational functions (as above) with

supK⊂Ωk∪Ωj

limn→∞

supz∈K|f (z)− Rn(z)|1/n < 1

Fonctions Monogenes University of Richmond

Page 80: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Goncar continuation

I Let A = compact set which separates the plane

I Ωj : j = 1, 2, · · · = connect. comp. of Ac

I Rn = rat. funct., poles in A, deg(Rn) 6 n

DefinitionIf f ∈ Hol(Ac), we say f |Ωj is a Goncar continuation of f |Ωk ifthere are rational functions (as above) with

supK⊂Ωk∪Ωj

limn→∞

supz∈K|f (z)− Rn(z)|1/n < 1

Fonctions Monogenes University of Richmond

Page 81: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 82: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Example

Iflim sup

n

n√|cn| < 1

andf =

∑n

cn

z − e iθn,

then f |De is a G-continuation of f |D.

Fonctions Monogenes University of Richmond

Page 83: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

An‘Abelian’ theorem

Theorem (Goncar - 1967)

If f |Ωj is a G-continuation of f |Ωk and suppose g = f |Ωj has anAC g along some path to a nbh Uw of w ∈ Ωk . Theng |Uw = f |Uw .

Again, although G-continuation is a generalization of AC, it iscompatible with AC.

Fonctions Monogenes University of Richmond

Page 84: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

An‘Abelian’ theorem

Theorem (Goncar - 1967)

If f |Ωj is a G-continuation of f |Ωk and suppose g = f |Ωj has anAC g along some path to a nbh Uw of w ∈ Ωk . Theng |Uw = f |Uw .

Again, although G-continuation is a generalization of AC, it iscompatible with AC.

Fonctions Monogenes University of Richmond

Page 85: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

An‘Abelian’ theorem

Theorem (Goncar - 1967)

If f |Ωj is a G-continuation of f |Ωk and suppose g = f |Ωj has anAC g along some path to a nbh Uw of w ∈ Ωk . Theng |Uw = f |Uw .

Again, although G-continuation is a generalization of AC, it iscompatible with AC.

Fonctions Monogenes University of Richmond

Page 86: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Fonctions Monogenes University of Richmond

Page 87: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of G-continuation

I Cyclic vectors for linear operators with a spanning set ofeigenvectors, corresponding to distinct eigenvalues (Sibilev)

I Common cyclic vectors for certain sets of normal operators(Sibilev, R-Wogen)

Fonctions Monogenes University of Richmond

Page 88: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of G-continuation

I Cyclic vectors for linear operators with a spanning set ofeigenvectors, corresponding to distinct eigenvalues (Sibilev)

I Common cyclic vectors for certain sets of normal operators(Sibilev, R-Wogen)

Fonctions Monogenes University of Richmond

Page 89: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of G-continuation

I Cyclic vectors for linear operators with a spanning set ofeigenvectors, corresponding to distinct eigenvalues (Sibilev)

I Common cyclic vectors for certain sets of normal operators(Sibilev, R-Wogen)

Fonctions Monogenes University of Richmond

Page 90: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 91: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 92: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 93: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 94: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 95: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via formal mult. of series

f = a0 + a1z + a2z2 + · · · ∈ Hol(D)

F

G∈ Mer(De)

F = A0 +A1

z+

A2

z2+ · · · G = B0 +

B1

z+

B2

z2+ · · ·

DefinitionF/G is a formal series continuation of f if

B0 +

B1

z+

B2

z2+ · · ·

a0 + a1z + a2z2 + · · ·

= A0 +

A1

z+

A2

z2+ · · ·

Fonctions Monogenes University of Richmond

Page 96: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

An ‘Abelian’ theorem for FS continuation

Theorem (R-Shapiro - 2000)

FS cont. are compatible with AC: If f has a FS continuation F/Gand f has an AC f to a nbh U of e iθ, then f = F/G on U.

Fonctions Monogenes University of Richmond

Page 97: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Example

log(1− z) does not have a FS continuation.

Fonctions Monogenes University of Richmond

Page 98: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Example

The Borel series ∑n

cn

z − zn, zn ∈ De

can have a FS continuation but not a PC.

Fonctions Monogenes University of Richmond

Page 99: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Example

The gap series ∑n

2−nz2n

does not have a FS continuation.

Note: It does not have an AC (Hadamard) nor a PC (Shapiro).

Fonctions Monogenes University of Richmond

Page 100: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 101: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 102: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 103: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 104: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 105: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 106: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Applications of FS continuation

X is a B-space of analytic functions on D.

B : X → X , Bf =f − f (0)

z.

[f ] := spanBnf : n = 0, 1, 2, · · · 6= X .

L ∈ [f ]⊥ \ 0.

fL(λ) := L(f

· − λ)/

L(1

· − λ), λ ∈ De \ poles

Then fL is a formal series continuation of f .

Fonctions Monogenes University of Richmond

Page 107: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Bochner and Bohnenblust continuation

Let A(n)n∈Z be a two-sided almost periodic sequence. Forexample

A(n) =∞∑

m=1

cme inθm , n ∈ Z,∞∑

m=1

|cm| <∞.

f1(z) :=∞∑

n=0

A(n)zn, |z | < 1,

f2(z) := −∞∑

n=1

A(−n)

zn, |z | > 1.

Theorem (B-B - 1934)

If f1 has an AC across e iθ, then it must continue to f2.

Fonctions Monogenes University of Richmond

Page 108: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Bochner and Bohnenblust continuation

Let A(n)n∈Z be a two-sided almost periodic sequence. Forexample

A(n) =∞∑

m=1

cme inθm , n ∈ Z,∞∑

m=1

|cm| <∞.

f1(z) :=∞∑

n=0

A(n)zn, |z | < 1,

f2(z) := −∞∑

n=1

A(−n)

zn, |z | > 1.

Theorem (B-B - 1934)

If f1 has an AC across e iθ, then it must continue to f2.

Fonctions Monogenes University of Richmond

Page 109: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Bochner and Bohnenblust continuation

Let A(n)n∈Z be a two-sided almost periodic sequence. Forexample

A(n) =∞∑

m=1

cme inθm , n ∈ Z,∞∑

m=1

|cm| <∞.

f1(z) :=∞∑

n=0

A(n)zn, |z | < 1,

f2(z) := −∞∑

n=1

A(−n)

zn, |z | > 1.

Theorem (B-B - 1934)

If f1 has an AC across e iθ, then it must continue to f2.

Fonctions Monogenes University of Richmond

Page 110: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Bochner and Bohnenblust continuation

Let A(n)n∈Z be a two-sided almost periodic sequence. Forexample

A(n) =∞∑

m=1

cme inθm , n ∈ Z,∞∑

m=1

|cm| <∞.

f1(z) :=∞∑

n=0

A(n)zn, |z | < 1,

f2(z) := −∞∑

n=1

A(−n)

zn, |z | > 1.

Theorem (B-B - 1934)

If f1 has an AC across e iθ, then it must continue to f2.

Fonctions Monogenes University of Richmond

Page 111: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Bochner and Bohnenblust continuation

Let A(n)n∈Z be a two-sided almost periodic sequence. Forexample

A(n) =∞∑

m=1

cme inθm , n ∈ Z,∞∑

m=1

|cm| <∞.

f1(z) :=∞∑

n=0

A(n)zn, |z | < 1,

f2(z) := −∞∑

n=1

A(−n)

zn, |z | > 1.

Theorem (B-B - 1934)

If f1 has an AC across e iθ, then it must continue to f2.

Fonctions Monogenes University of Richmond

Page 112: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Let φ be an almost periodic function on R. For example,

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

f (z) =

∫ ∞0

φ(t)e−tzdt, <z > 0,

F (z) =

∫ 0

−∞φ(t)e−tzdt, <z < 0,

Theorem (B-B - 1934)

If f has an analytic continuation across iy , then this AC must beequal to F .

Fonctions Monogenes University of Richmond

Page 113: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Let φ be an almost periodic function on R. For example,

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

f (z) =

∫ ∞0

φ(t)e−tzdt, <z > 0,

F (z) =

∫ 0

−∞φ(t)e−tzdt, <z < 0,

Theorem (B-B - 1934)

If f has an analytic continuation across iy , then this AC must beequal to F .

Fonctions Monogenes University of Richmond

Page 114: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Let φ be an almost periodic function on R. For example,

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

f (z) =

∫ ∞0

φ(t)e−tzdt, <z > 0,

F (z) =

∫ 0

−∞φ(t)e−tzdt, <z < 0,

Theorem (B-B - 1934)

If f has an analytic continuation across iy , then this AC must beequal to F .

Fonctions Monogenes University of Richmond

Page 115: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Let φ be an almost periodic function on R. For example,

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

f (z) =

∫ ∞0

φ(t)e−tzdt, <z > 0,

F (z) =

∫ 0

−∞φ(t)e−tzdt, <z < 0,

Theorem (B-B - 1934)

If f has an analytic continuation across iy , then this AC must beequal to F .

Fonctions Monogenes University of Richmond

Page 116: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Let φ be an almost periodic function on R. For example,

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

f (z) =

∫ ∞0

φ(t)e−tzdt, <z > 0,

F (z) =

∫ 0

−∞φ(t)e−tzdt, <z < 0,

Theorem (B-B - 1934)

If f has an analytic continuation across iy , then this AC must beequal to F .

Fonctions Monogenes University of Richmond

Page 117: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Suppose

φ(x) =∞∑

n=1

cne iλnx , λn ∈ R,∞∑

n=1

|cn| <∞.

Then

f (z) =∞∑

n=1

cn

z − iλn, <z > 0,

F (z) =∞∑

n=1

cn

z − iλn, <z < 0.

Thenlim

x→0+f (x + iy) = lim

x→0−F (x + iy), a.e. y

Fonctions Monogenes University of Richmond

Page 118: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 119: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 120: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 121: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 122: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 123: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond

Page 124: Fonctions Monog enes - University of Richmondwross/PDF/SouthAlabama-Seminar.pdfFonctions Monog enesDivergent seriesGACPCGCFSBBOverconvergence Fonctions Monog enes William T. Ross University

Fonctions Monogenes Divergent series GAC PC GC FS BB Overconvergence

Continuation via overconvergence

X is a B-space of analytic functions on D with

X = span 1

z − λ: |λ| > 1 E = span 1

z − λ: λ ∈ A 6= X .

If f ∈ E , then there are fn ∈ Rat(A) with fn → f in norm.

Theorem (Shapiro - 1968)

fn → Sf ucs of De \ A.

So Sf is a ‘continuation’ of f .

Theorem (R-Shapiro - 2000)

If f has an AC continuation across e iθ, it must continue to Sf .

Fonctions Monogenes University of Richmond