Figure 1.

59
Figure 1.

description

Figure 1. Figure 2. Figure 3. a2 [umoleCO2/m2/s/degC]. a 1 [umoleCO2/m2/s]. a 3 [umoleCO2/m2/s]. -a 3 /a 4 [umoleCO2/m2/s/umole-photon]. Figure 4. Model-0 parameter a 1 vs. mean T air. Early summer. 5. late spring. Mid-summer. 4. late summer. early spring. - PowerPoint PPT Presentation

Transcript of Figure 1.

Page 1: Figure 1.

Figure 1.

Page 2: Figure 1.

Figure 2.

Page 3: Figure 1.

23

45 a1

Model0 Parameters

0.0

00.0

50.1

00.1

50.2

00.2

5

a2

2 4 6 8Month

0.0

20.0

30.0

40.0

50.0

6-a3/a4

2 4 6 8Month

-30

-20

-10

0

a3

Figure 3a 1

[u

mol

eC

O2

/m2/

s]

a2 [

umol

eCO

2/m

2/s/

degC

]

a 3

[um

oleC

O2/

m2/

s]

-a3/a

4

[um

oleC

O2/

m2/

s/um

ole

-pho

ton]

Page 4: Figure 1.

Ta5mean [degC]

a 1 [

um

ole

CO

2/m

2/s]

Model-0 parameter a1 vs. mean Tair

Earlysummer

latespring

earlyspring

latefall

earlyfall

latesummer

Mid-summer

winter

0 5 10 15

23

45

Figure 4

Page 5: Figure 1.

SR = min{*PR, wcbot - sfc}

UR = min{PR - SR, wctop - und}

RO = PR - SR - UR

under layer Z = ZBOT

surface layer Z = ZTOP

Precipitation - Water Vapor Flux = Potential Recharge / Total Loss

ppt > Fh2o PR TL Fh2o > ppt

SL = min{TL*(sfcM) , sfc}

If und > und.thresh

UL = min{TL - SL , und}

Else

UL = buffer*(TL - SL)

wctop

wcbot

Figure 5

Page 6: Figure 1.

jul.92 jul.94 jul.96 jul.98 jul.00 jul.02

0.1

50

.20

0.2

50

.30

Figure.7a 1992-2003 Model predicted volumteric soil moisture for well-drained soil

jul.92 jul.94 jul.96 jul.98 jul.00 jul.02

0.0

60

.10

0.1

40

.18

Page 7: Figure 1.

jul.92 jul.94 jul.96 jul.98 jul.00 jul.02

0.1

50

.20

0.2

50

.30

Figure.7b 1992-2003 Model predicted volumteric soil moisture for poorly-drained soil

jul.92 jul.94 jul.96 jul.98 jul.00 jul.02

0.0

60

.10

0.1

40

.18

Page 8: Figure 1.

Ecological Year

NE

E [

Mg

C/h

a/y

ea

r]

1992 1994 1996 1998 2000 2002

-4-3

-2-1

Ecological Year Sums of NEE at Harvard ForestFigure 9

Page 9: Figure 1.

Ecological Year

NE

E [

Mg

C/h

a/y

ea

r]

1992 1994 1996 1998 2000 2002

-5-4

-3-2

-1Ecological Year Sums of NEE at Harvard Forest

nonlinearlook-updiurnal

Figure 10

Page 10: Figure 1.

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001ecological year

0.0

0.1

0.2

0.3

0.4

R2

Winter Ecosystem R - Temperature RelationshipR = a0 + a1*T

TairTsoil

DOY 1-90

Figure 11a

shawn urbanski
R2 for fit of hourly observed nighttime NEE vs Tair or Tsoil. Little difference using exponential model.
Page 11: Figure 1.

ecological year

R2

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Springtime Ecosystem R - Temperature RelationshipR = a0 + a1*T

TairTsoil

DOY 90-140

Figure 11b

Page 12: Figure 1.

1992 1993 1994 1995 1996 1997 1998 1999 2001 2002ecological year

0.0

0.1

0.2

0.3

0.4

R2

Summer Ecosystem R - Temperature RelationshipR = a0 + a1*T

TairTsoil

DOY 161-205

Figure 11c

Page 13: Figure 1.

calendar year

R2

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

0.0

0.1

0.2

0.3

0.4

0.5

Fall Ecosystem R - Temperature RelationshipR = a0 + a1*T

TairTsoil

DOY 300-350

Figure 11d

Page 14: Figure 1.

Ecological Year

R [

Mg

C/h

a/y

ea

r]

1992 1994 1996 1998 2000 2002

91

011

12

13

14

Ecological Year Sums of R at Harvard ForestDiurnal Time Integration Method

Tdepno Tdep

R(Tdep)/R(indep) = 1.059

Figure 12

Page 15: Figure 1.

Ecological Year

NE

E [

Mg

C/h

a/y

ea

r]

1992 1994 1996 1998 2000 2002

-8-6

-4-2

02

4FIG 14 - Seasonal NEE at Harvard Forest

ecoyear sumdormant seasongrowing season

Page 16: Figure 1.

Ecological Year

R/G

EE

[M

gC

/ha

/ye

ar]

1992 1994 1996 1998 2000 2002

10

12

14

16

FIG 15 - Ecoyear sums of R/GEE and total Above Ground Biomass

RGEEAGBM

100

104

108

112

[Mg

C/h

a]

Page 17: Figure 1.

0.0

0.2

0.4

0.6

0.8

1.0

hourseason

summerlatefall

winter earlyspring

latespring

early mid late earlyfall

R2

soilmoisture

phenology

Figure 19Statistical model R2 for hour and season time scales. Arrows and highlighted markers show the increase in model skill upon inclusion of phenology and soil moisture.

Page 18: Figure 1.

pred NEE

ob

s N

EE

-6 -4 -2 0 2 4 6 8

-6-4

-20

24

68

1992-2000 Model-0 vs. Observed DOY 101 - 130hour(5-day) time scale

R2 = 0.53RMSE = 1.17a0 = -0.03 +/- 0.05a1 = 0.97 +/- 0.03

pred NEE

obs

NE

E

-5 0 5 10 15 20

-50

510

1520

1992-2000 Model-0 vs. Observed DOY 341-100hour(5-day) time scale

R2 = 0RMSE = 1.24a0 = -0.72 +/- 0.41a1 = 1.59 +/- 0.33

pred NEE

ob

s N

EE

-2 0 2 4 6 8

-20

24

68

1992-2000 Model-0 vs. Observed DOY 301 - 340hour(5-day) time scale

R2 = 0.11RMSE = 1.16a0 = 0.18 +/- 0.12a1 = 0.94 +/- 0.06

pred NEE

ob

s N

EE

-20 -15 -10 -5 0 5 10

-20

-15

-10

-50

51

0

1992-2000 Model-0 vs. Observed DOY 131 - 160hour(5-day) time scale

R2 = 0.87RMSE = 2.14a0 = 0.11 +/- 0.06a1 = 1.01 +/- 0.01

Fig 20a

NE

E in

uni

ts o

f [u

mol

eCO

2/m

2/s]

Page 19: Figure 1.

pred NEE

ob

s N

EE

-10 -5 0 5 10

-10

-50

51

0

1992-2000 Model-0 vs. Observed DOY 276 - 300hour(5-day) time scale

R2 = 0.54RMSE = 2.06a0 = 0.05 +/- 0.07a1 = 1.02 +/- 0.03

pred NEE

ob

s N

EE

-30 -20 -10 0 10 20

-30

-20

-10

01

02

0

1992-2000 Model-0 vs. Observed DOY 206 - 250hour(5-day) time scale

R2 = 0.88RMSE = 3.23a0 = 0.12 +/- 0.08a1 = 1.05 +/- 0.01

pred NEE

ob

s N

EE

-20 -10 0 10

-20

-10

01

0

1992-2000 Model-0 vs. Observed DOY 251 - 275hour(5-day) time scale

R2 = 0.88RMSE = 2.42a0 = 0.13 +/- 0.08a1 = 1.02 +/- 0.01

pred NEE

ob

s N

EE

-30 -20 -10 0 10 20

-30

-20

-10

01

02

0

1992-2000 Model-0 vs. Observed DOY 161 - 205hour(5-day) time scale

R2 = 0.91RMSE = 3.11a0 = 0.1 +/- 0.08a1 = 1.01 +/- 0.01

Fig 20b

NE

E in

uni

ts o

f [u

mol

eCO

2/m

2/s]

Page 20: Figure 1.

pred NEE

ob

s N

EE

-3 -2 -1 0

-3-2

-10

R2 = 0.48RMSE = 0.7a0 = -0.28 +/- 0.21a1 = 0.62 +/- 0.13

92

93

94 9596

97

98

99

00

1992-2000 Model-0 vs. Observed DOY 131 - 160month time scale

pred NEE

ob

s N

EE

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R2 = 0.12RMSE = 0.32a0 = 0.33 +/- 0.86a1 = 0.7 +/- 0.64

92

93

94

95

96

97

98

99

00

1992-2000 Model-0 vs. Observed DOY 101 - 130month time scale

pred NEE

ob

s N

EE

1.0 1.2 1.4 1.6 1.8 2.0

1.0

1.2

1.4

1.6

1.8

2.0

R2 = -0.03RMSE = 0.32a0 = 18.82 +/- 12.25a1 = -14.43 +/- 10.04

92

93

94

95

96

97

9899

00

1992-2000 Model-0 vs. Observed DOY 1 - 366month time scale

pred NEE

ob

s N

EE

1.5 2.0 2.5

1.5

2.0

2.5

R2 = -0.31RMSE = 0.47a0 = 6.8 +/- 2.61a1 = -2.59 +/- 1.39

92

93

94

9596

97

98

9900

1992-2000 Model-0 vs. Observed DOY 301 - 340month time scaleFig 21a

NE

E in

uni

ts o

f [u

mol

eCO

2/m

2/s]

Page 21: Figure 1.

pred NEE

ob

s N

EE

0.6 0.8 1.0 1.2

0.6

0.8

1.0

1.2

R2 = 0.2RMSE = 0.23a0 = 0.18 +/- 0.48a1 = 0.85 +/- 0.63

92

93

94

95

96

97

98

99

00

1992-2000 Model-0 vs. Observed DOY 276 - 300month time scale

pred NEE

ob

s N

EE

-2.5 -2.0 -1.5 -1.0

-2.5

-2.0

-1.5

-1.0

R2 = -0.21RMSE = 0.73a0 = -1.28 +/- 1.07a1 = 0.26 +/- 0.55

92

93

94

9596

97

9899

00

1992-2000 Model-0 vs. Observed DOY 251 - 275month time scale

pred NEE

ob

s N

EE

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

R2 = 0.3RMSE = 0.66a0 = -0.26 +/- 2.25a1 = 0.96 +/- 0.56

92

93

94

95

9697

98

99

00

1992-2000 Model-0 vs. Observed DOY 206 - 250month time scale

pred NEE

ob

s N

EE

-6.0 -5.5 -5.0 -4.5 -4.0

-6.0

-5.5

-5.0

-4.5

-4.0 R2 = 0.65

RMSE = 0.46a0 = 0.37 +/- 1.53a1 = 1.07 +/- 0.29 92

93

94

95

96

97

98

99

00

1992-2000 Model-0 vs. Observed DOY 161 - 205month time scaleFig 21b

NE

E in

uni

ts o

f [u

mol

eCO

2/m

2/s]

Page 22: Figure 1.

time

NE

E [

um

ole

/m2

/s]

183.92 183.94 183.96 183.98 183.00 183.02

-30

00

-20

00

-10

00

01

00

02

00

0

Observed NEE and Model-0 model predictionsSeasonal means 301.1991 - 300.2003

Figure 22.

Page 23: Figure 1.

pred NEE

ob

s N

EE

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

9292

9393

94 94

9595

96 96

97 97

9898

9999

0000

1992-2000 Model-0 w/wo wdir (red) vs. Observed DOY 101 - 130month time scale

Figure 24

NE

E in

uni

ts o

f [u

mol

eCO

2/m

2/s] Model-0 = black

Model-0 + wind direction = red

Page 24: Figure 1.

pred NEE

ob

s N

EE

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

9292

9393

9494

95 95

96969797

98 98

99 99

0000

M0M0C

1992-2000 Model-0/0C vs. Observed DOY 206 - 250

month time scale

pred NEE

ob

s N

EE

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0-5

.5-5

.0-4

.5-4

.0-3

.5-3

.0

9292

9393

9494

95 95

96969797

98 98

99 99

0000

M0M0B

1992-2000 Model-0/0B vs. Observed DOY 206 - 250month time scale

FIGURE 25

FSDefaultUser
Figure 25. (Left) Seasonal mean NEE Model-0 (black) / Model-0C (red) vs Obs. (Right) Seasonal mean NEE Model-0 (black) / Model-C (red) vs Obs
Page 25: Figure 1.

1992-2000 Mid-summer Model-I NEE vs. Observed NEE

predicted NEE

Obs

erve

d

NE

E

-30 -20 -10 0 10

-30

-20

-10

010

R2 = 0.92

RMSE = 0.23

a0 = 0.18 +/- 0.48

a1 = 0.85 +/- 0.63

1:1

best fit

Figure 28a

Figure 28a. 1992-2000 Mid-summer NEE. Five-day aggregates of Model-Ipredicted NEE vs. Observed NEE.

Page 26: Figure 1.

predicted NEE

Obs

erve

d

NE

E

-6 -5 -4 -3 -2 -1

-6-5

-4-3

-2-1

1992-2000 Mid-summer NEE Model-I vs. Observed

R2 = 0.47RMSE = 0.23a0 = 0.18 +/- 0.48a1 = 0.85 +/- 0.63

Figure 28b

Figure 28b. 1992-2000 Mid-summer daily mean NEE. Model-I predicted NEE vs. Observed NEE. Data usesFive-day aggregates.

best fit

1:1

Page 27: Figure 1.

Predicted NEE

Obs

erve

d N

EE

-4.5 -4.0 -3.5 -3.0

-4.5

-4.0

-3.5

-3.0

9292

9393

9494

95 95

9696

9797

98 98

99 99

0000

1992-2000 Mid-summer NEE. Model-I vs. Observed

R2 = 0.76RMSE = 0.23a0 = 0.18 +/- 0.48a1 = 0.85 +/- 0.63

Figure 28c

Figure 28c. 1992-2000 Mid-summer seasonal mean NEE. Model-0 (black numbers) and Model-I (red numbers) predicted NEE vs. Observed NEE. Data uses five-day aggregates.

Model-I fit statistics

Page 28: Figure 1.

-20

-10

05

10

208 213 218

-15

-50

51

0

223 228 233

-20

-10

05

10

238 243 248

Figure 29a

Figure29a. 1999 Mid-summer five-day aggregates of observed, Model-0, and Model-I NEE. Observed (empty squares), Model-0 (red squares), Model-I (blue diamonds)

1999 Mid-summer NEE

Page 29: Figure 1.

-20

-10

01

0

208 213 218

-20

-15

-10

-50

5

223 228 233

-20

-10

-50

5

238 243 248

Figure 29b

Figure 29b. 1994 Mid-summer five-day aggregates of observed, Model-0, and Model-I NEE. Observed (empty squares), Model-0 (red squares), Model-I (blue diamonds)

1994 Mid-summer NEE

Page 30: Figure 1.

season

R2

2 4 6 8

-0.2

0.0

0.2

0.4

0.6

0.8

N - dayG - dayR - dayN - allR - allN - nite

Model-0 vs Observations 'real' hours

Model-0 + phen + wdir

Figure 31a

shawn urbanski
Hourly NRG: Model-0 (all the w/all extras) predictions vs observations (real observations, i.e. no gap filling)
Page 31: Figure 1.

season

R2

2 4 6 8

-0.2

0.0

0.2

0.4

0.6

N - dayG - dayR - dayN - allR - allN - nite

Seasonal Mean NRG Model-0 vs Observations

Model-0 + phen + wdir + soilM

Figure 31b

shawn urbanski
Seasonal NRG: Model-0 (w/ all the extras) vs. observations (mean of look-up table & diurnal cycle gap filling method)
Page 32: Figure 1.

season

R2

3 4 5 6 7 8

-0.2

0.0

0.2

0.4

0.6

N - dayN - allGG - adj

Seasonal Mean NEE and GEE Model-0 vs Observations

Figure 31c

shawn urbanski
Seasonal NEE & GEE. Model-0 vs observed. GEE adjusted is the hokie Model-0 GEE "corrected" for separation error (see text).
Page 33: Figure 1.

Figure 33

Page 34: Figure 1.

day of year

PR

I

110 120 130 140 150 160 170

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

19921993199419951996199719981999200020012002

PAR Ratio Index (PRI) 1992-2002Figure 34

Page 35: Figure 1.

year

R/G

EE

[M

gC

/ha

/yr]

1992 1994 1996 1998 2000 2002

81

01

21

41

6

GEER

Growing Season (DOY 100-300) GEE and R

Figure 35a

Page 36: Figure 1.

ecological year

R/G

EE

[M

gC

/ha

/yr]

1992 1994 1996 1998 2000 2002

12

34

GEERNEE

Dormant Season (Oct 28 - Apr 10) GEE and R

Figure 35b

Page 37: Figure 1.

ecological year

R/G

EE

[M

gC

/ha

/yr]

1992 1994 1996 1998 2000 2002

46

81

0

GEER

Summer (Jun - Aug) GEE and R

Figure 35c

Page 38: Figure 1.

ecological year

Nig

htt

ime

NE

E [

um

ole

CO

2/m

2/s

]

1992 1994 1996 1998 2000 2002

2.5

3.0

3.5

4.0

4.5

5.0

Summer (Jun - Aug) Nighttime NEE

Figure 35d

Page 39: Figure 1.

ecological year

NE

Ep

red

- N

EE

ob

s [u

mo

leC

O2

/m2

/s]

1992 1994 1996 1998 2000 2002

-10

12

3Summer (Jun - Aug) Daytime Model-0/I NEE residuals

Figure 35e

Page 40: Figure 1.

ecological year

R/G

EE

[M

gC

/ha

/yr]

1992 1994 1996 1998 2000 2002

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

GEER

April -May GEE and RFigure 36a

Page 41: Figure 1.

ecological year

R/G

EE

[M

gC

/ha

/yr]

1992 1994 1996 1998 2000 2002

0.5

0.6

0.7

0.8

0.9

GEER

October GEE and R

GEER

Figure 36b

Page 42: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-10

.0-9

.5-9

.0-8

.5-8

.0-7

.5G

EE

[M

gC

/ha

]

98

99

00

0102

Early - Mid Summer GEE vs. LAI

R2 = 0.99p-val = 0

Figure 37a

shawn urbanski
LAI - our measurements in 98 & 99 (peak value), and a subset of the bigfoot measurements in 00-02. I chose bigfoot plots close to our plots (Elizabeth gave me maps). The means are similar if all bigfoot plots are used.doy 161-250
Page 43: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-1.0

-0.5

0.0

0.5

Mode

l-0 N

EE

resi

dua

ls [

MgC

/ha

]

98

99

00

01

02

Early - Mid Summer daytime Model-0 NEE vs. LAI

R2 = 0.94p-val = 0.01

Figure 37b

shawn urbanski
see comments for D14a
Page 44: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-0.0

26

-0.0

25

-0.0

24

-0.0

23

-0.0

22

-0.0

21

-0.0

20

GE

E/P

AR

9899

00

01

02

Early - Mid Summer PAR normalized GEE

R2 = 0.72p-val = 0.07

Figure 37c

Page 45: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-12

-11

-10

-9G

EE

[M

gC

/ha

]

98

99

00

0102

ESum - EFall GEE vs. LAI

R2 = 0.99p-val = 0

Figure 37d

shawn urbanski
DOY 161 - 300 otherwise same as D14a
Page 46: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-1.5

-1.0

-0.5

0.0

0.5

Mode

l-0 N

EE

resi

dua

ls [

MgC

/ha

]

98

99

00

01

02

ESum - EFall daytime Model-0 NEE vs. LAI

R2 = 0.98p-val = 0

Figure 37e

Page 47: Figure 1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2LAI

-0.0

24

-0.0

22

-0.0

20

-0.0

18

GE

E/P

AR

98

99

0001

02

ESum - EFall PAR normalized GEE

R2 = 0.85p-val = 0.02

Figure 37f

Page 48: Figure 1.

year

ave

rag

e %

N

1988 1990 1992 1994 1996 1998 2000 2002

2.0

2.2

2.4

2.6

Oak Green Foliage %N (Aber & Magill)

R2 = 0.34p-val = 0.03

Figure 38a

shawn urbanski
This uses Aber/Magill green foliage data for hard wood control plots (oak = black oak + red oak)Our only overlap year is 1998 and our red oak & red maples agreed spot on with theirs. 2000 data point is ours. Of course we are missing the important year of 2001.
Page 49: Figure 1.

year

folia

ge

- li

tte

r [%

N]

1988 1990 1992 1994 1996 1998 2000 2002

1.0

1.1

1.2

1.3

1.4

Oak Foliage N Translocation(Aber & Magill)

R2 = 0.55p-val = 0.01

Figure 38b

shawn urbanski
Translocation = green foliage %N - litter % Nhardwood control plot oaks (oak = red + black)No Aber/Magill litter data after 1999.OUR litter %N does not agree well with theirs for the two overlap years of 98 & 99. This could be a serious problem and sink any use of their data.
Page 50: Figure 1.

foliage - litter [%N]

R [

kgC

/ha

]

1.35 1.40 1.45

40

00

45

00

50

00

92

93

94

95

9697

98

99

Oak Foliage N Translocation vs. Ecosystem Rearly-mid summer

R2 = 0.84p-val = 0

Figure 38c

Page 51: Figure 1.

foliage - litter [%N]

NE

E r

esi

du

als

(o

bs-

pre

d)

[kg

C/h

a]

1.35 1.40 1.45

-40

0-2

00

02

00

40

06

00

80

0

92

93

94

95

96

97

98

99

Oak Foliage N Translocation vs. Model-0 daytime residuals Rearly-mid summer

R2 = 0.24p-val = 0.22

Figure 38d

Page 52: Figure 1.

foliage - litter [%N]

GE

E/P

AR

1.35 1.40 1.45

-0.0

25

-0.0

23

-0.0

21

92

93

94

95

96

97

9899

Oak Foliage N Translocation vs. PAR normlaized GEEearly-mid summer

R2 = 0.43p-val = 0.08

R2 = 0.43p-val = 0.08

Figure 38e

Page 53: Figure 1.

year

R [

kgC

/ha

/mo

nth

]

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-40

00

-30

00

-20

00

-10

00

obsM0ibis

Annual (calyr) NEE - observed, Model-0, IBISFigure 39a

Page 54: Figure 1.

year

NE

E [

kgC

/ha

/mo

nth

]

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

05

00

10

00

15

00

20

00

25

00

30

00

obsM0ibis

Winter (Dec-Mar) NEE - observed, Model-0, IBISFigure 39b

Page 55: Figure 1.

year

NE

E [

kgC

/ha

/mo

nth

]

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-70

00

-60

00

-50

00

-40

00

-30

00

-20

00

-10

00

obsM0ibis

Summer (Jun-Sep) NEE - observed, Model-0, IBISFigure 39c

Page 56: Figure 1.

year

GE

E [

kgC

/ha

/mo

nth

]

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-14

00

0-1

20

00

-10

00

0-8

00

0-6

00

0

obsM0ibis

Summer (Jun-Sep) GEE - observed, Model-0, IBISFigure 39d

Page 57: Figure 1.

year

NE

E [

kgC

/ha

/mo

nth

]

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

-10

00

-50

00

50

01

00

0

obsM0ibis

Spring (Apr-May) NEE - observed, Model-0, IBISFigure 39e

Page 58: Figure 1.

deep layer soil moisture [%max]

IBIS

GE

E e

rro

r

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-50

00

50

01

00

01

50

02

00

0IBIS monthly GEE error (Jun-Aug) vs. Soil Hydrology Model

R2 = 0.49

Figure 40a

Page 59: Figure 1.

deep layer soil moisture [%max]

IBIS

R e

rro

r

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-50

00

50

0IBIS monthly R error (Jun-Aug) vs. Soil Hydrology Model

R2 = 0.39

Figure 40b