flow resistant

download flow resistant

of 29

Transcript of flow resistant

  • 8/16/2019 flow resistant

    1/29

    Flow Resistance, Channel

    Gradient, and Hydraulic Geometry1. Flow Resistance

    – Uniformity and steadiness, turbulence,

    boundary layers, bed shear stress, velocity2. Lon itudinal !rofiles

    – Channel radient, downstream finin

    ". Hydraulic Geometry – General tendencies for e#$onents, techni%ue

    for stream a in

  • 8/16/2019 flow resistant

    2/29

    Flow Resistance &%uations• Che'y (1)*+

    • -annin (1 +

    • /arcy0 eisbach( 3 units

    RS C u =

    nS Ru

    2132

    =

    f gRS u 82 =

    channelsfor wide2

    d d w

    d w R

    ≈+⋅

    =

  • 8/16/2019 flow resistant

    3/29

    (4ulien, 2552• 6y assumin a rou hness coefficient, u can be determined• Use an in$ut $arameters for numerical models

    Resistance Coefficients

  • 8/16/2019 flow resistant

    4/29

  • 8/16/2019 flow resistant

    5/29

    ". Lon itudinal !rofiles

    8utline• Controls on channel radient•

    /ownstream variations in dischar e, bedslo$e, and bed te#ture (downstreamfinin

    • /ownstream finin ↔ channel concavity

  • 8/16/2019 flow resistant

    6/29

    (9ni hton, 1++

    :ma'on River

    Rhine River

    Lon itudinal6ed !rofile

  • 8/16/2019 flow resistant

    7/29

    (9ni hton, 1++

    River 6ollin ;i el Cree<

    River =owy Lon itudinal6ed !rofile

  • 8/16/2019 flow resistant

    8/29

    Controls on Gradient (1•

    -ac 0 Conce$t of a raded stream? 8ver a$eriod of time, slo$e is delicately ad7usted to $rovide,with available dischar e and channel characteristics, 7ustthe velocity re%uired to trans$ort the load su$$lied

    • Rubey (1+@2 ? for a constant wA d , S ∝ Q s , M (si'e of bedmaterial load , 1A Q

    31

    2

    2

    = d QW DQ

    k S s s

  • 8/16/2019 flow resistant

    9/29

    Controls on Gradient (2•

    Leo$old and -addoc< (1+@" ? S ∝ 1AQ

    Lane (1+@@ ? $anded conce$t of raded stream

    • Hac< (1+@) ? S ∝ D@5

    , 1A AD

    93.0to25.0; −−== z tQS z

    6.0

    50006.0

    =

    D A D

    S

    50 DQQS s∝

  • 8/16/2019 flow resistant

    10/29

    Lon itudinal Bariations in Q, S , and 6ed =e#ture, - River

    >D 0"D 0"D

  • 8/16/2019 flow resistant

    11/29

    /ownstream Finin

    - River

    :llt /ubhai

  • 8/16/2019 flow resistant

    12/29

    /ownstream Finin

    12.0to0006.0;0 == − α α Le D DD5 initial rain si'e, L downstream distance, α sortin or abrasion coefficient

    • ternber abrasion e%uation• :brasion E mechanical brea

  • 8/16/2019 flow resistant

    13/29

    For -ississi$$i River /ata

    Q B (cfs S D B (mm d (m τ (!aU 2*5 5.5"@ 2)5 5.>12>/ 2,5)5,5555.5555 5.1* 1" 15∆

    >D 0"D 0"D 1D 01D

    d c Q f , f I 5." to 5.>S t Q ' , ' I 05.*@τ ρ gdSτ ∝ ds , τ ∝ (Q f (Q '

    τ ∝ J n, where n 05.2@ to 05."@ :ssumin τ 0 I τ cmax → downstream finin

  • 8/16/2019 flow resistant

    14/29

    1/ ner &%uation

    ( ) ( ) E C u xq

    xQ

    t h

    p b sb s −+∂

    ∂−=∂∂−=∂

    ∂−1Chan e in bed

    hei ht with timeChan e in totalload with distance

    Chan e in bedload with distance

    with ainAloss to sus$ended loadas modulated by rain settlinvelocity

    • Bolume trans$ort rates• Can be written for sediment mi#tures and multi$le

    dimensions• $atial radients in Q s due to s$atial radients in τ • lo$e ad7ustment, and downstream finin , can be

    brou ht on by a radation and de radation

  • 8/16/2019 flow resistant

    15/29

    / Finin ↔ !rofile ConcavityK

    • -odelin su ests the time0scale for sortin$rocesses to $roduce downstream finin isshorter than the timescale for bed slo$ead7ustment

    • Fluvial systems ad7ust their bed te#ture inres$onse to s$atial variations in shear stressand sediment su$$ly

  • 8/16/2019 flow resistant

    16/29

  • 8/16/2019 flow resistant

    17/29

    Hydraulic Geometry•

    Q is the dominant inde$endent $arameter, andthat de$endent $arameters are related to Q viasim$le $ower functions

    • :$$lied Mat0a0stationN and MdownstreamN

    b

    aQw = f

    cQd = m

    kQu =

    ( )( )( )m f b kQcQaQud wQ =××=

    1=++ m f b 1=×× k ca

  • 8/16/2019 flow resistant

    18/29

    (Richards, 1+ 2

    DS

    /eterminin hydraulic eometry

  • 8/16/2019 flow resistant

    19/29

    (Leo$old, olman, and -iller, 1+*>

    :t0a0station

    u ar Cree

  • 8/16/2019 flow resistant

    20/29

    (-orisawa, 1+ @

    /ownstreamSame flow frequency

  • 8/16/2019 flow resistant

    21/29

    (9ni hton, 1++

    :t0a0station

    m f band

    m b f b 505.2

    f 5."05.@m 5."05.@

  • 8/16/2019 flow resistant

    22/29

    (9ni hton, 1++

    /ownstream

    b f m bI5.@, fI5.>, mI5.1

  • 8/16/2019 flow resistant

    23/29

    Hydraulic Geometry• :t0a0station? rectan ular channels

    increase in dischar e is MaccommodatedNby increasin flow de$th and flow velocity

    • /ownstream? increase in dischar e isMaccommodatedN by increasin flow widthand de$th

  • 8/16/2019 flow resistant

    24/29

    Hydraulic Geometry as a =ool• Used in stream channel desi n• 3dentification of unstable stream corridors

    and unstable stream systems• Conce$t of channel e%uilibrium

  • 8/16/2019 flow resistant

    25/29

    :dditional Considerations• Channel eometry also controlled by

    – Grain si'e and bed com$osition – ediment trans$ort rate (bed mobility and rou hness –

    6an< stren th, as assessed by silt0clay content – Be etationOdifferent e#$onents de$endin u$on

    $resence and ty$e• Curved channels and non0linear trends

    (com$ound channels• !ools P rifflesOdifferent e#$onents

  • 8/16/2019 flow resistant

    26/29

    :dditional Considerations

    de$th

    velocity

    width

    (Richards, 1+ 2

  • 8/16/2019 flow resistant

    27/29

    Ri ht 6enchmar<(loo d For d 5.)@ m, avera e of 5.2 d and 5. d

    d 1 d 2 d "

    Q 2 Q " Q n 1

    w n 1 ,d n 1 ,v n 1

    /ischar e determination?/ischar e width × de$th × velocityQ w × d × v

    Q Q 1 Q 2 Q " Q n+1

    w n,d n,v n

    Q n

    =y$ical tream /ischar e /etermination

  • 8/16/2019 flow resistant

    28/29

  • 8/16/2019 flow resistant

    29/29

    Conclusions• Flow velocity can be determined by assumin

    a friction coefficient• /ownstream variations in channel radient,

    bed te#ture, and bed shear stress des$iteincreases in dischar e and total sediment load• Hydraulic eometry assumes dischar e is the

    $rimary inde$endent $arameter • Hydraulic eometry of river channels shows

    world0wide tendencies very $owerful MtoolN• : techni%ue for a in streams is $resented