DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E...

120
Eduardo ETS de Ingenieros de Cam UPC, Ba Madrid, 21 de No DINÁMICA DE GRAND 57 th Rankin (TRIGGERING AND MO 1 1 E. Alonso minos, Canales y Puertos arcelona oviembre de 2017 DES DESLIZAMIENTOS ne Lecture OTION OF LANDSLIDES)

Transcript of DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E...

Page 1: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Eduardo E.

ETS de Ingenieros de Caminos, Canales y PuertosUPC, Barcelona

Madrid, 21 de Noviembre de

DINÁMICA DE GRANDES DESLIZAMIENTOS

57th Rankine

(TRIGGERING AND MOTION OF

111

Eduardo E. Alonso

ETS de Ingenieros de Caminos, Canales y PuertosUPC, Barcelona

Madrid, 21 de Noviembre de 2017

DINÁMICA DE GRANDES DESLIZAMIENTOS

Rankine Lecture

AND MOTION OF LANDSLIDES)

Page 2: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

4th Rankine

A. W. Skempton

39th Rankine

S. Leroueil

“Long-term

Residual Factor:

“Natural slopes and cuts

Creep, fatigue, weathering

post-failure…

Rankine Lecture, 1964

Rankine Lecture, 1999

term stability of clay slopes”

Residual Factor: p mob

p r

R−

=−

τ τ

τ τ

cuts: movement and failure mechanism

weathering, infiltration, progressive failure

Page 3: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

PampaneiraPampaneira, Granada

Page 4: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Pampaneira

penstock

Pampaneira

Page 5: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Pampaneira

Page 6: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Expected evolution of slope displacements

Will the “creeping” motion evolve towards failure

How long will the penstock survive?

How to protect it?

Pampaneira

evolution of slope displacements?

Will the “creeping” motion evolve towards failure?

How long will the penstock survive?

Page 7: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Cortes Landslide, Valencia

Page 8: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Cortes

Page 9: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Cortes

Page 10: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Aznalcóllar

failure

(Sevilla)

April 25th, 1998

Page 11: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

AznalcóllarCentral zone of

Why 40 - 50 m of run

OC brittle

Central zone of failure

50 m of run-out?

(Moya, 2000)

brittle clay

Page 12: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

“Since the analytical and numerical methods available at

present do not usually provide reliable predictions of the

deformation of a natural slope,

limit states should be avoided by one of the following:

— limiting the mobilised shear strength

— observing the movements and

or stop them, if necessary”

Section 11 Overall stability

11.6 Serviceability limit state design

Eurocode 7. November 2004, 2017

the analytical and numerical methods available at

present do not usually provide reliable predictions of the

deformation of a natural slope, the occurrence of serviceability

limit states should be avoided by one of the following:

shear strength;

observing the movements and specifying actions to reduce

11.6 Serviceability limit state design

2004, 2017

Page 13: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Questions :

IN CASE OF INSTABILITY

- How big?

- How far?

- How fast?

IN CASE OF INSTABILITY

Page 14: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Contents

1. Creeping landslides

2. Fast landslides

3. Transition from creeping to fast motion

4. Continuum analysis. MPM

5. First time slides

6. THM analysis of landslides

Contents

Transition from creeping to fast motion

Continuum analysis. MPM

THM analysis of landslides

Page 15: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

1. Creeping landslides1. Creeping landslides

St Moritz inclined tower. Courtesy of A. Puz

Page 16: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

1 1,σ ε′

3 3,σ ε′

Laboratory

creeping tests

Toyoura sand(Murayama et al, 1984)

Creeping landslides sandMurayama et al, 1984)

San Francisco bay mud(Lacerda, 1976)

(Kuhn & Mitchell, 1993)

Page 17: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Assembly of 1002

circular disksKuhn & Mitchell, 1993)

Assembly of 3421

spheres(Kwok & Bolton, 2010)

Creeping landslides

Velocity dependent

contact friction

Page 18: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

• Local contacts deform following a rate process (Arrhenius)

• Velocity of shear deformation of contacts:

E : energy bar

at a shearing rate velocity

decreases the velocity increases

Rate effects on frictionCreeping landslides

c cA A=σ σ

c cA A=τ τc

c

τ σσ

Local contacts deform following a rate process (Arrhenius)

Velocity of shear deformation of contacts: 1exp( / )v v E RT= −

barrier required to set the contact bonds

at a shearing rate velocity . If the energy barrier

decreases the velocity increases

c iA a=∑

Rate effects on friction

v

Page 19: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Stress is understood as the energy per unit of volume and the

product: τc × “Active volume of contact bonds (

the energy associated with τc

1 cE E= − ΩτAccept:

Combining equations:

Empirical equation based on friction tests on rock contacts:

f f Aτ

= = + ψ +σ

Basic friction“State”

(healing,

Creeping landslides

= +

Ω Ω τ σ

Stress is understood as the energy per unit of volume and the

“Active volume of contact bonds (Ω)” is a measure of

Empirical equation based on friction tests on rock contacts:

*

*

lnv

f f Av

= = + ψ + (Dieterich,1979;

Ruina,1983)

“State”

(healing, ..)Rate effects

(Rice et al, 2001)1

1

lnc c

E RT v

v

= +

Ω Ω σ σ

Page 20: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Dynamic equilibrium of a

creeping planar landslide

2

dsin

d

cos cos 0

tan

w w

vW T M

t

W N h

T N

β − =

′β − − γ β =

′= φ

0tan tanφ = φ +

Creeping landslides

1 dtan 1 tan

d

w wh v

D g t

γ β − − φ = γ

ln for

0 for

v ref

ref

v ref

vf A v v

v

f v v

= >

= ≤0 vfφ = φ +

Page 21: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

A landslide creeping

scenario

Creeping

landslides

A=0

Page 22: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Model response

Rate effects

Creeping landslides

1mm/s

response

No rate effects

Page 23: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

0

6.5º

15.5 m

7.8º

D

β =

=

φ =

Vallcebre

Recorded variation of

ground water level

hw: Variable

Creeping landslides

100m

Vallcebre Landslide, Pyrenees

(Corominas et al, 2011)

Page 24: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Creeping landslides Vallcebre

(Scoppettuolo, 2016), 2016)

Page 25: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Rate effects on friction provide a basic explanation

of creeping behaviour at different scales

What happens if the shearing rate increases, say

above 1mm/s?

Creeping landslides

Rate effects on friction provide a basic explanation

at different scales

What happens if the shearing rate increases, say

Creeping landslides

Page 26: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

2. Fast landslides

Vajont landslide

(Valdés y Díaz

Caneja, 1964)

Page 27: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Collected cases

of landslide

evolution

Fast landslides

100 m

Page 28: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Rotary shear tests. v = 0.1 Fast landslides

(Di Toro et al, 2011) Nature

= 0.1 – 2.6 m/s. 300 tests reviewed

Page 29: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

1400 watts thermal pulse applied during 40 secondsSaturated specimens before heating

A laboratory heating experiment in a microwave oven

Opalinus clay: soft clayey rock

(K =10-12 to 10-13 m/s; n= 4%-12%)

Fast landslides

1400 watts thermal pulse applied during 40 secondsSaturated specimens before heating

heating experiment in a microwave oven

A porous stone

Page 30: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

After heating

Fast landslides

A laboratory heating experiment in a microwave oven

Opalinus clay: soft clayey rock

(K =10-12 to 10-13 m/s; n= 4%-12%)

After heating (Tests performed by J. Pineda

heating experiment in a microwave oven

A porous stone

Page 31: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Recorded

temperature

during

experiments

Fast landslides

Page 32: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Thermal volumetric strains

Pore pressure generation

Fast landslides Thermal volumetric strains

generation:

ww

vol ww

ss

vol ss

dVd d

V

dVd d

V

ε = − = −β θ

ε = − = −β θ

Page 33: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Habib (1967)PioneeringRomero & Molina (1974)

Voigt & Faust (1982) Deformation concentrates

band. Mass, energy and

formulated. One dimensional

and pore water pressure

Vardoulakis (2000, 2002)

Veveakis et al (2007)

Vardoulakis & Veveakis (2010)

Goren & Aharonov (2007)

Goren & Aharonov (2009)

Pinyol & Alonso (2010a)

Pinyol & Alonso (2010b)

Goren et al (2010)

Cecinato et al (2011)

Cecinato & Zervos (2012)

al (2015)

Pioneering contributions Planar

Vertical slices

concentrates in a saturated shear

and momentum balances

dimensional model for heat

pressure dissipation

Planar

Slip circle

Planar

Planar

Planar

Planar

Two interacting wed

Evolving geometr

Planar

Planar and slip circ

Planar

Page 34: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Fast landslides

Page 35: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Equations to be solved

Upper block (shear band)

Lower block (shear band)

o Solid +

INSIDE

o Solid

Overall equilibrium o Dynamic

interacting

Fast landslides

o Solid +

INSIDE

o Solid

Solid + water balance + heat generation

INSIDE shear band

Solid + water balance OUTSIDE shear band

Dynamic equilibrium of two

interacting wedges

(1

(2

(3

(4

(5

Solid + water balance + heat generation

INSIDE shear band

Solid + water balance OUTSIDE shear band

UpperUpper

Lower

Page 36: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Scaled Vajont (x1/10). Effect of shear band Fast

landslides

2e = 2.5 mm

Run out: 50 m

Effect of shear band permeability

Page 37: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Fast landslides

Shear band thickness: 0 mm to 10 mm

Maximum

velocity. Effect

of permeability

Two

wedges

Shear band thickness: 0 mm to 10 mm

Page 38: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Unsafe

Fast landslides

Shear band thickness: 0 mm to 10 mm

Maximum

velocity. Effect

of permeability Planar

Two

wedges

Unsafe

Safe

Shear band thickness: 0 mm to 10 mm

Page 39: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Fast landslides

2e = 50cm

Maximum

velocity. Effect

of permeability

Shear band thickness: 0 mm to 10 mm

UnsafePlanar

Two

wedges

Shear band thickness: 0 mm to 10 mm

Unsafe

Safe

Page 40: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Thermal pressurization of water explains high

velocity

Controlling variables:

Landslide geometry (planar; interacting wedges..)

Shear band permeability

Shear band thickness (but limited effect for 2e

from 0 to 10 mm)

Fast landslides in clayey materials

Thermal pressurization of water explains high

Landslide geometry (planar; interacting wedges..)

Shear band permeability

Shear band thickness (but limited effect for 2e

Fast landslides in clayey materials

Page 41: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

3. Transition

from creeping

to fast motion

Canillo giganticgigantic creeping landslide. Andorra

Page 42: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

External

“loading”

Landslide velocity increases

Friction increases (rate effects)

Heat generated in shear band

Pore water pressure increases

and dissipates

Changes in landslide geometry

Equilibrium?YES

New creeping velocity

Creep - Fast

Time

Landslide velocity increases

Friction increases (rate effects)

Heat generated in shear band

Pore water pressure increases

and dissipates

in landslide geometry

Equilibrium?NO

Thermal feedback mechanism

∆u: ++ “Blow-up”

Page 43: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Balance equations (water+energy

Inside shear band

Outside shear band

Dynamic equilibrium

Basic THM formulation

Creep - Fast

β

v

D

z

2e

0tan tan

ln for

0 for

v

v ref

ref

v ref

f

vf A v v

v

f v v

φ = φ +

= >

= ≤

water+energy)

Friction law

+

hw

Page 44: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Dimensionless formulation

ˆz

zD

=

ˆt gD

tD

=

( )( )

0

,ˆ ˆˆ,

z tz t

θθ =

θ

( )(

ˆˆ ˆ,w

w

u z tu z t

gD=

ρ

( )( )

ˆˆv t

v tgD

=

Coordinate

Time

Temperature

Excess pwp

Sliding velocity

Creep - Fast Dimensionless formulation

),u z t

gD

β

v

D

h

z

2e

Page 45: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Dimensionless coefficients

( )m

c D gD

ΓΘ =

ρ

( )

2

0

( )

2m

D gD

c e

ρ=

ρ θ

0soil

soilm gD

β θ=

ρ

w soil

K

m D gD=

γ

Thermal dissipation: combines thermal conduction, heat

storage, a reference dimension and a reference

Ratio between the kinetic energy of the moving mass

and the initial heat stored in the shear band (30

Ratio of the thermal e

with respect to its mechanical compressibility (0.1

“Consolidation coefficient”: confined compressibility and the sliding depth

Creep - Fast Dimensionless coefficients

Thermal dissipation: combines thermal conduction, heat

storage, a reference dimension and a reference velocity (fixed

Ratio between the kinetic energy of the moving mass

and the initial heat stored in the shear band (30 - 1800)

al expansion of the saturated porous mediu

with respect to its mechanical compressibility (0.1 - 10)

“Consolidation coefficient”: combines permeability,

confined compressibility and the sliding depth (10-12 – 10-1)

(Alonso, Zervos & Pinyol, 2015)

Page 46: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

=25m

0 =11.05m

= 9.8°

= 12°

2e = 2.5mm

mv = 1.5·10-9 Pa-1

K = 10-9 m/s

θ0 = 10 °C

A = 0.014

vref = 10-5 m/s

Rate effects

on friction

Creep - FastAn illustrative example

2e

Rate effects

on friction

An illustrative example

Page 47: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Velocity

Creep - FastSlope

Friction angle

response

Page 48: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Slope

Temperature

Creep - Fastresponse

Excess pore pressure

Page 49: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

The relevance

w soil

K

m D gD=

γ

Creep - Fast

345

1

Ψ =

Π =

of rate effects

Page 50: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Creep-THM Creep - Fast

Planar

slide

Time for blow

THM creep

THM interactions

blow-up and rate effects

creep velocity

Page 51: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Creep - Fast

Planar

slide

Creep-THM

Time for blow

THM creep

THM interactions

blow-up and rate effects

creep velocity

Page 52: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Creep - Fast

Planar

slide

Creep-THM

Time for blow

THM creep

THM interactions

blow-up and rate effects

creep velocity

Page 53: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Transition creeping

Highly non-linear interactions (and numerical difficulties)

Blow-up conditions are very sensitive to strain rate effects

Increasing strain rate effects on friction

permeability between slow-fast

Thermal effects enhance creeping velocity

If blow-up conditions develop, rate effects and landslide

geometry become irrelevant

Transition creeping – fast motion

linear interactions (and numerical difficulties)

conditions are very sensitive to strain rate effects

Increasing strain rate effects on friction reduces the threshold

fast regimes

Thermal effects enhance creeping velocity

up conditions develop, rate effects and landslide

Page 54: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

4. Continuum

analysis

(MPM)Vajont. Del Ventisette et al. (2015)

Page 55: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Numerical Methods

Finite Element (FEM)

Finite Difference (FDM)

Arbitrary Lagrangian

Coupled Eulerian

Material Point Method (MPM)

Smooth Particle Hydrodynamics (SPH)

Particle Finite Element Method (PFEM)

FEM + Lagrangian integration points (FEMLIP)

Element-free

for Landslide analysis

Finite Element (FEM)

Finite Difference (FDM)

Lagrangian-Eulerian (ALE)

Coupled Eulerian-Lagrangian (CEL)

Point Method (MPM)

Smooth Particle Hydrodynamics (SPH)

Particle Finite Element Method (PFEM)

integration points (FEMLIP)

free Galerkin (EFG)

Page 56: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

It is a continuum method. Constitutive

Incorporates FE methodologies

Statics + Dynamics + large deformations

Background mesh facilitates application of boundary

conditions

“Multiple layer” formulation

to be solved (solid-water interactions;

external erosion; flow through preferential

MPM in landslide analysisMPM

Constitutive equations

FE methodologies

deformations

Background mesh facilitates application of boundary

tions open the class of problems

water interactions; internal and

through preferential paths)

MPM in landslide analysis

Soga et al. (201

Page 57: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Three-Phase MPM

Phase MPM

Page 58: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Sulsky et al.

(1994)

Zabala & Alonso

Jassim et al. (2013)

Bandara

Abe et al. (2014)

One phaseDry

Two phasesSaturated

Single

layer

Multiple

layer

MPM

& Alonso (2011)

et al. (2013)

Bandara (2013)

Abe et al. (2014)

Yerro et al. (2015)

?

phasesSaturated

Three phasesUnsaturated

Soli

Liqu

Air

Page 59: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

1) Dynamic equilibrium Liquid

2) Dynamic equilibrium Gas

3) Dynamic equilibrium Mixture

4) Mass balance Solid

5) Mass balance Water

6) Mass balance Air

7) Constitutive equations

Governing equations

l l l l s lρ ρv v v b&

g g g g s gρ ρ= ∇ − − +v v v b&

(1s s l l l g g g mρ ρ ρ ρ− + + = ∇ ⋅ +

( w w w w

g g g l l l g lS n S nt

ω ρ ω ρ∂

+ + ∇⋅ + =∂

( a a a a

g g g l l l g lS n S nt

ω ρ ω ρ∂

+ + ∇⋅ + =∂

( )(1 ) (1 ) 0s s sn nt

ρ ρ∂

− + ∇ ⋅ − =∂

MPM Governing equations

( )l ll l l l s l

l

nSp

k

µρ ρ= ∇ − − +v v v b&

( )g g

g g g g s g

g

nSp

k

µρ ρ= ∇ − − +v v v b

)1s s l l l g g g mn nS nSρ ρ ρ ρ− + + = ∇ ⋅ +v v v σ b& & &

) ( ) 0w w w w

g g g l l l g lS n S nω ρ ω ρ+ + ∇⋅ + =j j

) ( ) 0a a a a

g g g l l l g lS n S nω ρ ω ρ+ + ∇⋅ + =j j

( )(1 ) (1 ) 0s s sn nρ ρ− + ∇ ⋅ − =v

( ), ,s l gv v v formulation

Page 60: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

5. First time

slides

Sabadell slide

Page 61: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time AznalcóllarAznalcóllar dam failure

Page 62: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time.

AznalcóllarModel domain and and construction stages

Page 63: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Brittle clay. Strain Softening Mohr

( )' ' ' 'peq

r p rc c c c e−ηε

= + −

( )' ' ' 'peq

r p r e−ηε

ϕ = ϕ + ϕ − ϕ

Softening

rules

Yield

function'cos ' 'sin 'q c p= ϕ + ϕ

' , 'r pc c

' , 'r pϕ ϕp

eqε

η

First time

residual and peak effective cohesion

residual and peak effective friction angle

deviatoric plastic strain

shape factor

Softening Mohr-Coulomb

peq−ηε

peq−ηε

cohesion

residual and peak effective friction angle

Page 64: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Modelling foundationFirst time.

Aznalcóllar

1m x 1m

cell

foundation clay

(Zabala & Alonso, 20

Page 65: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Equivalent plastic deviatoric strainstrain contours (1% - 5%). K0=1

Page 66: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Equivalent plastic deviatoric strainstrain contours (1% - 5%). K0=1

Page 67: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Equivalent plastic deviatoric strainstrain contours (1% - 5%). K0=1

Page 68: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

(Courtesy of J. M. Rodríguez Ortiz

First time.

Aznalcóllar

Courtesy of J. M. Rodríguez Ortiz)

Page 69: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Run-

Rigid body motion

The total displacement allows calibration of the model

Unknown aspects (velocity, acceleration) may be derived

First time. Aznalcóllar-out

calibration of the model

Unknown aspects (velocity, acceleration) may be derived

(Alonso & Gens, 2011)

Page 70: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

MPM analysis 6 years later. Geometry and mesh

First time. Aznalcóllar

years later. Geometry and mesh

Page 71: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Long alluvial terrace

Short alluvial terrace

Page 72: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

0 0.5

Shear strain

Long alluvial terrace

Short alluvial terrace

Time: 3 s

Page 73: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Time: 10 s0 0.5

Shear strain

Long alluvial terrace

Short alluvial terrace

Page 74: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

0 0.

Shear strain

Page 75: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Page 76: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Aznalcóllar

Level of tailings

Page 77: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Failure of

Selborne

experimental

slope

First time. Selborne

(Cooper, 1996; Cooper et al, 1998)

Page 78: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

0 m

-4.0

-9

-17.0

Soliflucted deposits

Upper weathered Gault Clay

Lower weathered Gault

Unweathered Gault Clay

Lower Greensand

First time. Selborne

Recharge zone

2:1 slopeClay

Clay

Clay

Recharge wells (20)

Page 79: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Geotechnical parameters

based on published

laboratory testing(Cooper et al, 1998)

∆pl = 110 kPa

15 m

18 m 18 m

First time. Selborne

Parameter

Effective

cohesion

Effective

friction

18 m 20 m

6 m

Weathered Gault Clay

Unweathered Gault Clay

Parameter Weathered Unweathered

Effective

cohesion

13/4.7 kPa

(peak/residual)

25/1 kPa

Effective

friction24.5°/13.5° 26°/15°

Page 80: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Instability process

First time. Selborne

Instability process

Page 81: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Progressive failureFirst time. Selborne

Progressive failure

(Cooper, 1996)

Page 82: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

* / failuret t t=

Page 83: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 84: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

0.845

Page 85: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 86: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 87: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 88: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 89: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

First time. Selborne

Page 90: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Instability

process

First time. Selborne

Page 91: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Instability

process

First time. Selborne

Page 92: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Surface movementsFirst time. Selborne

Field data by

Grant (1996)

Surface movements

Page 93: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Accelerated motion starts when last point in

shear band reaches peak

Kinematics are well captured by MPM modelling

Static and dynamic behaviour can be explained

by a single set of constitutive parameters

First time failures (Aznalcóllar

motion starts when last point in

shear band reaches peak strength

Kinematics are well captured by MPM modelling

and dynamic behaviour can be explained

by a single set of constitutive parameters

Aznalcóllar, Selborne)

(?)

Page 94: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

6. THM analysis

of landslides

Alcántara-Ayala, 2008

San Juan de Grijalva

Ayala, 2008

San Juan de Grijalva landslide, Mexico

Page 95: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Add Energy Balance equation

[ ] [ ]( ) ( )m w w m S

Dc c c H

Dtρ θ + ⋅ −Γ θ + ⋅ ρ θ + ρ θ =∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

Stored heat Heat

conduction

(: :p pH p′= = −σ ε σ m ε& & &

THM

equation to HM formulation

[ ]( ) ( )m w w m S

c c c Hρ θ + ⋅ −Γ θ + ⋅ ρ θ + ρ θ =q v &∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

Convective heat transfer

Supplied energy

): :L

p pH p= = −σ ε σ m ε& &

Page 96: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

φ’ = 28°

c’ = 2 kPa

13 m

10 m

0.5 m

0.5 m

THM

kPa 1 kPa (failure)

13 m8 m

6 m

4 m

Page 97: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

13 m

10 m

0.25 m

0.25 m

THM

φ’ = 28°

c’ = 2 kPa

13 m8 m

6 m

4 m

kPa 1 kPa (failure)

Page 98: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

13 m

10 m

0.125 m

0.125 m

THM

φ’ = 28°

c’ = 2 kPa

13 m8 m

6 m

4 m

kPa 1 kPa (failure)

Page 99: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

0.5 m

0.5 m

0.25 m

0.25 m

0.125 m

0.125 m

K = 10-11 m/s

K = 10-11 m/s

K = 10-11 m/s

THM

0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5

∆Pore Pressure [kPa]

Page 100: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

0.5 m

0.5 m

0.25 m

0.25 m

0.125 m

0.125 m

K = 10-11 m/s

K = 10-11 m/s

K = 10-11 m/s

THM

0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5

Displacement [m]

Page 101: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

THM Embedded shear

Shear bands activate when

Strains localize in shear bands

Heat generates in shear bands

Dissipation processes (heat and

liquid pressure) between band

and matrix are formulated at loca

level

p

devε

shear bands

Page 102: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

THM Embedded shear

Reference

volumeLocal liquid flow rate:

( )B M B M

L L L Lf p p− = ψ −

Local heat flow rate:

( )B M B Mf −

θ θ= ψ θ − θ

shear bands

Page 103: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Energy Balance

Mass Balance of Liquid

Effective stress

( ) ( )M M

m w w m S

Dc c c

Dt ρ θ + ⋅ −Γ θ + ⋅ ρ θ + ρ θ = ψ θ − θ ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

(( )B B M B

m

Dc H

Dtθ

ρ θ = −ψ θ − θ +

MM B ML

m L S L L L L

D Dpn p p

Dt Dt β θ + α + ∇ ⋅ + ∇ ⋅ = ψ −

1B

B B MLm L L L L

L

D Dpn p p

Dt Dt β θ + α = − ψ − ρ

( )max ,B M

L Lp p= −′ mσ σ

L

THM Embedded shear

(( ) ( )M M M B M

m w w m Sc c c θ ρ θ + ⋅ −Γ θ + ⋅ ρ θ + ρ θ = ψ θ − θ q v∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

Local source

)B B M Bc Hρ θ = −ψ θ − θ + &

Supplied Energy

( )1M B M

m L S L L L L

L

n p pβ θ + α + ∇ ⋅ + ∇ ⋅ = ψ −ρ

v q

Local source term

( )1B B M

m L L L L

L

n p pβ θ + α = − ψ −ρ

m

( : )ref p

B

L

L′σ ε&

shear bands

Page 104: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Band thickness, LB= 1cm K = 10-11 m/s

K = 10-11 m/s

K = 10-11 m/s

0.5 m

0.5 m

0.25 m

0.25 m

0.125 m

0.125 m

THM

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

∆Pore Pressure in Bands [k

Page 105: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

K = 10-11 m/s

K = 10-11 m/s

K = 10-11 m/s

0.5 m

0.5 m

0.25 m

0.25 m

0.125 m

0.125 m

THM

Band thickness, LB= 1cm

0 1.4 2.8 4.2 5.6 7

0 1.4 2.8 4.2 5.6 7

0 1.4 2.8 4.2 5.6 7

Displacement [m]

Page 106: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

THM

Embedded shear bands. Effect of mesh size on runEmbedded shear bands. Effect of mesh size on run-out

Page 107: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

K = 10-11 m/s

THM

∆Temperature

Embedded Band thickness , LB= 1cm

0 4 8 12 16 20

[10-3 ºC]

Temperature in bands

Page 108: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

K = 10-3 m/s

No Heat

K = 10-5 m/s

Effect of

permeability on

run-out

THM

Band thickness, LB= 1cm

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

Displacements [m]

Page 109: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

K = 10-11 m/s

K = 10-9 m/s

K = 10-7 m/s

Effect of

permeability on

run-out

THM

Band thickness, LB= 1cm

Displacements [m]

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

Displacements [m]

Page 110: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

field evidence has clearly demonstrated

was characterized by a stepped pattern

and marly limestone strata, clay interbeds

THM. Vajont

demonstrated that the basal detachment surfa

pattern involving various materials (limeston

interbeds, clay lenses, angular gravel, etc.)”

(Simplified from Paronuzzi et al, 2013

Page 111: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Clay

(K=10-11 m/s)

Rock

(K=10-5 m/s)

Geometry

THM. Vajont

260 m

Rock

Water

(no strength, incompressible)

100 m

Geometry

260 m

Page 112: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Material properties

Hendron and Patton, 1985)

Rock

Porosity

Young modulus

Density

Poisson’s coefficient

Cohesion (peak

Friction angle

Residual friction of

clay layer

Embedded band thickness in clay, L

Embedded band thickness in rock, L

THM. Vajont

11′φ = o

Material properties

Rock Parameter Value

0.2

modulus 5000 MPa

2700 kg/m3

coefficient 0.33

peak/residual) 2800/200 kPa

angle (peak/residual) 43/34°

, LB = 2.5 cm

rock, LB = 5 cm

Page 113: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Run-

THM. Vajont

-out

Page 114: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

9 s after impoundment

Equivalent

plastic

shear strain

THM. Vajont Initial: self weight

40 s after impoundment

0 0.2 0.4

s after impoundment

0 0.025 0.05

Initial: self weight

0 1 2

40 s after impoundment

Page 115: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

THM. Vajont

The

motion

Page 116: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Pwp increment at t = 40s

THM. Vajont

Temperature increment at t = 40s

0 5 10at t = 40s

0 25 50

Temperature increment at t = 40s

(MPa)

(°C)

Page 117: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Main ideas

Rate effects on friction: a basic component of creep

Thermal effects are believed to be widespread

Blow-up conditions are mainly controlled by permeability

Subtle interaction between creep and fast sliding

Rate effects on friction reduce blow

Lagrangian-Eulerian methods offer a good promise

A novel procedure to include thermal effects in general

computational tools: embedded

Main ideas

Rate effects on friction: a basic component of creep

Thermal effects are believed to be widespread

up conditions are mainly controlled by permeability

Subtle interaction between creep and fast sliding

Rate effects on friction reduce blow-up risk

Eulerian methods offer a good promise

A novel procedure to include thermal effects in general

ded shear bands and local dissipation

Page 118: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Advancing current knowledge

Geotechnical description

Failure and post-failure observations

Understanding

Improved computational tools

Well documented failure events

Bon courage!

Advancing current knowledge

Geotechnical description before events

failure observations

Improved computational tools

Well documented failure events

Bon courage!

Page 119: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Acknowledgements

Dr. N. M. Pinyol, UPC

Dr. A. Yerro, UPC

Eng. M. Alvarado, UPC

Eng. M. Sondon, UPC

o Prof.

o Prof.

o Dr. A.

o Dr. A.

Prof. J. Corominas, UPC

Prof. A. Gens, UPC

Prof. J. Gili, UPC

Prof. A. Lloret, UPC

Dr. A. Ramon, UPC

o Prof.

o Dr. J. Moya,

o Prof.

o Prof.

o Prof.

MPM Research Community: Deltares

UPC, U of Padova, TU Delft, U of California Berkeley

Acknowledgements

. S. Olivella, UPC

Prof. F. Zabala, U. de S. Juan, Argentin

A. Zervos, U. of Southampton

A. Rohe, Deltares, Delft

Prof. E. Romero, UPC

J. Moya, UPC

Prof. A. Puzrin, ETH Zürich

Prof. L. Picarelli, U. Federico2. Napoli

Prof. L. Cascini, U. Salerno

Deltares, U of Cambridge, TU Hamburg

, TU Delft, U of California Berkeley

Page 120: DINÁMICA DE GRANDES DESLIZAMIENTOS · Ruina,1983)..) Rate effects 1 (Rice et al, 2001) 1 ln c c E RT v σ σ v. Dynamic equilibrium of a creeping planar landslide 2 d sin d cos cos

Thank

for your

you very much

your attention!