Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of...

16
Field line breaking and Microtearing Turbulence Hauke Doerk Thanks to F. Jenko and the GENE team Max-Planck-Institut für Plasmaphysik, Garching Winter School on dynamics and turbulent transport in plasmas and conducting fluids, Les Houches, March 9 2011

Transcript of Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of...

Page 1: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Field line breaking andMicrotearing Turbulence

Hauke Doerk

Thanks to F. Jenko and the GENE team

Max-Planck-Institut für Plasmaphysik, Garching

Winter School on dynamicsand turbulent transport in plasmas and conducting fluids,

Les Houches, March 9 2011

Page 2: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

A brief history of microtearing research

• 1968: Tearing instability (Furth, Killeen, Rosenbluth)

• 1975: Instability due to ∇Te: µ-tearing (Hazeltine et al.)

• 1980: Model for saturation (Drake et al.)

• 1990: µ-tearing should be stable for realistic tokamakscenarios (Connor et al.)

• 1999: Focus on µ-tearing in plasma edge (Kesner et al.)

• 2003: Linear gyrokinetic simulations (Redi et al., Applegateet al.); Large electron heat transport in spherical tokamakscaused by µ-tearing?

• 2008: µ-tearing modes also found in conventional tokamaks(linear GK, Vermare et al., Told et al.)

• 2010: Nonlinear Gyrokinetic simulatios (Guttenfelder, thiswork)

Page 3: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Scope of this work

Problems

• Existence of microtearing instability in Tokamak geometry

• Electromagnetic heat transport caused by microtearing

• Nonlinear saturation of microtearing turbulence

Strategy

• Linear and nonlinear simulations using GENE

• Examine impact of steeper gradients, collisional effects...

• Comparison to analytical models

Page 4: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

The GENE codeGyrokinetic Electromagnetic Numerical Experiment

Solves gyrokinetic equations on fixed grid in 5D phase space(⇒continuum code)

• Comprehensive physics

• Massively parallel

• Open source

http://gene.rzg.mpg.de

Page 5: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Characteristics of µ-tearing modes

Ballooning representation

• Fluctuating electrostaticpotential φ extends alongfield line

• Vector potential A‖ isstrongly localized aroundθ = 0

µ-tearing modes found in

• Spherical tokamaks(NSTX, MAST)

• Conventional tokamaks(ASDEX Upgrade)

• Model geometry: Circular(Lapillonne et al. 2009)

-10 -5 0 5 10

|A‖|,

ℜ(φ)(a.u.)

ballooning angle θp/π

|A‖|ℜ(φ)

Page 6: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Turbulent field fluctuations

Vector potential A‖

• large structures

Electrostatic potential φ

• small scale eddies

Microtearing turbulence is hard to resolve innumerical sumulation

Page 7: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Standard theory for fluctuation amplitude

Drake et al. 1980

• γlin ∼ DMk2⊥

• ⇒ δB/B0 ∼ %e/LTe

• simplified modelunderlying

Challenge

• 384×64×24×32×16grid points inx , y , z, v‖, µ space

• ∼ 25000 CPU hoursper run

0

1

2

3

4

5

6

0 1 2 3 4 5 6(δB

x/B

0)/(ρ

e/R

)

R/LTe

Gene simulationsδB/B0 = ρe/LTe

lowered resolution as a convergencestudy: scatter is moderate

Can gyrokinetic codes be used to prove or refine Drake’smodel?

Page 8: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Influence of temperature gradients

Ions

• R/LTi notimportant

Electrons

• RLTe

= − RTe

∂Te∂x

crucial

•(

RLTe

)crit∼ 1.3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7

γ/(v t

i/R)

R/LTe

(R/LTe)0

(R/LTe)crit

γ(kyρs = 0.05)γ(kyρs = 0.1)

Existence of a critical electron temperaturegradient confirmed

Page 9: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Influence of other parameters, Example: βe

• Bx and γlin aresensitive to βe

• Critical valueβe,crit ∼ 10−3

• Also geometry(q0, s) andcollisionalityplay a role..

0

0.01

0.02

0.03

0.04

0.05

0.001 0.01

γ/(v t

i/R)

βe

βe0

βe(ASDEXupgrade)

kyρs = 0.06

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.002 0.004 0.006 0.008

(Bx/B

)/(ρ

e/L

Te)

βe

Gene simulationDrake’s formula

Drake’s Formula gives rough estimate for the fluctuationamplitude

Page 10: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Magnetic Field Stochastization

weak drive strong drive

Magnetic field fluctuation amplitude ofmicrotearing turbulence determines degree of field

stochastization

Page 11: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Heat Transport in Stochastic Magnetic Fields

Diffusivity model

• χeme = vteDM

• DM = LC(δB/B0)2

(quasilinear result)

• B− correlation lengthLC = qR

Heuristic: random walk

• D = (∆r)2/∆t

• ∆r = (δB/B0)LC

• ∆t = LC/vte

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

χe em

/(ρ2 iv t

i/R)

(δBx/B0)/(ρi/R)

modelR/LTe variation

β variation

χeme = 1.36vteqR(δB/B0)2

GENE resultsconfirm simple model (e.g.Liewer

1985) collisionless case(breaks down at weak drive)

Page 12: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Effects of collision rate νe

Collisional regime

• Transition expectedaround νc = 0.01 (linearphysics)

• Lc → λmfp

• λmfp = vte/νe

• χeme = vteλmfp(δB/B0)2

∝ 1/νe expected

Gyrokinetic results

• χeme decreases weaker

than 1/νc

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.1 1 10

γ/(v t

i/R)

collision frequency ν∗

λmfp

2πq0R=1

ν∗0

λmfp

2πq0R=10

γ ∝−νc

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.1 1 10

γ/(v t

i/R)

collision frequency ν∗

λmfp

2πq0R=1

ν∗0

λmfp

2πq0R=10

γ ∝−νc

kyρs = 0.01kyρs = 0.01kyρs = 0.05

0.1

1

1

L‖/qR

collision rate ν∗

model: χeem = L‖vte(δB/B0)

2

Gene simulationγlin, ky = 0.12 (a.u.)∼ 1/νc for νc > 0.01

Page 13: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Nonlinear Saturation of Microtearing Turbulence

Model by Drake ’80

• γlin ∼ vteλmfp (%e/LTe)2 k2⊥

• γNL ∼ −DMk2⊥

• Balance: ⇒ δB/B0 ∼ %e/LTe

Gyrokinetic simulations

• Accessible parameter regime:γlin,max ∼ (R/LTe)2vti/R

• Dissipation scale:kdiss ≈ 0.2/%i

• γNL = −χeme k2

diss

• Balance: ⇒ δB/B0 ∼ %e/LTe

0

1

2

3

4

5

6

0 1 2 3 4 5 6

(δB

x/B

0)/(ρ

e/R

)

R/LTe

Gene simulationsδB/B0 = ρe/LTe

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1

a.u.

kyρi

linear growth rate γlfree energy sources/sinks

magnetic electron heat flux Qeme

Page 14: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Effects of E × B shear flow

Simulation results

• Heat flux is reduced

• It does not seem to vanishup to vE×B ≈ 10γlin

• Low ky remain (unusualcompared to ITG/TEM)

Possible explanation:

• Special microtearingmode structure

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

χem e

/χem e,0

E ×B shearing rate/γmax

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6

heatflux

kyρi

lin. growth rate γL (A.U.)Qe

em ExB rate=0.84×Qe

em ExB rate=0.8Qe

em R/LTe = 4.5

Page 15: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Summary and Conclusions

• Microtearing modes can be unstable in conventionalTokamaks

• Heat transport can be substantial (∼ 1m2/s)

• Drake’s Formula for saturation amplitude is roughlyconfirmed, but parameters other than LTe (βe) are crucial

• Transition to collisional regime is seen

• Further simulations:System size: globalmicrotearing + ITG. . .

• Very recent: compare to ASDEX Upgrade measurements inthe outer core (Wolfrum et al.)

Page 16: Field line breaking and Microtearing Turbulence · Les Houches, March 9 2011. A brief history of microtearing research 1968: Tearing instability (Furth, Killeen, Rosenbluth) ... 384

Thank you for your attention!