Flexible Stainless Steel Substrates for Vehicle Displays · PDF fileFlexible Stainless Steel...

27
1 Flexible Stainless Steel Substrates for Displays V. Cannella, M. Izu, and S. Jones Energy Conversion Devices S. Wagner and I-C. Cheng Princeton University

Transcript of Flexible Stainless Steel Substrates for Vehicle Displays · PDF fileFlexible Stainless Steel...

1

Flexible Stainless Steel Substrates for Displays

V. Cannella, M. Izu, and S. Jones Energy Conversion Devices

S. Wagner and I-C. ChengPrinceton University

2

Background

Substantial recent efforts to develop flexible displays and microelectronics

various military displayswearable displays, direct view screens, curved dashboard displays, rollaway displays

Heavy focus on plastic substratesPET, polycarbonate (PC), PEN, and polyimide (Kapton)Thin, light, flexible, transparent, conformable,Roll-to-roll processing compatible

3

Problems with Plastic Substrates

Limited process temperature ranges (<<300 C) limits TFT devices processes and backplane performance

Poor dimensional stability with varying process temperatures, stress, and relative humidity

limits pattern resolution for multi-step photolithographyvery difficult to make high resolution display circuits

Permeable to diffusion of oxygen & water vapor major problem for OLEDs displays that degrade even in low levels of oxygen & waterrequire complex and costly multilayer barrier coatings to limit diffusion to less than 10-5 gm/cm2/day.

4

Attractive Alternative -Stainless Steel Substrates

For flexible emissive or reflective displays where transparency is not required

Stainless Steel (SS) <5 mils thick, 125 µmprovides a durable flexible substrate tolerates high temperature processesmuch better dimensional stability than plasticperfect diffusion barrier to oxygen & water vaporproven device compatibilityroll-to-roll manufacturing compatibility

5

Stainless Steel SubstratesStable up to 1000 °C

Allow high quality a-Si and gate insulator (>300 °C )Allow growth of large grain poly-Si (500-900 °C)

Perfect Diffusion BarrierImpermeable to oxygen or water vapor

Not degraded by UV, ozone or organic solvents Dimensional stability much better than plastic

Much higher elastic modulusLower coefficient of thermal expansionZero coefficient of hydrolytic expansionNegligible mechanical hysteresisAllows excellent multi-photostep microprocessing

resolutions comparable to Corning 1737 glassResistant to curling due to stress in films

a problem that needs special control with plastic

6

Comparison of SS & Flexible Other Substrates

Thickness (µm) 100 100 100

Weight g/m2) 800 120 220

Safe bending radius (cm) 4 4 40

RTR processable? yes likely unlikely

Visually transparent? no some yes

Max process temp (ºC) 1000 180, 300 600

TCE (ppm/ºC) 10 16 5

Elastic Modulus (GPa) 200 5 70Permeable O2, H2O? no yes no

Coeff Hydrolytic Exp (ppm/%RH) none 11, 11 none

Pre-bake required? no yes maybe

Planarization necessary? yes maybe no

Buffer layer necessary? yes yes maybe

Electrical conductivity high none none

Thermal conductivity (W/m·ºC) 16 0.1-0.2 1Plastic encapsulation substrate thickness for TFTs in neutral plane 8x 1x 5xDeform after device fabrication no yes no

PropertyStainless-

Steel GlassPlastics

(PEN, PI)

7

TFT Circuits on SS Well Proven

Both a-Si and poly-Si display circuits on SS substrates demonstrated on R&D scale

High quality poly-Si TFTs on flexible SiO2 coated SSby Wu et.al. (Princeton) at 600-950°C

µe >greater than 60 cm2/V-spoly-Si AMOLEDs on SS demonstrated

by Afentakis et. al. (Lehigh)a-Si AMOLEDs on SS demonstrated

by Wu et.al. (Princeton)by Troccoli et. al. (Lehigh) with 2-TFT & 4-TFT arrays

a-Si active matrix EPD on SS by E-Inkdemonstrated product prototypes

8

Flexible Large-scale SS Substrates in Semiconductor Manufacturing

SS well established as semiconductor substrateLarge area photovoltaic (PV) modules - up to 16 ft2

Both a-Si & CIGS (Copper Indium Gallium Diselenide)

United-Solar Ovonic photovoltaic products on flexible stainless steel

5-mil flexible SS substrate forPV semiconductor devices

9

Roll-to-Roll Ovonic PV Manufacturing Line

ECD subsidiary United Solar Ovonicmanufactures triple-junction a-SiGe solar cells on 5 mil SS

nine semiconductor layers, ~ 1µm totalroll-to-roll manufacturing processessimultaneous processing on six 1.5-mile-long SS rolls

300 ft-long roll-to-roll PV manufacturing line on SS substrates

10

Program Scope

Initial development phase for flexible SS substrates

Integrate ECD SS substrate expertise with work at Princeton to planarize, passivate SS, build TFTsDevelop processes for 6” x 6” substrates Characterize substrates Demonstrate a-Si TFT compatibilityProvide sample substrates to USDC team to verify compatibility with OLED and a-Si backplanes

Anticipated follow-up – Scale up to larger areasProcesses compatible with roll-to-roll processing

11

Specific SS Substrate Issues - Planarization

Vendor A Sample 500X Vendor B Sample 500X

Bare SS substrates have rougher surfaces than glass or plasticSS foils come with rolling mill marks that have sharp profiles

can cause device degradation or failureSteel foils must either be polished or planarized with a film

for production we planarize with a spin-on-glass-type layer

12

Bare SS Smoothness Parameters Ra of SS Substrates for Various Vendors

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14 16 18

Sample Number

Ra

(mic

rom

eter

s)

Vendor 2

Vendor 3

Vendor 6

Ry Rz Ra Rq V2 Average 0.2626 0.1654 0.0378 0.0513 V3 Average 0.0551 0.0381 0.0085 0.0111 V6 Average 0.1939 0.1281 0.0291 0.0393

Ra- Av. roughness

Ry- max change peak-to-valley

Rz- ten-point roughness height

Rq- rms roughness

13

Planarization and Passivation LayersOLEDs require surface roughness < 5-nm rmsPlanarization available layers - organic, inorganic or a mix

Higher organic % allows thicker crack-free filmOrganic % impose temperature limit for later processes

We used planarization thicknesses 1.5 µ and 2.5 µ------------------------------------------------------------------------------

Passivation layer for SS substrates provides:electrical insulation adhesion to the subsequent device layers barrier against process chemicals.

SiNx is standard insulator in a-Si TFTsalso an excellent diffusion barrier

SiO2 has lower dielectric constantreduced capacitive coupling to substrate

14

Schematic cross section (not to scale) of a passivated back-channel a-Si TFT and three

substrates types: (a) glass, (b) plastic,(c) stainless steel

substrate

n+ a-Si:H

Cr

SiNx

i a-Si:HSiNx

(c) stainless steel

passivation planarization

(a) glass

passivation

(b) plastic

passivation

passivation

Specific SS Issues – Electrical Isolation

SS substrates are electrically conductive:

must be coated to provide excellent electrical insulationvideo scan rates require low capacitive coupling of device to substrate

These requirements can be met by combining :

planarization layer followed by electrically insulating capping layer

15

Planarization & Passivation Materials for Various Subsequent Processes

Subsequent Device Process

methyl siloxane silicatespin-on-

glassspin-on-

glasslow temperature process <250°C √ √ √ > 0.2 µm > 0.2 µm

conventional a-Si:H TFT <400°C √ √ > 0.2 µm > 0.2 µm

conventional poly-Si TFT process

>450°C √ > 0.2 µm

laser-annealing √ √ √ > 0.2 µm*

Planarization Layer Passivation Layer

organic polymer

deposited SiO2

deposited SiNx

16

Planarized & Passivated SS Substrate Type A

Without metal With metal

17

Planarized & Passivated SS Substrate Type B

Without metal With metal

18

050603-03 (1.5 µm + SiOx + Mo) 050603-12 (2.5 µm + SiOx + Mo)

Typical Inclusion Defects

19

SS Substrate Sample SmoothnessSample Planarization

ThicknessSiOx Mo Slide # Graph TypMag. X-res. Y-res. Baseline ∆h ∆h (peak)

050603-03 1.5 µm 200 nm N/A 5 optical low

(no Mo region) 6 optical high7 profilometry 0.4 µm 10 µm √ < 100 nm8 profilometry ~ 273 nm

050603-03 1.5 µm 200 nm 100 nm 10 optical low

(Mo region) 11 optical high12 profilometry 0.4 µm 10 µm √ < 80 nm13 profilometry ~ 51 nm14 profilometry ~ 193 nm15 profilometry 2 µm ~ 212 nm

050603-12 2.5 µm 200 nm N/A 18 optical low

(no Mo region) 19 optical high20 profilometry 0.4 µm 10 µm √ < 40 nm21 profilometry 2 µm ~ 38 nm

050603-12 2.5 µm 200 nm 100 23 optical low

(Mo region) nm 24 optical high25 optical high26 profilometry 0.4 µm 10 µm √ < 35 nm27 profilometry ~ 63 nm28 profilometry ~ 69 nm29 profilometry ~ 1030 nm30 profilometry 2 µm ~ 60 nm

20

SS Substrate Smoothness SummaryOptical micrograph of sample without Mo:

looks rough but actual surface is smoothimage reflects the surface roughness of the steel substratedifficult to locate the defects (image interfered by the substrate roughness)

Baseline area surface is very smooth surface roughness (peak-to-peak) over 300 µm square:

050603-03 (w/ Mo) 1.5 µm < 80 nmRa (AFM) ~ 5 -10 nm

050603-12 (w/ Mo) 2.5 µm < 35 nmRa (AFM) < 5 nm

Defect types:050603-03 1.5 µm point defects050603-12 2.5 µm point defects & line defects

21

Electrical Isolation

050603_04 Formatted Map 050603_05 Formatted Map 050603_06 Formatted Map

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 676195 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

1.7E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 397955 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

050603_07 Formatted Map 050603_08 Formatted Map 050603_09 Formatted Map

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1.3E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5720048 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 285024 2.6E+07 5.1E+07 5.1E+07 5.1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 2.6E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5147940 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 2.6E+07 1.7E+07 1.3E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1.3E+07 1E+07 1.3E+07 1.3E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1E+07 1.3E+07 1E+07 1E+07 1E+07 8580587 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1.3E+07 1E+07 1.3E+07 1E+07 1E+07 1.3E+07 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1E+07 1E+07 3959716 1E+07 8580587 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07

5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 5.1E+07 1E+07 1E+07 1E+07 1E+07 1.7E+07 1.7E+07 1.7E+07 1.7E+07 1.7E+07 1.7E+07 1.7E+07 1.7E+07

Electrical Resistance measurements on 3mm x 3mm MIM squares

Green=high resistance, Yellow=partial shunting, Red=short

22

pF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 246

2 226

3 221

4 221

5 225 221 222 217 222

6 218 214 212 208 215

7 221

8 222 220

9 255 226 231 241 218 222 221 222 220 215 213 220 221 222 223 230

10 218

11 223 220 219 214 217

12 226 224 222 212 214

13 235

14 222

15 221

16 284 284 288

Capacitance (pF) of 3mm x 3mm MIM squaresSample 050603-07 2.5µ Planarization

23

TFT Compatibility

To verify TFT compatibility we fabricated common gate TFT structures SS substrates proved compatible with all a-Si processes

300 C processes for a-Si, Si3N4, SiO2, plasma etching, etc.

Substrate planarity compatible with 4 µm photopatterningOnly one common gate device out of 20 showed shuntingEastman Kodak Company and Princeton University also collaborated to fabricate a-Si TFTs on these stainless steel substrates

device performance was similar to TFTs made on glass

24

Commercial Availability & EconomicsSS foil is currently available commercially with a surface finish compatible with planarization layers at <$10/m2

< equivalent polyimide, ~ same as high quality PENProduction planarization will use high utilization coating processes (not “spin-on”)SS substrates need only one PECVD insulator coatMaterials cost for planarization & passivation ~ $20/m2

Planarized passivated SS substrates will be economically attractive vs. plastic substrates

Plastic substrates for OLEDs require multilayer barrier coatings estimated to cost >$50/m2

25

Outlook for Flexible SS SubstratesPlanarized & passivated SS substrates can provide functional substrates for flexible electronics & displaysSS is attractive vs. plastics for flexible displays:

thermal stability compatible with both a-Si & poly-Si TFTsexcellent mechanical stability for multi-photostep processingperfect barrier against diffusion of O2 & H2O more rugged and robust than plastics, suited to applications that require mechanical strength, flexibility, & resiliencechemical stability to organic solvents, to UV radiation, and ozone

Active matrix circuits on SS substrates are provenboth a-Si and high-temperature poly-Si TFTs

Planarized passivated SS will be economically very attractive compared to plastic with barrier layers

26

Program ResultsInitial P&P processes developedBaseline smoothness is very promising, <5nm

Work to eliminated inclusions must be continued

Compatibility with TFT processes verifiedPlanarized & passivated SS substrates delivered to team

For processing with OLEDs and backplanes

Next program phase will include scale-up to larger areas

27

Acknowledgements

USDC and ARL for partial funding of this workDave Beglau and Bud Dotter who did all the hands-on work for this program