Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013...

48
1 Fluid Mechanics Theory I Today’s Contents: 1. Introduction to Fluids 2. Gas and Liquid Flows 3. Governing Equations for Gas and Liquid Flows 4. Boundary Conditions 5. Low Reynolds Flows 6. Bernoulli’s Equation Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs

Transcript of Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013...

Page 1: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

1

Fluid Mechanics Theory I

Today’s Contents:1. Introduction to Fluids2. Gas and Liquid Flows3. Governing Equations for Gas and Liquid Flows4. Boundary Conditions5. Low Reynolds Flows6. Bernoulli’s Equation

Last Class:1. Introduction2. MicroTAS or Lab on a Chip3. Microfluidics Length Scale4. Fundamentals5. Different Aspects of Microfluidcs

Page 2: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

2

Introduction to Fluids

Flowing fluids can be characterized by the properties of both the fluid and the flow. These can be organized into four main categories:

• Kinematic properties such as linear and angular velocity, vorticity, acceleration, and strain rate;

• Transport properties such as viscosity, thermal conductivity, and diffusivity;• Thermodynamic properties such as pressure, temperature, and density;• Miscellaneous properties such as surface tension, vapor pressure, and surface accommodation coefficients.

Page 3: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

3

Intermolecular Forces

No interactions

Attraction

Equilibrium

Repulsion

http://chemwiki.ucdavis.edu/

Page 4: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

4

Lennard‐Jones Potential Model

σ is the characteristic length scale

ε

Repulsion Attraction (Van Der Waals)

Page 5: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

5

Three States of Matter

As the solid is heated up to and beyond its melting temperature, the average molecular thermal energy becomes high enough that the molecules are able to vibrate freely from one set of neighbors to another. The material is then called a liquid. The molecules of a liquid are still relatively close together (still approximately σ). 

If the temperature of the liquid is raised, the vibration of the molecules increases still further. Eventually, the amplitude of vibration is great enough that, at the boiling temperature, the molecules jump energetically away from each other and assume a mean spacing of approximately 10σ (at standard conditions). The material is now called a gas.

Page 6: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

6

Fluid : Gas Flow and Liquid Flow

Page 7: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

7

Fluid Modeling Family Tree

Page 8: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

8

Continuum Assumptions

mass of a single molecule

the number ofmolecules

length scaleA rule of thumb for discontinuity

Page 9: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

9

Continuum Fluid Mechanics at Small Scale

COM

COLM

COE

General Governing Equations

Page 10: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

10

Gas Flow : Kinetic Gas Theory

where p is the pressure, is the density of the gas, R is the specific gasconstant for the gas being evaluated, n is the number density of the gas, K isBoltzmann’s constant (K = 1.3805×10−23 J/K), and T is the absolutetemperature. Using the second form of the ideal gas law, it is possible tocalculate that at standard conditions (273.15K; 101, 625Pa), the numberdensity of any gas is n = 2.70×1025m−3

The equation for a dilute gas is the ideal gas law:

or

Page 11: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

11

Gases for which δ/d >> 1 are said to be dilute gases, while those notmeeting this condition are said to be dense gases. For dilute gases, the mostcommon mode of intermolecular interaction is binary collisions.Simultaneous multiple molecule collisions are unlikely. Practically, values ofδ/d greater than 7 are considered to be dilute.

Dilute Gas 

Mean free path (intermolecular spacing) 

Molecular diameter

Page 12: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

12

In addition to these parameters, there are several dimensionless groups of parameters that are very important in assessing the state of a fluid in motion. These are the Mach number Ma, the Knudsen number Kn, and the Reynolds number Re. The Mach number is the ratio between the flow velocity u and the speed of sound cs, and is given by:

Dimensionless Numbers : Mach #

The Mach number is a measure of the compressibility of a gas and can be thought of as the ratio of inertial forces to elastic forces. Flows for which Ma < 1 are called subsonic and flows for which Ma > 1 are called supersonic. When Ma = 1, the flow is said to be sonic.

Page 13: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

13

The Knudsen number has tremendous importance in gas dynamics. It provides a measure of how rarefied a flow is, or how low the density is, relative to the length scale of the flow. The Knudsen number is given by:

where  is the mean free path given in and L is some length scale characteristic of the flow.

Dimensionless Numbers : Knudsen #

Page 14: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

14

Kundsen Number Regimes (for gas)

Page 15: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

15

The physical significance of the Reynolds number is that it is a measure of the ratio between inertial forces and viscous forces in a particular flow, which is given by:

where u is some velocity characteristic of the flow, L a length scale characteristic of the flow,  is the density,  is the dynamic viscosity, and  is the kinematic viscosity. The different regimes of behavior are:

Dimensionless Numbers : Reynolds #

In channel flow, the actual numbers turn out to be Re<2300 for laminar flow and Re> 4100 for turbulent flow.

Page 16: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

16

Dimensionless Numbers : Stokes #In experimental fluid dynamics, the Stokes number (St) is a measure of flow tracer fidelity in particle image velocimetry (PIV) experiments where very small particles are entrained in turbulent flows and optically observed to determine the speed and direction of fluid movement. for St>>1, particles will detach from a flow especially where the flow decelerates abruptly. For St<<1, particles follow fluid streamlines closely. If St<<0.1, tracing accuracy errors are below 1%

Where τp is the particle response time, and τf is the fluid response time.

St>>1St<<1

crashed!

Page 17: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

17

Dimensionless Numbers : Prandtle #The Prandtl number Pr is a dimensionless number; the ratio of momentumdiffusivity (kinematic viscosity) to thermal diffusivity.

where ν is kinematic viscosity, and α is thermal diffusivity.

Page 18: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

18

Dimensionless Numbers : Peclet #

Pe = τd/τa= U/lD

Where τa is the hydrodynamic transport time, τd is the molecular diffusion time, l is the characteristic scale and D is the diffusion coefficient.

A dimensionless number relevant in the study of transport phenomena in fluid flows. It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate gradient.

Page 19: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

19

Dimensionless Numbers : Womersley #Womersley number (α) is a dimensionless number in biofluid mechanics. It is adimensionless expression of the pulsatile flow frequency in relation to viscouseffects. The Womersley number is important in keeping dynamic similarity whenscaling an experiment.

where R is an appropriate length scale (for example the radius of a pipe), ω is the angular frequency of the oscillations, and ν is the kinematic viscosity

Page 20: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

20

Dimensionless Numbers : Dean #Dean number is a dimensionless group in fluid mechanics, which occurs in the study of flow in curved pipes and channels.

where ρ is the density of the fluid, μ is the dynamic viscosity, V is the axial velocityscale D is the diameter, R is the radius of curvature of the path of the channel.

Page 21: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

21

Example: Gas Flow CalculationCalculate all the significant parameters to describe a flow of diatomic nitrogen N2 at 350K and 200 kPa at a speed of 100 m/s through a channel measuring 10 μm in diameter.

Page 22: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

22

Example: Gas Flow Calculation

Page 23: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

23

Liquid Fluid : Governing EqsWhen considering the flow of an incompressible, Newtonian, isotropic fluid, the previous equations can be simplified considerably to:

Assuming that the flow remains at a constant temperature. The energy equationcan be eliminated altogether (or at least decoupled from conservation of mass andmomentum), and the conservation of mass and momentum equations can besimplified to:

Page 24: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

24

Boundary Conditions

Page 25: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

25

Boundary Conditions (Cont.)

Page 26: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

26

BCs for Gas Flows

Page 27: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

27

Gases Flowing Through Channels

Page 28: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

28

BCs for Liquid Flows

Page 29: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

29

BCs for Liquid Flows (Cont.)

Page 30: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

30

Parallel Flows

Page 31: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

31

Analytical Solutions of Liquid Flows:Circular Cross Section

Page 32: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

32

Analytical Solutions of Liquid Flows:Rectangular Cross Section

Page 33: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

33

Analytical Solutions of Liquid Flows:Rectangular Cross Section

Page 34: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

34

Clearly, there are several shapes missing from this list that can be significant in microfluidics, as well as many others that the reader may chance to encounter less frequently. Two examples of these shapes are the trapezoidal cross section created by anisotropic wet etches in silicon, and the rectangular cross section with rounded corners often created by isotropic wet etches of amorphous materials. One method for approximating the flows through these geometries is using a concept known as the hydraulic diameter Dh. The hydraulic diameter is given by:

Hydraulic Diameter

Page 35: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

35

Example: Hydraulic Diameter Calculations of Different Geometries

Page 36: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

36

Example: (Cont.)

Page 37: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

37

Low Reynolds Number FlowsMany microfluidic devices operate in regimes where the flow moves slowly—at least by macroscopic standards. To determine whether a flow is slowrelative to its length scale, we need to scale the original dimensionalvariables to determine their relative size. Consider a flow in some geometrywhose characteristic size is represented by D and average velocity u. We canscale the spatial coordinates with D and the velocity field with u according tothe relations

with the inverse scaling:

Page 38: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

38

Assuming an isothermal flow of a Newtonian, isotropic fluid, the conservation of mass and momentum equations can be simplified to:

substitute Into the above equation

Dimensionless Forms

Inverse of Froude #

Page 39: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

39

If the Reynolds number is very small, Re << 1, the entire left side of the last equation becomes negligible, leaving only:

Dimensionless Forms (Cont.)

The equation is linear.

If the pressure gradient is increased by some constant factor A, the entire flow field is increased by the same factor; that is, the velocity at every point in the flow is multiplied by A.

Time does not appear explicitly in the equation. Consequently, low Reynolds number flows are completely reversible (except for diffusion effects that are not included in the equation).

Page 40: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

40

To get an idea of what kind of systems might exhibit low Reynolds behavior, it is useful to perform a sample calculation. A typical biomedical microdevice might exhibit the following behavior:

Fluid properties similar to water:  = 103 kg/m3

Length scale: 10 μm = 10−5 mVelocity scale: 1 mm/s = 10−3 m/sThen: Re = 10−2

Clearly low Reynolds number behavior.

As another example, consider the flow in a microchannel heat exchanger:Fluid properties similar to water: μ = 103 kg/m3Length scale: 100 μm = 10−4mVelocity scale: 10 m/sThen: Re = 103

Clearly not low Reynolds number behavior—borderline turbulent behavior

Examples

Page 41: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

41

Since the geometry through which the flow is happening is independent ofthe z position, it might be tempting to consider the flow to be twodimensional. However, the aspect ratio (ratio between the height of channelsand the lateral feature size) is usually near 1, meaning that the flow mustdefinitely be considered three‐dimensional. One example where thissituation can be important is in considering the entrance length effect.

Entrance Effects

For macroscopic flows where the Reynolds number is usually assumed to be relatively high, the entrance length Le can be accurately predicted by:

Page 42: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

42

small‐scale systems often exhibit low Reynolds number behavior. As the Reynolds number tends towards zero, the entrance length also tends towards zero, in disagreement with low Reynolds number experiments. A better expression for low Reynolds numbers is given by:

Entrance Effects

Experiment is much shorter than the prediction!!

Page 43: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

43

Bernoulli’s Equation

y1

y2

x1

x2 p2

A2

A1 v1

v2

p1

X

Y

time 1

time 2

m

m

for any point along a steady flow or streamline

p + ½  v2 +  g y = constant

KE of bulk motion of fluid

PE for location of fluid

Pressure energy density arising from internal forces within moving fluid (similar to energy stored in a spring)

Page 44: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

Mass element mmoves from (1) to (2)

m =    A1 x1 =   A2 x2 =  V where V =  A1 x1 = A2 x2

Equation of continuity A V = constant

A1 v1 =  A2 v2 A1 > A2 v1 < v2

Since v1 < v2 the mass element has been accelerated by the net force

F1 – F2 =  p1 A1 – p2 A2

Conservation of energy

A pressurized fluid must contain energy by the virtue that work must be done to establish the pressure.A fluid that undergoes a pressure change undergoes an energy change.

Derivation of BE

Page 45: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

K = ½ m v22 ‐ ½ m v12 = ½  V v22 ‐ ½  V v12

U =  m g y2 –m g y1 =   V g y2 =  V g y1

Wnet =  F1 x1 – F2 x2 =  p1 A1 x1 – p2 A2 x2

Wnet =  p1 V – p2 V =  K + U

p1 V – p2 V = ½  V v22 ‐ ½  V v12 +  V g y2 ‐ V g y1

Rearranging

p1 + ½  v12 +  g y1 =  p2 + ½  v22 +  g y2

Notice: applies only to an ideal fluid (zero viscosity)

Derivation of BE (Cont.)

Page 46: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

high speedlow pressure

force

force

What happens when two ships or trucks pass alongside each other?Have you noticed this effect in driving across the Sydney Harbour Bridge?

Page 47: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

artery

External forces causesartery to collapse

Flow speeds up at constrictionPressure is lowerInternal force acting on artery wall is reduced

Arteriosclerosis and vascular flutter

Page 48: Fluid Mechanics Theory I - myweb.ncku.edu.twmyweb.ncku.edu.tw/~oswaldchuang/Courses/FY2013 Spring/Microfluidics... · Fluid Mechanics Theory I Today’s Contents: 1. Introduction

Ideal fluid

Real fluid