Finite-Element Electrical Machine Simulation · 2021. 1. 31. · mrtrt, rt rt mmm rtrt, rt rt mmm...

40
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de Dr.-Ing. Herbert De Gersem Institut für Theorie Elektromagnetischer Felder Lecture Series Finite-Element Electrical Machine Simulation in the framework of the DFG Research Group 575 „High Frequency Parasitic Effects in Inverter-Fed Electrical Drives” http://www.ew.e-technik.tu-darmstadt.de/FOR575 Dr.-Ing. Herbert De Gersem summer semester 2006 Institut für Theorie Elektromagnetischer Felder

Transcript of Finite-Element Electrical Machine Simulation · 2021. 1. 31. · mrtrt, rt rt mmm rtrt, rt rt mmm...

  • Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    In

    stitu

    t für

    The

    orie

    Ele

    ktro

    mag

    netis

    cher

    Fel

    der

    Lecture Series

    Finite-Element Electrical Machine Simulation

    in the framework of the DFG Research Group 575„High Frequency Parasitic Effectsin Inverter-Fed Electrical Drives”

    http://www.ew.e-technik.tu-darmstadt.de/FOR575

    Dr.-Ing. Herbert De Gersemsummer semester 2006

    Institut für Theorie Elektromagnetischer Felder

  • 2

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    V08:Modelling and Simulation of

    Induction Machines

  • 3

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 4

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLiterature

    [1] S. Williamson, "Induction motor modelling using finite elements", ICEM 1994, Paris, 5-8 Sept, 1994, Vol. 1, pp. 1-8.

    [2] E. Vassent, G. Meunier, J.C. Sabonnadiere, "Simulation of induction machine operation using complex magnetodynamic finite elements", IEEE Trans. Magn., Vol. 25, No. 4, 1989, pp. 3064-3066.

    [3] A. Arkkio, "Finite element analysis of cage induction motors fed by static frequency convertors", IEEE Trans. Magn., Vol. 2, No. 2, 1990, pp. 551-554.

    [4] D. Dolinar, R. De Weerdt, R. Belmans, E.M. Freeman, "Calculation of two-axis induction motor model parameters using finite elements", IEEE Trans. Energy Conversion, Vol. 12, No. 2, June 1997, pp. 133-140.

  • 8

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 9

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rEquivalent Scheme

    statorresistance

    rotorresistance

    XR1

    U_ 1I_1

    R2'1σX

    h1X

    I_ 0

    2σ'

    I_ 2'

    RFe

    I RFe_ (1-s)

    sR2'______I_µ

    rotor leakage inductance

    slip

    stator leakage inductance

    main inductance

    additionallosses

    transformation

    C.P. Steinmetz, "The alternating current induction motor", Trans. Am. Inst. Elect. Eng., 1897, pp. 185-217.

  • 10

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled Inductance Model

    U

    V

    W

    1

    2

    3

    r

    r

    r

    iiiiii

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    i

    st

    st

    st

    rt

    rt

    rt

    RR

    RR

    RR

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    R

    U

    V

    W000

    uuu

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    u

    ( )ddt

    = +u Ri Li

    ( )

    ( )

    ( )

    ( )

    st stst st, m m m

    st stst st, m m m

    st stst st, m m m

    m m

    2 2cos cos cos2 2 3 3

    2 2cos cos cos2 2 3 3

    2 2cos cos cos2 2 3 3

    2cos cos3

    p p p

    p p p

    p p p

    p p

    σ

    σ

    σ

    ⎛ ⎞ ⎛ ⎞+ − − θ θ+ π θ− π⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ⎛ ⎞ ⎛ ⎞− + − θ− π θ θ+ π⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞− − + θ+ π θ− π θ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=

    θ θ − πL

    l ll l l l l

    l ll l l l l

    l ll l l l l

    l l

    ( )

    ( )

    rt rtm rt rt,

    rt rtm m m rt rt,

    rt rtm m m rt rt,

    2cos3 2 2

    2 2cos cos cos3 3 2 22 2cos cos cos3 3 2 2

    p

    p p p

    p p p

    σ

    σ

    σ

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥θ + π + − −⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥θ + π θ θ− π − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥

    ⎛ ⎞ ⎛ ⎞⎢ ⎥θ − π θ+ π θ − − +⎜ ⎟ ⎜ ⎟⎢⎢ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    l ll l l

    l ll l l l l

    l ll l l l l

    ⎥⎥

    st st,σ+l lst2

    −l

    rt rt,σ+l l rt2−l

    ( )m cos pθl m2cos3

    p⎛ ⎞θ + π⎜ ⎟⎝ ⎠

    l

    =L

  • 11

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rd-q-Axis Model

    coupled inductance model

    Park transformation

    a U

    b V

    0 W

    1 112 2

    2 3 303 2 2

    2 2 22 2 2

    i ii ii i

    ⎡ ⎤− −⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦

    d d d d d

    q q q q q

    00

    u R i L M idu R i M L idt

    ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

    R.H. Park, "Two reaction theory of electrical machines, generalised method of analysis, part 1", AIEE Trans., Vol.48, July1929, pp. 716-727.

  • 12

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rRequired FE Software

    linea

    r

    exte

    rnal

    ci

    rcui

    t

    mot

    ion

    static

    2D time-harmonic

    transient

    static

    3D time-harmonic

    transient

    X

    X X

    X

    X

    X

    X

    X

    X

    X X Xno

    nlin

    ear

    X

    X

    X

    X

    X

    X

  • 13

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 14

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Operation (1)

    XR1

    U_ 1I_1

    R2'1σX

    h1X

    I_ 0

    2σ'

    I_ 2'

    RFe

    I RFe_ (1-s)

    sR2'______I_µ

    0s = 21 sR

    s−′ = ∞

    1 FeR R

  • 15

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Operation (2)

    R1 X

    X hE

    I 0

    U0,line3

    P03

    RFe

    compute stator resistance analytically1R

    1Xσneglect with respect to h1X

  • 16

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Operation (3)

    simulation features• static simulation should be

    sufficient• nonlinear simulation

    expected phenomena• no induced currents in the

    rotor bars• ferromagnetic saturation

    simulation approach• 2D magnetostatic simulation:• nonlinear BH-characteristic

    (+ adaptive mesh refinement for achieving a sufficient resolution)

    • instantaneous current distribution in the stator windings

    ( )A J∇× ν∇× =r r

  • 17

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Model (1)

    electric boundary conditions

    periodic boundary conditions

    region labels

    2 of 4 polesto be modelled

    48 stator slots58 rotor slots

    GeometryBoundary conditions

  • 18

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Model (2)

    Materials

    0µ = µ0µ = µ( )Bµ = µ

    air :Cu :Fe :

    0 2000 4000 6000 8000 100000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8B-H characteristic

    Magnetic field H (A/m)

    Mag

    netic

    indu

    ctio

    n B

    (T)

  • 19

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Model (3)

    U+ eff 2i U=

    V+ eff1 22

    i U= −

    W+ eff1 22

    i U= −

    U- eff 2i U= −

    V- eff1 22

    i U=

    W- eff1 22

    i U=

    Excitations

    V+ V+ V+

    V+

    V+

    V+V+

    V+

    U- U-U-

    U-

    W-

    W-

    W-

    W-

    U+tr

    V+tr

    W+tr

    + winding functions

    U-tr

    V-tr

    W-tr

    6

    1q q

    qJ t i

    == ∑

    r rexcitation current

  • 20

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Results (1)

    real time instant

    imaginary time instant

  • 21

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Results (2)

    R1 X

    X hE

    I 0

    U0,line3

    P03

    RFe

    compute flux linked to e.g. phase U:

    U+ U-

    U U+ U-d dA t A tΩ Ω

    ψ = ⋅ Ω − ⋅ Ω∫ ∫r rr r

    Uh1 U

    UX j L j

    = ω = ω

  • 22

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Results (3)

    R1 X

    X hE

    I 0

    U0,line3

    P03

    RFe

    compute hysteresis losses by the Steinmetz formula2

    hyst hyst hyst 50 Hz 1 T

    Bfp k⎛ ⎞⎜ ⎟= σ⎜ ⎟⎝ ⎠

    r

    integrate for the stator iron (not for the rotor)

    effFe

    hyst

    3UR

    P=

    hyst

    hyst hyst zP p dΩ

    = Ω∫ l resistance

  • 23

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rNo-Load Results (4)

    ( )

    ( )

    ( )

    ( )

    st stst st, m m m

    st stst st, m m m

    st stst st, m m m

    m m

    2 2cos cos cos2 2 3 3

    2 2cos cos cos2 2 3 3

    2 2cos cos cos2 2 3 3

    2cos cos3

    p p p

    p p p

    p p p

    p p

    σ

    σ

    σ

    ⎛ ⎞ ⎛ ⎞+ − − θ θ+ π θ− π⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    ⎛ ⎞ ⎛ ⎞− + − θ− π θ θ+ π⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞− − + θ+ π θ− π θ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=

    θ θ − πL

    l ll l l l l

    l ll l l l l

    l ll l l l l

    l l

    ( )

    ( )

    rt rtm rt rt,

    rt rtm m m rt rt,

    rt rtm m m rt rt,

    2cos3 2 2

    2 2cos cos cos3 3 2 22 2cos cos cos3 3 2 2

    p

    p p p

    p p p

    σ

    σ

    σ

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥θ + π + − −⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥θ + π θ θ− π − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥

    ⎛ ⎞ ⎛ ⎞⎢ ⎥θ − π θ+ π θ − − +⎜ ⎟ ⎜ ⎟⎢⎢ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    l ll l l

    l ll l l l l

    l ll l l l l

    ⎥⎥

    st st,σ+l lst2

    −l

    rt rt,σ+l l rt2−l

    ( )m cos pθl m2cos3

    p⎛ ⎞θ + π⎜ ⎟⎝ ⎠

    l

    =L

    • define "three-phase system" at the rotor sideby linear combination of rotor bar winding functions

    • excite 1 phase of the system (either rotor or stator)

    • compute fluxes linked to all phases

    • mutual inductance

    • permutations for other phases• multiply by cos(pθ) to introduce motion

    dy

    y x yA tΩ

    ψ = ⋅ Ω∫r r

    yyx

    xM

    =

  • 24

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 25

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Operation (2)

    21 0sR

    s−′ =1s =

    XR1

    U_ 1I_1

    R2'1σX

    h1X

    I_ 0

    2σ'

    I_ 2'

    RFe

    I RFe_ (1-s)

    sR2'______I_µ

  • 26

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Operation (2)

    R1 X 1σ R'2Xσ2'

    Rk Xk

    I kPk3

    Uk,line3

  • 27

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Operation (3)

    expected phenomena• induced currents in the rotor bars• ferromagnetic saturation

    (especially for closed rotor slots)• currents in e.g. rotor ring

    simulation features• time-harmonic simulation• nonlinear simulation

    (effective saturation characteristic)

    • external circuit coupling

    simulation approach• 2D time-harmonic simulation:• effective BH-characteristic

    (+ adaptive mesh refinement for achieving a sufficient resolution in the air gap and in wedges)

    • current or voltage excitation of the stator through external circuit

    • possible source of discrepancy with measurements:measurements : under lower voltage (nominal current)simulation : possibly under nominal voltage

    ( )A j A J∇× ν∇× + ωσ =r r r

  • 28

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Model (1)

    Effective material charactistic

    0µ = µ0µ = µ

    ( )eff Bµ = µair :Cu :Fe :

    0 2000 4000 6000 8000 100000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8B-H characteristic

    Magnetic field H (A/m)

    Mag

    netic

    indu

    ctio

    n B

    (T)

    ( ) ( ) { }( )2*eff eff eff eff eff0

    1 1 1 Re 22 2

    Tj tB B B B B e dt

    Tωµ = µ∫

  • 29

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Model (2)

    field-circuit coupling

    z

    x

    end-windingsend-rings

    y

  • 30

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Model (3)

    when an even number of poles are modelled

    U+

    2D FE

    ...

    U-

    V+

    V-

    W-

    W+

    1

    2

    29

    Rbar

    Rring

    Rbar

    R3D X3DuU

    uV

    uW

    part of the stator windingsin the magnetic model

    part of the rotor barsin the magnetic model

    part of the rotor barsoutside the magnetic model

    end windings

    rotor ring

  • 32

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Model (4)

    external circuit parameters

    3DR linear, analytical computation

    3DX linear, analyticalor 3D FE computation

    barR frequency and temperturedependent, analytical or 2D linear time-harmonic FE computation

    ringR frequency and temperturedependent, analytical or 3D linear time-harmonic FE computation

    picture: PhD Ronny Mertens

  • 33

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Model (5)

    multi-slice technique

    slice 1

    slice 2

    slice 3

    i4

    i4

    i4

    picture: PhD Ronny Mertens

  • 34

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Results (1)

    real time instant

    imaginary time instant

  • 35

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rShort-Circuit Results (2)

    R1 X 1σ R'2Xσ2'

    effU avI

    120 120U V W

    av 3

    j jI I e I eI

    ° − °+ +=simulation result:

    ( )1 2 1 2 aveffU R R jX jX Iσ σ′= + + +

    11

    2 2

    XRR X

    σ

    σ=

  • 36

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 37

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLoad Operation (1)

    expected phenomena• induced currents in the rotor bars• ferromagnetic saturation

    (especially for closed rotor slots)• currents in e.g. rotor ring

    simulation features• time-harmonic simulation• nonlinear simulation

    (effective saturation characteristic)

    • external circuit coupling• slip frequency at the rotor• torque computation

    simulation approach• 2D time-harmonic simulation:• effective BH-characteristic• current or voltage excitation of the stator through external circuit• impedance of the rotor circuit scaled by s !!

    ( )A j s A J∇× ν∇× + ω σ =r r r

  • 38

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLoad Results (1)

    0 500 1000 15000

    0.5

    1

    1.5

    2x 104

    speed (rpm)

    torq

    ue (N

    m)

  • 39

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    literature overview

    induction machine modelsequivalent schemecoupled inductance modeld-q-model

    computation of stationary operation (equivalent scheme)no-load operationshort-circuit operationload operation

    computation of dynamic operation

  • 40

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTransient Simulation (1)

    mechanical equation of motion

    explicit time-stepping scheme

    e.g. moving-band techniquefor implementing rotor displacement

    LM TTtC

    tJ −=θ+θ

    dd

    dd

    2

    2

    ( ) 11 1 −− ω∆α−+ω∆α+θ=θ nnnn tt

  • 41

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTransient Results (1)

    4

    stationary charactistic3

    torq

    ue/ n

    omin

    al to

    rque 2

    1

    0

    -1

    -2

    -3

    -4

    0 0.2 0.4 0.6 0.8 1 1.2

    speed / nominal speed

    picture: PhD Ronny Mertens

  • 42

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTransient Results (2)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2 2.5 3Tijd [s]

    Snel

    heid

    / no

    min

    ale

    waa

    rde

    MetingSimulatie

    time (s)

    measurementsimulation

    spee

    d / n

    omin

    al sp

    eed

    picture: PhD Ronny Mertens

  • 43

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTransient Results (3)

    -4-3-2-101234

    0 0.5 1 1.5 2 2.5 3Tijd [s]

    Lijn

    stro

    om /

    nom

    inal

    e w

    aard

    e

    SimulatieMeting

    measurementsimulation

    time (s)

    line

    curr

    ent/

    nom

    inal

    line

    cur

    rent

    picture: PhD Ronny Mertens

  • Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    In

    stitu

    t für

    The

    orie

    Ele

    ktro

    mag

    netis

    cher

    Fel

    der

    Lecture Series

    Finite-Element Electrical Machine Simulation

    http://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : THURSDAY, July 13th 2006

    V09: Modelling of hysteresis

    Dr.-Ing. Herbert De Gersemsummer semester 2006

    Institut für Theorie Elektromagnetischer Felder

    Lecture SeriesFinite-Element Electrical Machine Simulationin the framework of the DFG Research Group 575„High Frequency PV08:Modelling and Simulation of Induction MachinesOverviewLiteratureOverviewOverviewOverviewOverviewOverviewLecture SeriesFinite-Element Electrical Machine Simulationhttp://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : T