Ferramenta para Tomada de Decisão Considerando a...

15
Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 87 Decision-making tool considering the interaction of the production systems and the environment Abstract Ternary diagrams are presented as graphic tools to assist environmental accounting and environmental decision- making based on emergy analysis. Besides the unquestionable advantages of graphic interpretation over table analysis, the use of ternary diagrams, widely used for physical chemistry evaluation of three components systems, or three components phase diagrams, permits the use of phase diagrams properties to assess the dependence of the system upon renewable and non renewable inputs, the environmental support for dilution and abatement of process emissions and the system efficiency. The prompt visualization of the emergy accounting data makes possible to compare processes and systems with and without ecosystem services, to evaluate improvements and to follow the system performance over time. With the aim of ternary diagrams, aspects such as the interaction between systems and the interactions between systems and the environment can be readily recognized and evaluated. Key words Production systems, graphic tool, ternary diagram, sustainability. FLÁVIO A. BARRELLA CECÍLIA M. VILLAS BOAS DE ALMEIDA BIAGIO F. GIANNETTI Universidade Paulista – UNIP Resumo Diagramas ternários são apresentados como ferramenta gráfica no auxílio da contabilidade ambiental e tomada de decisões ambientais baseadas na análise emergética. Além de inquestionáveis vantagens da interpretação gráfica sobre análise de tabelas, o uso dos diagramas ternários, largamente empregados para a avaliação da físico-química de diagrama de fases para sistemas de três componentes, permite o uso das propriedades do diagrama de fases para avaliação da dependência dos sistemas sobre entradas renováveis e não-renováveis e a avaliação do suporte ambiental para diluição e redução de emissões dos processos e da eficiência dos sistemas. A imediata visualização dos dados da contabilidade emergética permite a comparação de processos e sistemas com e sem serviços dos ecossistemas, para avaliar melhorias e acompanhamento do desempenho dos sistemas ao longo do tempo. Com a objetividade dos diagramas ternários, aspectos como a interação entre sistemas e a interação entre sistemas e meio ambiente podem ser prontamente reconhecidos e avaliados. Palavras-chave Sistemas de produção, ferramenta gráfica, diagrama ternário, sustentabilidade. Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Transcript of Ferramenta para Tomada de Decisão Considerando a...

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 87

Decision-making tool considering the interaction

of the production systems and the environment

Abstract

Ternary diagrams are presented as graphic tools to assist environmental accounting and environmental decision-

making based on emergy analysis. Besides the unquestionable advantages of graphic interpretation over table

analysis, the use of ternary diagrams, widely used for physical chemistry evaluation of three components systems,

or three components phase diagrams, permits the use of phase diagrams properties to assess the dependence of

the system upon renewable and non renewable inputs, the environmental support for dilution and abatement of

process emissions and the system efficiency. The prompt visualization of the emergy accounting data makes

possible to compare processes and systems with and without ecosystem services, to evaluate improvements and

to follow the system performance over time. With the aim of ternary diagrams, aspects such as the interaction

between systems and the interactions between systems and the environment can be readily recognized and

evaluated.

Key words

Production systems, graphic tool, ternary diagram, sustainability.

FLÁVIO A. BARRELLA

CECÍLIA M. VILLAS BOAS DE ALMEIDA

BIAGIO F. GIANNETTI

Universidade Paulista – UNIP

Resumo

Diagramas ternários são apresentados como ferramenta gráfica no auxílio da contabilidade ambiental e tomada de

decisões ambientais baseadas na análise emergética. Além de inquestionáveis vantagens da interpretação gráfica

sobre análise de tabelas, o uso dos diagramas ternários, largamente empregados para a avaliação da físico-química

de diagrama de fases para sistemas de três componentes, permite o uso das propriedades do diagrama de fases

para avaliação da dependência dos sistemas sobre entradas renováveis e não-renováveis e a avaliação do suporte

ambiental para diluição e redução de emissões dos processos e da eficiência dos sistemas. A imediata visualização

dos dados da contabilidade emergética permite a comparação de processos e sistemas com e sem serviços dos

ecossistemas, para avaliar melhorias e acompanhamento do desempenho dos sistemas ao longo do tempo. Com a

objetividade dos diagramas ternários, aspectos como a interação entre sistemas e a interação entre sistemas e

meio ambiente podem ser prontamente reconhecidos e avaliados.

Palavras-chave

Sistemas de produção, ferramenta gráfica, diagrama ternário, sustentabilidade.

Ferramenta para Tomada de Decisão

Considerando a Interação dos Sistemas de

Produção e o Meio Ambiente

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

88 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

benefícios intangíveis como o valor de uma reserva natu-ral ou o custo para o ambiente absorver poluentes. É,portanto, incoerente estabelecer a análise financeiracomo ferramenta para avaliar ganhos ou perdas ambien-tais, especialmente se a empresa tiver incluído a proteçãoao ambiente entre suas estratégias de competitividade.

A avaliação ambiental com base na análise emergéti-ca leva em conta a taxa de exploração de reservasnaturais, o uso eficiente destas reservas e a capacidadede suporte do meio ambiente (ODUM, 1996). Da defini-ção de emergia como a memória da energia ou aenergia total incorporada em um produto, processo ouserviço, os indicadores que resultam da análise emer-gética refletem tanto a contribuição do sistema econô-mico como a do meio ambiente (BROWN & ULGIATI,2002). Estes indicadores são utilizados para avaliar asrelações entre componentes do sistema produtivo e asreservas utilizadas para a obtenção do produto de inte-resse; dependem da fração de insumos renováveis e nãorenováveis e consideram os insumos disponíveis local-mente e aqueles importados de fora do sistema. Obtém-se, desta forma, informações valiosas sobre o desenvol-vimento e a operação dos sistemas produtivos, levandoem conta a capacidade de carga do ambiente. Pode-seainda avaliar a eficiência termodinâmica do sistema, aqualidade dos fluxos de entrada e saída do sistema deprodução e especialmente a interação entre o sistema eo ambiente em que este está inserido.

Desde a sua introdução, a análise emergética nosprocessos produtivos (ODUM, 1996) tem-se tornadocada vez mais importante no cenário mundial, sendohoje estudada nas mais variadas instituições de pes-quisa, quer sejam acadêmicas, quer sejam dos setoresindustriais ou governos. Encontram-se aplicações emvários setores, como na produção de energia elétrica(BROWN & ULGIATI, 2002; ULGIATI & BROWN,2002; ODUM & PETERSON, 1996; ODUM, 2000;BJÖRKLUND et al., 2001), no tratamento de água(BROWN & McCLANAHAN, 1996; GEBER &BJÖRKUND, 2001; MARTIN, 2002), na fabricação depapel e celulose (LOPES et al., 2003), na produção agríco-la (LEFROY & RYDBERG, 2003; PANZIERI et al.,2000; BASTIANONI & MARCHETTINI., 2000), no de-senvolvimento urbano (SHU-LI & WAN-LIN, 2003;SHU-LI, 1998; HOWINGTON et al., 1997), nas relaçõescom a economia tradicional (HORNBORG, 1998;CLEVELAND et al., 2000; TON et al., 1998; BROWN &ULGIATI, 1997), entre outros.

Estudos comparativos sobre meios de transporte depassageiros e carga e a utilização de combustíveis alter-nativos (RYDBERG & JANSEN, 2002; FEDERICI etal., 2003; BYRNE & POLONSKY, 2001) têm sido reali-

INTRODUÇÃO

As empresas estão cada vez mais cônscias das conse-qüências da deterioração ambiental e muitas delas têmincluído entre suas prioridades a proteção ao ambiente,aliada à qualidade e à segurança, como forma de asse-gurar a competitividade. A mudança de atitude dasempresas em relação ao meio ambiente teve início nasáreas de produção e operação, onde há grandes oportu-nidades para reduzir o impacto de processos (SARKIS,1995 e SHEN, 1995). Por um lado, o ambiente foitomado como um desafio para a indústria (SHARMA eVREDENBURG, 1998; WALLEY & WHITEHEAD,1994). Por outro lado, considerou-se que a relação ambi-ente-empresa, baseada em um gerenciamento ambientalefetivo, é capaz de trazer melhorias tanto para o ambientecomo para a competitividade da empresa (SHEN, 1995;PORTER, 1995; HART, 1995). Os estudos realizadosnos anos 90 pertencem ao segundo grupo e enfatizam osbenefícios de um bom desempenho ambiental para ope-rações e processos (GUPTA, 1995; SARKIS, 1995) epara as empresas como um todo (AZZONE & BERTELE,1994; MAXWELL et al., 1997).

Apesar do grande número de estudos publicados nadécada de 90, pouca atenção foi dada ao desenvolvimen-to de indicadores a serem utilizados nas tomadas dedecisão que envolvem o aspecto ambiental, e a maioriados indicadores está relacionada às áreas de produção,como indicadores para a escolha de equipamentos, mé-todos e práticas produtivas, rendimento de processos edesenvolvimento de produto (KLASSEN, 2000;SHRIVASTAVA, 1995; CONSTABLE et al., 2002).

A exploração de novas alternativas de operação paranovos sistemas de produção ou para modificar os exis-tentes exige investimento de capital e, por este motivo, atomada de decisão nos meios produtivos foi inicialmentebaseada em análises de viabilidade econômica. Heizer eRender (1996) propuseram o uso da análise financeiratradicional para a adoção de estratégias no desenvolvi-mento de produtos e processos. O mesmo método étambém utilizado por vários autores, que sustentam sernecessário identificar os custos e benefícios provenien-tes dos investimentos voltados à redução do impactoambiental (ALBERTI et al., 2000; SILVA, 2003).

Não obstante, o uso da análise financeira tradicionalcomo critério para tomadas de decisão de caráter ambien-tal, apesar de ser geralmente aceito, não contempla be-nefícios e custos intangíveis. A avaliação do aspecto am-biental é bastante complexa e devem considerar um gran-de número de fatores, alguns dos quais não podem seravaliados pela análise financeira tradicional, já que nãohá como estabelecer um valor monetário para custos e

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 89

zados com a utilização da análise emergética, e seusresultados têm demonstrado quais são as alternativasmenos agressivas ao meio ambiente e suas conseqüênci-as econômicas e de produção.

Vários estudos complementares têm, também, sidorealizados (FATH et al. , 2001; BAKSHI, 2000;BASTIANONI & MARCHETTINI, 1997; BASTIANONI& MARCHETTINI, 1996; PATTEN, 1995; JORGENSENet al., 1995; POPP et al., 2001; MANOLIADIS, 2002;RONCHI et al., 2002; BARRERA & SALDÍVAR, 2002;SPANGENBERG, 2002; FEDERICI et al., 2003) consoli-dando a importância da análise e dos indicadores obti-dos. Para diferentes setores e processos, novos índicese abordagens têm sido propostos (ULGIATI et al.,1995; POPP et al. , 2001; MANOLIADIS, 2002;RONCHI et al., 2002; BARRERA & SALDÍVAR, 2002;SPANGENBERG, 2002; SEAGER & THEIS, 2002) ex-pandindo o alcance da análiseemergética, mas ao mesmo tempogerando uma maior complexida-de analítica.

Neste artigo, propõe-se a uti-lização de uma ferramenta grá-fica, desenvolvida em VisualBasic for Appl icat ions(ROMAN, 2000; JACOBSON,2002; ROOS, 1994), para representação dos índicesresultantes da análise emergética de processos e deprodutos. A ferramenta baseia-se nos diagramas defases ou diagramas de três componentes, utilizadospara representar propriedades de substâncias ou mis-turas de substâncias (CASTELLAN, 1984). A repre-sentação clara e uniforme dos indicadores em diagra-mas de fases permite visualizar os resultados da análi-se emergética e comparar sistemas diferentes ou dife-rentes momentos do mesmo sistema. A utilização dosdiagramas permite ainda explorar suas propriedades jáconhecidas (CASTELLAN, 1984) e acrescentar duasnovas abordagens à análise emergética: introdução dasensibilidade emergética e da simergia. Demonstra-seque a interpretação dos resultados é facilitada com apadronização da ferramenta gráfica, auxiliando a to-mada de decisão.

REVISÃO TEÓRICA

Emergia e IndicadoresEmergia é definida como a quantidade de energia

necessária, de forma direta ou indireta, para obter umproduto (bem ou serviço) em um determinado proces-so, sendo sua unidade expressa em seJ (joule deenergia solar). O uso de uma única unidade para a

qual são convertidos os diversos tipos de energiapermite somar todas as contribuições de energia uti-lizadas para a obtenção de um determinado produtoou serviço. Define-se a transformidade como a quan-tidade de energia solar empregada, diretamente e/ouindiretamente, na obtenção de um joule de um deter-minado produto (bem ou serviço), sendo sua unidadeexpressa em seJ/J (joule de energia solar por Joule).A transformidade fornece uma medida da concentra-ção de emergia e pode ser considerada como umindicador de qualidade. Os valores de emergia etransformidade dependem do material e da energiautilizados nas diversas etapas necessárias para a ob-tenção do produto ou serviço e, por este motivo,variam de acordo com a matéria-prima selecionada,com o tipo de energia empregado na produção e coma eficiência do sistema produtivo.

As fontes de recursos que compõem qualquer proces-so podem ser divididas em três classes: renováveis, não-renováveis e provenientes da economia. Esta divisão éfundamental para o estudo emergético e a inter-relaçãodo setor ou processo com o meio ambiente. Na Figura 1observa-se que fluxos de entrada em um sistema deprodução são divididos em reservas não-renováveis (N),serviços e produtos do ambiente renováveis (R) e fluxosprovenientes da economia (F). Os recursos renováveis(R) são retirados do ambiente e, como o próprio nomediz, têm a capacidade de renovação temporal e espacialmais rápida que o seu consumo. Encontram-se dentrodessa classe a energia solar, dos ventos, da chuva, etc. Osrecursos não-renováveis (N) são armazenados na nature-za, porém seu consumo é mais rápido do que a suacapacidade de renovação. Dentro dessa classe encon-tram-se fontes de recursos como carvão, petróleo, flores-tas, água potável, etc. Os recursos pagos (F) – vindos daeconomia – são associados a bens e serviços ou a recur-sos provenientes de outras regiões fora dos limites dosistema estudado. A Figura 1 mostra um diagrama sim-plificado em que são identificados os fluxos de entradaR, N e F e o fluxo de saída do produto Y.

Os fluxos de recursos identificados na figura 1 permi-tem calcular diferentes índices que, por sua vez, podemser de grande utilidade para analisar ou monitorar um

Atomada de decisão nos meios produtivos

foi inicialmente baseada em análises de

viabilidade econômica.

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

90 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

sistema. Neste artigo serão definidos apenas os indicado-res empregados: o rendimento emergético (EYR), o in-vestimento emergético (EIR), o impacto ambiental ouíndice de carga ambiental, o índice de sustentabilidade(SI ou EIS) e o percentual de emergia renovável (%R).

Calcula-se o rendimento emergético pela relação entrea emergia total do produto (Y = R + N + F) e a emergia deentrada do setor econômico, que não é fornecida gratui-tamente pelo meio ambiente (Equação 1). Este índicereflete a habilidade do processo de utilizar recursos lo-cais (ULGIATI e BROWN, 2002), mas não diferenciarecursos renováveis de não-renováveis.

O investimento emergético é a relação entre a emergiafornecida pelo sistema econômico e a fornecida direta-mente pelo meio ambiente ao sistema estudado, quer sejarenovável ou não-renovável (Equação 2).

Define-se a carga ambiental como a relação entre asoma da emergia de entrada proveniente do sistema eco-nômico e do recurso local não-renovável e a emergia do

recurso local renovável (Equação 3). Este índice forneceum balizamento dos serviços ambientais num sistema emostra um balanço entre os investimentos locais renová-veis e não-renováveis. Um valor alto de ELR pode indicarum estresse de utilização dos recursos renováveis locais.

O índice de sustentabilidade é obtido da relação entre orendimento emergético e o índice de carga ambiental (Equa-ção 4). O conceito de sustentabilidade está atrelado à maximi-zação de EYR (rendimento) e a minimização de ELR (impac-to), ou seja, o máximo do aproveitamento do investimentocom um mínimo de estresse dos recursos locais.

Finalmente, o percentual de energia renovável é aparcela de emergia total processada de um determinadosistema que provém de fontes de recursos renováveis(Equação 5).

Figura 1: Diagrama de fluxos emergéticos, onde aparecem os fluxos de entrada de recursosrenováveis (R), não-renováveis (N) e provenientes da economia (F) e o fluxo de saída do produto (Y).

NÃO-PAGOS PAGOS

NÃO-RENOVÁVEIS

RENOVÁVEIS

R

N

I YPRODUTO

F

(1)

(2)

(3)

(4)

(5)

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 91

Diagrama de Fases

O método de análise para o estudo de fases em mistu-ras de substâncias proposto por Gibbs e Roozeboon for-nece um método gráfico muito eficiente quando temostrês variáveis para a descrição de um processo ou de umsistema (CASTELLAN, 1984).

O diagrama triangular é definido como um sistema decoordenadas a partir de um triângulo eqüilátero cujaaltura é igual à unidade. Cada uma das alturas é associadaa uma das variáveis, conforme apresentado na Figura 2a.Assim, um ponto qualquer inscrito no triângulo pode serdefinido a partir de um conjunto de três valores decoordenadas. Estes são relacionados com um sistema decoordenadas cartesianas com os valores positivos deabscissas coincidentes com a mediana do lado da base dotriângulo e a ordenada sobreposta à altura e a origem nainterseção da altura e a base do triângulo.

Uma importante propriedade dos diagramas é que asoma das coordenadas triangulares das variáveis é igualà altura do triângulo. Tomando-se a altura do triânguloigual à unidade, teremos que a soma das coordenadas éigual a um, conforme mostrado na Figura 2b. Uma segun-da propriedade se refere à combinação de sistemas.Quando combinamos dois sistemas cujas composições

são representadas pelos pontos P e Q, na Figura 2c, acomposição da mistura resultante será representada porum ponto X sobre o segmento PQ. Finalmente, outrapropriedade importante é que todos os sistemas represen-tados pelos pontos de uma linha que passa por um dosvértices do triângulo possuem dois de seus componentesna mesma razão, conforme apresentada na Figura 2d.

METODOLOGIA

Para este trabalho foi desenvolvido um aplicativo emdois arquivos Excel, com rotinas escritas em VisualBasic for Applications, onde foram correlacionadas acada um dos eixos do diagrama triangular uma das fontesde recursos (renováveis, não-renováveis e pagas). Umdos arquivos da ferramenta é utilizado para preparaçãodos dados de entrada, tendo capacidade para a inclusãode até 10 processos com até 50 itens por processo (Figura3a). Outro arquivo da ferramenta captura esses dados, fazos cálculos necessários e os aplica em um diagramatriangular, apresentando um ponto para cada processo,produto ou sistema. Ainda estão disponíveis linhas auxi-liares que podem ser mostradas no diagrama para facili-tar a análise.

Figura 2: Diagrama Triangular, representação de: (a) sistema de coordenadas triangulares; (b) propriedade dasoma das coordenadas; (c) propriedade da combinação de sistemas; (d) propriedade da proporcionalidade.

(a) (b)

(c) (d)

1

0

0,62

0,16

0,22

A

B

0,32

0,16 A

0,22

0,44

P

Q

X

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

92 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

A ferramenta permite a apresentação de até 10 pro-cessos ou produtos simultaneamente (Figura 3b). Cadaponto pode ser habilitado ou inibido para que não seapresente no diagrama. Ainda pode ser selecionada aapresentação dos pontos com tamanho fixo ou comtamanho proporcional à diferença da ordem de grandezados valores de emergia total do produto de cada um, istoé, quanto maior o valor de emergia do produto maior otamanho do ponto apresentado. Isto fornece uma idéiadas ordens de grandezas dos vários produtos ou proces-sos representados.

Para explorar as propriedades dos diagramas trian-gulares, esta correlação foi feita com valores relativosde cada fonte de recurso e não com os seus valoresabsolutos, o que não altera os valores dos índicesestudados.

Escolheu-se para as coordenadas triangulares, comosendo o eixo das fontes de recursos renováveis (R) coin-cidente com as ordenadas do sistema cartesiano, o eixodas fontes de recursos não-renováveis (N) partindo damediana do lado direito do triângulo e passando pelovértice à esquerda da base do triângulo. O eixo de fontesde recursos pagos (F) parte da mediana do lado esquerdodo triângulo e passa pelo vértice à direita da base dotriângulo. Dessa forma, verifica-se que qualquer proces-so ou sistema pode ser representado por um ponto nodiagrama, dado que qualquer processo ou sistema contacom estas três fontes de recursos.

O programa permite, ainda, o traçado de linhas paraestabelecer limites ou identificar aspectos com maiorfacilidade:

Linhas de Fontes de Recursos: A ferramenta permitea apresentação de 3 linhas (R, N e F) para indicação dosvalores constantes de cada uma das fontes de recursos.Essas linhas podem ser apresentadas independentementee os valores escolhidos pelo usuário, numa faixa entre 0e 1. As linhas de fontes de recursos são segmentos deretas e paralelas aos três lados do triângulo. Com a suautilização pode-se avaliar e comparar dois processos emrelação ao uso de recursos (Figura 4a). Com o uso daferramenta gráfica, em que se considera o valor de Yunitário (valor normalizado do produto final do proces-so), os índices EYR e EIR podem ser calculados a partir

da componente F. Dessa forma podemos associar à linhade F os valores dos índices EYR e EIR. Segundo Browne Ulgiati (2002), valores de EYR abaixo de 5 devem serconsiderados como indicativos de fontes de energia se-cundária e materiais primários como cimento e aço. Fon-tes de energia primária usualmente têm valores de EYRmaiores que 5. Além disso, processos que tenham rendi-mento emergético (EYR) menor que 2 não fornecemnenhuma contribuição que possa ser considerada comofonte de energia e atuam como produtos de consumo ouetapas na transformação das fontes de energia reais.Análise semelhante é feita com a componente R emrelação ao índice ELR. Ainda segundo Brown e Ulgiati(2002), valores baixos de ELR (cerca de 2) sãoindicativos de relativo baixo impacto ambiental (ouprocessos que usam uma grande área de ambiente local

para diluir o impacto). Valoresde ELR maiores que 10 sãoindicativos de relativa concen-tração de impacto ambiental, eaqueles entre 3 e 10 podem serconsiderados moderados. Valo-res extremamente altos de ELRpodem ser o resultado de investi-mentos em um ambiente relati-

vamente pequeno com entradas derivadas de energiasnão-renováveis muito concentradas.

Na Figura 4a, pode-se observar que os sistemas A e Butilizam a mesma porcentagem de recursos pagos, apesarde utilizarem diferentes quantidades de recursos renová-veis e não-renováveis.

Linhas de Sustentabilidade: A ferramenta permite aapresentação de 3 linhas (SIi, SIj e SIk), conforme apre-sentadas na Figura 4b, para indicação dos valores cons-tantes de sustentabilidade. Essas linhas podem ser apre-sentadas independentemente e os valores escolhidos pelousuário numa faixa entre 0 e infinito. As linhas de susten-tabilidade partem do vértice N e cruzam o lado oposto aovértice, permitindo assim dividir o diagrama em áreas desustentabilidade para comparar a sustentabilidade deprocessos.

Segundo Brown e Ulgiati (2002) valores de SI meno-res que 1 são indicativos de produtos ou processos quenão são sustentáveis a longo prazo. Sistemas com valoresmaiores que 1 indicam produtos e processos que dãocontribuições sustentáveis para a economia. Sustentabi-lidade em médio prazo pode ser caracterizada por um SIentre 1 e 5 enquanto produtos e processos com sustenta-bilidade a longo prazo têm SI maiores.

Linhas de Sensibilidade Emergética: Existe a possi-bilidade de apresentação de três linhas (S

R, S

N e S

F)

conforme Figura 5, sobre as quais pode-se acompanhar a

Emergia pode ser definida como a memória

da energia ou a energia total incorporada

em um produto, processo ou serviço

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 93

Figura 3: Telas dos Aplicativos. (a) Entrada de dados. (b) Diagrama ternário e os menus de seleção.

(a)

(b)

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

94 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

variação da fonte de recursso considerada (R, N e F).Ao longo de cada linha as outras duas fontes de recur-sos mantêm a mesma proporção (propriedade daproporcionalidade). O usuário pode escolher o pontodesejado para que as linhas de sensibilidade emergética ocontenham. O seu principal uso é para a análise daevolução de processos.

Ponto Simérgico: Ainda há a possibilidade de apre-sentação de um ponto, que é denominado de pontosimérgico ou simplesmente simergia, que é definido pelacomposição de dois ou mais pontos que estejam apresen-tados no diagrama (Figura 6). O ponto simérgico pode sercalculado pela associação direta (valor médio) das emer-gias de cada classe de fonte de recursos para cada ponto

Figura 4: Diagrama triangular com (a) as três linhas de recursos e (b) as três linhas de sustentabilidadeSI

i = 1, SI

j = 2 e SI

k = 5.

Renovável

N=0,1

R=0,1

ELR=9

Não-renovável

FONTES DERECURSOS

(a)

A

B

F=0,1EYR=10EIR=0,11

SUSTENTABILIDADE

(b)

Renovável

Não-renovávelPagas Pagas

SI=1

SI=2

SI=5

Figura 5: Diagrama triangular onde aparecem as três linhas de sensibilidade emergética do ponto A1 emrelação às fontes de recursos renovável (S

R), não renovável (S

N) e pagas (S

F) e as três linhas de sensibilidade

– emergética para o ponto A2 após um aumento na fonte de recursos pagos.

SUSTENTABILIDADE ENERGÉTICARenovável

SF1

=SF2

SN1

A1

A2

SN2

SR1

SR2

Não-renovável Pagas

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 95

considerado, ou ainda, por um fator de ponderação apli-cado aos termos do valor médio, escolhido pelo usuário eselecionado de uma tabela de ponderação. O pontosimérgico está associado à propriedade de composiçãode misturas do diagrama de fases e é utilizado paradeterminar as características da combinação de dois oumais processos. A sua aplicação fica condicionada aoentendimento de que os fluxos de recursos dos várioscomponentes de um ponto simérgico são independentes.Se os fluxos não forem independentes deverá ser conside-rado somente o maior deles.

Esta última possibilidade de análise é útil quando seestuda o efeito de vários processos sobre o ambiente, porexemplo, o impacto de um parque industrial ou de um setorcomo o metalúrgico ou o de fornecimento de energiaelétrica, como veremos a seguir. O cálculo e a visualização

Figura 6: Diagrama triangular onde aparecem o ponto simérgico X e as linhas que o ligam aos pontos que ocompõem A e B.

SIMERGIA

Renovável

A

B

Não-renovável Pagas

X

imediata do impacto total de um setor só é possível com autilização da ferramenta e da propriedade que possibilita adeterminação do ponto simérgico.

APLICAÇÃO

Para efeito ilustrativo será abordado o caso de geração deenergia elétrica em seis plantas com seis diferentes fontesde recursos (eólica, geotérmica, hidroelétrica, metano, óleoe carvão). Os valores de emergia dos fluxos de recursosconsumidos pelas plantas e a produção anual de energiaelétrica de cada planta são mostrados na Tabela 1 e foramretirados da literatura (BROWN & ULGIATI, 2002;ULGIATI & BROWN, 2002). Os artigos foram escolhidosde forma a dar um cunho didático e elucidar as possibilida-des de tratamento dos dados permitidas pela ferramenta.

Tabela 1: Valores de emergia para plantas de energia elétrica (BROWN e ULGIATI, 2002).

Eólica 2,5x106 7,28x1017 0,00x1000 1,13x1017

Geotérmica 20x106 3,36x1019 4,61x1018 1,00x1019

Hidroelétrica 85x106 1,69x1019 4,45x1018 3,21x1018

Metano 171x106 2,72x1019 2,68x1020 5,28x1019

Óleo 1280x106 3,12x1020 3,32x1021 1,13x1021

Carvão 1280x106 3,68x1020 3,05x1021 7,63x1020

PLANTADE ENERGIA

ENERGIA PRODUZIDA(W/ano)

RENOVÁVEL(seJ)

PAGA(seJ )

NÃO-RENOVÁVEL(seJ )

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

96 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

A partir da Tabela 1 foram calculados os índices EYR,EIR, ELR e SI para todas as plantas de energia, conformeapresentados na Tabela 2.

Observa-se na Tabela 1 que a produção de energiaelétrica nas plantas de óleo e carvão é igual (1280MW) eo uso dos recursos renováveis e não-renováveis equiva-lente. Há uma pequena diferença nos recursos vindos daeconomia. Porém, a análise da tabela não permite umaescolha entre as duas plantas de energia, nem no queconcerne ao investimento econômico e nem quanto aouso de recursos naturais.

Os dados da Tabela 1 foram inseridos no aplicativo deentrada de dados. No diagrama da Figura 7a apresenta-mos os seis pontos obtidos, que representam as seisplantas de energia. Verifica-se que os pontos estão distri-buídos no diagrama, localizando assim cada planta emuma área de sustentabilidade. Muitas vezes é útil, noestudo de um setor ou grupo de processos ou produtos,isolar um subconjunto para que a análise fique mais fácile objetiva de ser realizada. Na Figura 7b apresenta-seoutra possibilidade da ferramenta: Pode-se selecionar,por exemplo, o subgrupo das plantas eólica, geotérmica ehidroelétrica, com a opção de apresentação dos pontoscom tamanho proporcional à relação da ordem de grande-za de Y. Caso a decisão recaia sobre implantação deplantas de energia que não utilizam combustíveis fósseisé possível compará-las isoladamente. É fácil visualizarque as plantas geotérmicas e hidroelétricas têm um valorde Y maior que a eólica.

O diagrama da Figura 7c mostra a utilização das linhas

de fontes de recursos. Observa-se que os pontos 4, 5 e 6(metano, carvão e óleo) encontram-se sobre a linha defonte de recursos R = 0,08, que indica a utilização de 8%de recursos renováveis. Considerando-se que o índiceELR (Tabela 2), que pode ser descrito pela quantidade derecursos renováveis utilizados, é a medida do impactoambiental, pode-se considerar que as três plantas teêmcaracterísticas de agressão semelhantes ao meio ambien-te, o que pode ser prontamente observado no diagrama.

Observa-se também na Figura 7c que todas as plantastêm sua componente de recursos pagos em torno de 16%

como indica a linha F = 0,16. É interessan-te notar que, tanto nas plantas que causamum grande impacto ambiental quanto na-quelas cujo impacto é menor, o investi-mento econômico é muito semelhante.Considerando-se que o índice EYR (Tabe-la 2) está fortemente atrelado à quantidadede recursos pagos, tem-se uma medida dorendimento ambiental do investimento.Todas as plantas têm esse índice entre 4,21

e 7,47, indicando estarem na faixa de fontes de recursosprimárias ou quase primárias.

No diagrama da Figura 7d estão apresentadas todas asplantas de energia e também as linhas de sustentabilidadecom valores SI = 1 e SI = 5. Verifica-se que as três plantasde produção que não utilizam combustível à base decarbono estão em uma região acima da linha de SI = 5 eas três plantas de combustíveis à base de carbono em umaregião abaixo da linha de SI = 1. Aqui a opção torna-seclara quando se deseja produzir energia elétrica de formasustentável a longo prazo.

No diagrama da Figura 7e estão apresentadas as plantasmetano e óleo e também a linha de sensibilidade emergéticaem relação à fonte de recurso paga (F). Verifica-se que asplantas estão sobre a mesma linha, significando que asproporções das fontes de recursos N e R para os dois pontosnão variam, mas somente a proporção da componente dafonte de recurso de F. Isto nos indica que entre uma ou outraopção a diferença está no investimento econômico.

Tabela 2: Índices para as seis plantas de energia elétrica, calculados com auxílio da ferramenta gráfica.

Eólica 7,47 0,16 0,16 47,9

Geotérmica 4,82 0,26 0,43 11,0

Hidroelétrica 7,65 0,15 0,45 16,8

Metano 6,59 0,18 11,79 0,56

Óleo 4,21 0,31 14,26 0,30

Carvão 5,48 0,22 10,36 0,53

PLANTA DE ENERGIA EYR EIR SIELR

Ametodologia e a ferramenta gráfica

apresentadas vêm auxiliar e

complementar os modelos hoje

empregados para a tomada de decisões.

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 97

No diagrama da figura 7f estão apresentadas as plan-tas eólica e hidroelétrica com as linhas de sustentabilida-de que as contém (SI

eólica ≅ 48 e SI

hidroelétrica ≅ 17, Tabela 2).

Além disso, é apresentado também o ponto simérgicoconsiderando um fator de ponderação de 8:1 que é arelação de produção de energia elétrica em watts entreelas (20MW para a hidroelétrica e 2,5MW para a eólica).A linha de sustentabilidade que contém o pontosimérgico tem o valor SI

EóHi = 21. A partir do cálculo de

SI das plantas eólica e hidroelétrica em conjunto, pode-se tomar decisões sobre o tipo de planta a investir,verificar qual o efeito da implantação de uma nova plantaou do aumento da capacidade de produção de uma delassobre a sustentabilidade do sistema em longo prazo.

Considerando que as plantas estudadas por Ulgiati eBrown sejam representativas dosetor de geração de energia daItália, pode-se ponderar o cálcu-lo do ponto simérgico pela ma-triz de produção de energia elé-trica italiana para o ano de 2002(PUBBLICAZIONE, 2003) ,conforme mostrado nas Figuras7g e 7h. Observa-se na Figura 7gque a produção de energia elétri-ca italiana depende fortemente das usinas termoelétricas,o que se reflete na posição do ponto simérgico naFigura 7h.

DISCUSSÃO

A análise emergética é uma ferramenta poderosa coma qual se podem analisar produtos, processos e setoresindustriais e sua interação com o meio ambiente. Entre-tanto, a comparação baseada somente em valores etabelas pode não deixar inteiramente clara a amplitudedas diferenças entre os elementos comparados. Porexemplo, embora as plantas de energia metano, óleo ecarvão (Tabela 2), tenham índices de impacto ambientalsemelhantes (ELR, Tabela 2), a observação da Figura 7cmostra ainda que as três plantas utilizam a mesmaporcentagem de recursos renováveis e que um aumentode investimento econômico não traria vantagens comrelação à sustentabilidade do sistema. Da mesma formaao se avaliar as plantas eólica e hidroelétrica com rela-ção ao rendimento emergético (EYR

eólica = 7,47 e

EYRhidroelétrica

= 7,65) e ao investimento emergético(EIR

eólica = 0,16 e EIR

hidroelétrica= 0,15), verifica-se que

ambas têm valores semelhantes para os dois indicadores(Tabela 2). A observação destes dois sistemas na Figura7c indica que estão sobre a reta de F = 0,13, o quemostra que o investimento econômico, nos dois casos, é

praticamente o mesmo. Pela posição no gráfico, pode-se ainda afirmar que a planta eólica tem característicasde sustentabilidade superiores à hidroelétrica.

Um outro aspecto interessante que pode ser ressalta-do é a característica da relação entre as fontes de recur-sos. Por exemplo, a Tabela 1 mostra os valores de R, N eF para as plantas de metano e óleo. Com o auxílio da linhade sensibilidade emergética, mostrada na Figura 7e, ficaevidente que a relação entre as de fontes de recursosrenovável e não-renovável mantêm-se de uma plantapara outra, enquanto só há variação na relação da compo-nente de fonte de recurso paga. Isto indica que, para umamesma utilização dos recursos locais renováveis ou não,necessitamos de mais recursos pagos na planta de óleo doque na de metano.

É comum encontrar situações em que processos, comoos exemplificados, representam a evolução de um pro-cesso ao longo do tempo, indicando a tendência do pro-cesso e fornecendo base para ações quer sejam de refor-ço, quer sejam corretivas do mesmo.

A utilização do ponto simérgico é uma abordagemque só é possível com a utilização da ferramenta gráficae que se torna bastante interessante ao permitir a obten-ção das características de todo um conjunto. Pode-seaplicar esse conceito para, por exemplo, a análisesetorial de uma determinada área da economia ou, ain-da, um pólo industrial geograficamente confinado. Parailustrar essa análise, considerando as plantas de energiana Figura 7h, como representativas do parqueenergético italiano, cada uma com o seu processo pro-dutivo próprio, verificamos que os valores do índice desustentabilidade de cada uma delas têm valores muitodiferentes (Tabela 2). A análise do índice de sustentabi-lidade para o conjunto das seis plantas, calculada apartir da média (SI

Médio = 12,9) ou da média ponderada

considerando a produção de cada planta (SImédia ponderada

=3,66), não tem significado a não ser o matemático. Poroutro lado, com a utilização do cálculo do pontosimérgico, que considera a produção de cada uma dasunidades na utilização dos recursos R, N e F, pode-secalcular o valor do índice de sustentabilidade do siste-ma (SI

sistema = 0,59). A utilização deste conceito pode,

Aferramenta combina o rigor científico

da análise emergética com a praticidade

da utilização dos diagramas ternários, já

comprovada em várias áreas do conhecimento.

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

98 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

Figura 7: Diagrama Triangular: (a) plantas de energia elétrica; (b) subgrupo das plantas que não utilizamcombustíveis fósseis; (c) linhas de R constante e F constante; (d) linhas de sustentabilidade; (e) linha desensibilidade emergética em relação ao fluxo F; (f) ponto simérgico; (g) matriz energética da Itália; (h) pontosimérgico das plantas de energia elétrica ponderadas pela matriz de produção italiana.

04.1 Plantas de energia eMe

Renovável

(a)

Não-renovável Pagas

1 - Eólica2 - Geotérmica3 - Hidroelétrica4 - Metano5 - Óleo6 - Carvão

04.1 Plantas de energia eMe

Não-renovável Pagas

(b)

Renovável

1 - Eólica2 - Geotérmica3 - Hidroelétrica

04.1 Plantas de energia eMe

Renovável

(c)

Não-renovável Pagas

1 - Eólica2 - Geotérmica3 - Hidroelétrica4 - Metano5 - Óleo6 - Carvão

04.1 Plantas de energia eMe

Renovável

(d)

Não-renovável Pagas

1 - Eólica2 - Geotérmica3 - Hidroelétrica4 - Metano5 - Óleo6 - Carvão

04.1 Plantas de energia eMeRenovável

04.1 Plantas de energia eMe

Renovável

4 - Metano5 - Óleo

Não-renovável Pagas

(e)

Não-renovável Pagas

1 - Eólica3 - Hidroelétrica

Não-renovável Pagas

(f)

(h)Geotérmico0,80%

(g)Hidroelétrico 27,70%

Eólico-Solar 0,30%

Termoelétrico 71,20%

EólgeHiMeÓlCa

1 - Eólica2 - Geotérmica3 - Hidroelétrica4 - Metano5 - Óleo6 - Carvão

Renovável

04.1 Plantas de energia eMe

4 5

4 5R=0,08ELR=11,5

3 2

1

F=0,16EYR=6,25EIR=0,19

3 2

1

45

6

1

23

1

23SI=5

SI=1

6

45

3

SI=48SI=21

SI=17

1

EóHi

1

23

56

4

Fonte: Relatório anual do governo italiano, 2003.

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 99

por exemplo, auxiliar o legislador a definir regras, nor-mas e leis para regulamentações de setores.

CONCLUSÃO

A metodologia e a ferramenta gráfica apresentadasvêm auxiliar e complementar os modelos hoje emprega-dos para a tomada de decisões. Pode-se verificar que aspossibilidades de análise e simulação com base na conta-bilidade emergética utilizando o suporte do diagramatriangular são infindáveis. Por meio da análise de susten-tabilidade pode-se simular ações, como o aumento deinvestimento ou a troca de matéria-prima, e prever ospossíveis impactos ambientais gerados por estas ações.Evita-se, assim, que a tomada de decisões no âmbito daprodução gere efeitos não desejados, tanto para o ambi-

ente como para a própria empresa.A ferramenta combina o rigor científico da análise

emergética com a praticidade da utilização dos diagramasternários, já comprovada em várias áreas do conhecimen-to, como a físico-química, a mineralogia e a metalurgia. Arepresentação gráfica facilita a interpretação dos dadospara engenheiros e administradores, auxiliando e acele-rando as tomadas de decisão, e é uma ferramenta útil paramostrar avanços e melhorias de produtos e processos parainvestidores, podendo ser, também, utilizada para facilitara interpretação de relatórios públicos ambientais.

Administradores, do setor público e privado, e empre-sários poderão aplicar a ferramenta para gerenciar emonitorar recursos disponíveis de forma compatível coma vocação ecológica e com a capacidade real para suasustentabilidade.

Artigo recebido em 00/00/0000Aprovado para publicação em 00/00/0000

ALBERTI, M.; CAINI, L.; CALABRESE,A.; ROSSI, D. Evaluation of the costsand benefits of an environmentalmanagement system. InternationalJournap. 4455-4466, 2000.

AZZONE, G . ; BERTELE , U .Exploit ing green strategies forcompet i t i ve adavantages . L ongRange Planning, v. 27, n. 6, p. 69-81, 1997.

BAKSHI B.R. A thermodynamicframework for ecologically conciousprocess system engineering.Computers and Chemical Engineering,24, p. 1767-1773, 2000.

BARRERA-ROLDÁN A.; SALDÍVAR-VALDÉS A. Proposal and applicationof a Sustainable Development Index.Ecological Indicators, 2, p. 251-256,2002.

BASTIANONI S.; MARCHET TINI N.Emergy/exergy ratio as measure ofthe leve l o f organizat ion ofsystems. Ecological Modelling, 99 ,p. 33-40, 1997.

BASTIANONI S.; MARCHET TINI N.Environmental cost and state: theproblem of adiabatic ity in theemergy value. Ecological Modelling,90, p. 33-37, 1996.

BASTIANONI S.; MARCHET TINI N.The problem of co-production inenvironmental accounting byemergy analys is . Ecologica lModelling, 129, p. 187-193, 2000.

BJÖRKLUND J.; GEBER U.; RYDBERGT. Emergy analysis of municipalwastewater treatment andgenerat ion of e lectr ic i ty bydigest ion of sewage s ludge.Resources, Conservation and Recycling,31, p. 293-316, 2001.

BROWN M. T.; ULGIATI S. EmergyEva luat ions and Envi ronmenta lLoading of Electricity ProductionSystems. J Cleaner Prod, 10, p. 321-334, 2002.

BROWN M.T.; McCL ANAHAN T.R.Emergy analysis perspectives ofThailand and Mekong River damproposals. Ecological Modelling, 91,p. 105-130, 1996.

FATH B.D.; PATTEN B.C.; CHOI J.S.,Complementarity of Ecological GoalFunctions. Journal Theor. Biol., 208,p. 493-506, 2001.

FEDERICI M.; ULGIATI S.; VERDESCAD. ; BASOSI R . E f f i c ienc andsusta inabi l i ty indicators forpassenger and commodit iestransportation systems. EcologicalIndicators, 3, p. 155-169, 2003.

GEBER U. ; B JÖRKLUND J . Therelationship between ecosystemservices and purchased input inSwedish wastewater t reatmentsystems – a case study. EcologicalEngineering, 18, p. 39-59, 2001.

HORNBORG A. Comentary: Towards enecological theory of unequal exchange:articulating world system theory andecological economics. EcologicalEconomics, 25, p. 127-136, 1998.

GUPTA, M. C. Environmentalmanagement and its impact on theoperations functions. InternationalJournal of Operations & ProductionManagement, v. 6, n. 4, p.6-16, 1995.

� Referências Bibliográficas

BROWN M.T.; S. ULGIATI. Emergy-based ind ices and ra t ios toevaluate sustainability: monitoringeconomies and technology towardenvironmentally sound innovation.Ecological Engineering, 9, p. 51-69,1997.

BYRNE M. R. ; POLONSK Y M. J . ,Impediments to consumer adoptionof susta inable t ransportat ion,International journal of Operations& P roduct ion Management , 21(2001) 1521-1538.

CASTELLAN G.W., “Físico Química1”, Livros Técnicos e CientíficosEditora S.A., (1984) 363-365

CLEVELAND C.J.; KAUFMANN R.K.;STERN D.I., Aggregation and therole of energy in the economy,Ecological Economics, 32 (2000)301-317.

CONSTABLE, J. C. DAVID; CURZONS,ALAN D.; CUNNINGHAM, VIRGINIAL. Metrics to ‘green’ chemistry -which are the best? , GreenChemistry, 4 (2002) 521-527.

Flávio A. Barrella; Cecília M. Villas Boas de Almeida; Biagio F. Giannetti

100 Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005

SHU-LI HUANG; WAN-LIN HSU.Materials flow analysis and emergyevaluation of Taipei ’s urbanconstruction. Landscape and UrbanPlanning, 63, p. 61-74, 2003.

SILVA B.A. Contabilidade e Meio Am-biente: Considerações teóricas e prá-ticas sobre o controle dos gastosambientais. São Paulo: AnnablumeEditora, 2003.

SPANGENBERG J.H.. Environmentalspace and the prism of sustainability:frameworks for indicators measuringsustainable development, EcologicalIndicators, 2, p. 295-309, 2002.

TON S.; ODUM H.T.; DELFINO J.J.Ecological-economic evaluation ofwetland management alternatives,Ecological Engineering, 11, p. 291-302,1998.

ULGIATI S.; BROWN M. T. Quantifyingthe environmental support fordilution and abatement of processemissions – The case of electricityproduction. J Cleaner Prod, 10, p. 335-348, 2002.

ULGIATI S.; BROWN M.T., Monitoringpatterns of sustainability in naturaland man-made ecosystems. EcologicalModelling, 108, p. 23-36, 1998.

ULGIATI S. ; BROWN M.T.; S.BASTIANONI; N. MARCHET TINI,Emergy-based indices and ratios toevaluate the sustainable use ofresources. Ecological Engineering, 5, p.519-531, 1995.

ULGIATI S.; ODUM H.T.; BASTIANONIS. Emergy use, environmentalloading and sustainabi l i ty : Naemergy analysis of Italy, 73, p. 215-268, 1994.

WALLEY, N. e WHITEHEAD, B. “It’snot easy being green”. HarvardBusiness Review, vol 72, n. 3, p. 46-52, 1994.

HART, S. A natural resource basedv iew of the f i rm. Academy o fManagement Review, v. 20, n. 4, p.986-1014, 1995.

HEIZER, J.; RENDER B. Productionand operat ion management :strategic and tactical decisions.Prentice Hall, Englewood Cliffs, NJ,1996.

HOWINGTON T.M.; BROWN M.T.;WIGGINGTON M. E f fect o fhydrologic subs idy on se l f -organizat ion of a constructedwet land in Centra l F lor ida .Ecological Engineering, 9, p. 137-156,1997.

JACOBSON, REED; Microsoft Excel2002 Visual Basic for ApplicationsPasso a Passo, Makron Books, 326,2002

JORGENSEN S.E. ; NIELSEN S.N. ;MEJER H. Emergy, environ, exergyand ecological modelling. EcologicalModelling, 77, p. 99-109, 1995.

KL AS SEN, R . D. Explor ing thel inkage between investment inmanufacturing and environmentaltechnologies. International Journalo f Operat ions & P roduc t ionManagement, v. 20, n. 2, p. 127-147,2000.

LEFROY E. ; RYDBERG T. Emergyeva luat ion of three croppingsystems in southwestern Australia.Ecological Modelling, 161, p. 195-211, 2003.

LOPES E. et al. Application of LifeCycle Assessment to the PortuguesePulp and Paper Industry. J. CleanerProd., 11, p. 51-59, 2003.

MANOLIADIS, ODYS SEUS G.Development of ecologica lindicators -a methodologica lf ramework us ing compromiseprogramming. Ecological Indicators,2, p. 169-176, 2002.

MARTIN J.F. Emergy valuation ofdiversions of river water to marshesin the Mississipi River Delta.Ecological Engineering, 18, p. 265-286,2002.

MAXWELL, J., ROTHENBERG, S.,BRISCOE, F.; MARCUS, A. Greenschemes: corporate environmentalstrategies and their implementation”,California Management Review, v. 39, n.3, p. 118-34, 1997.

ODUM H.T. Env i ronmenta lAccount ing – EMERGY andEnvironmental Decision Making.Ed. John Wiley & Songs Ltd., 370,1996.

ODUM H.T. Emergy evaluation of anOTEC electrical power system,Energy, 25, p. 389-393, 2000.

ODUM H.T.; PETERSON N. Simulationand evaluation with energy systemsblocks. Ecological Modelling, 93, p.155-173, 1996.

PANZIERI M.; MARCHET TINI N.;HALL AM T.G. Importance of theBradhyrizobium japonicum symbiosisfor the sustainability of a soybeancultivation. Ecological Modelling, 135,p. 301-310, 2000.

PATTEN B.C., Network integration ofecological extremal principles:exergy, emergy, power, ascendency,and indirect effects. EcologicalModelling, 79, p.75-84, 1995.

POPP J . ; HOAG D.; HYAT T D. E.Sustainability indices with multipleobjectives. Ecological Indicators, 1,p. 37-47, 2001.

PORTER M.; LINDE VAN DER C. Greenand Competitive, Harward BusinessReview, p. 120-134, Set/Out, 1995.

PORTER M.; LINDE VAN DER C.Toward a new conception of theenvironment competitivenessrelantionship, J. Econ. Perspect., 9,p. 97-118, 1995.

PUBBLICAZIONE della Presidenza delConsiglio dei Ministri - Dipartimentoper l ’ Informazione e l ’EditoriaDirettore: Mauro Mais –Coordinamento editoriale AugustaBusico - Stampa e diffusione IstitutoPoligrafico e Zecca dello Stato S.p.A.– Salário Roma, 2003

ROMAN, STEVEN. “DesenvolvendoMacros no Excel”. Ciência Moderna,569, 2000

RONCHI E.; FEDERICO A. e MUSMECIF. A system oriented integratedindicator for sustainabledevelopment in Italy. EcologicalIndicators, 2, p. 197-210, 2002.

ROOS, NELSON. “Visual Basic forWindows Versão 3.0”, Makron Books,390, 1994

RYDBERG T.; JANSÉN J. Comparisonof horse and tractor traction usingemergy analysis, EcologicalEngineering, 19, p. 13-28, 2002.

SARKIS, J. “Manufacturing strategyand environmental conciousness”,Technovation, v. 15, n. 2, p. 79-97,1995.

SHARMA, S. e VREDENBURG, H.“Proactive corporate environmentalstrategy and the development ofcompetitively valuable organizationalcapabilities”. Strategic ManagementJournal, v. 19, n. 8, p. 729-753, 1998.

SEAGER T. P.; THEIS T. L. A uniformdefinition and quantitative basis forindustrial ecology. Journal of CleanerProduction, 10, p.225-235, 2002.

SHEN, T. T. Industrial PollutionPrevention, Berlin: Springer-Verlag,1995.

SHRIVASTAVA, P. Environmentaltechnologies and compet i t iveadvantages. Strategic ManagementJournal , v. 19, n. 3, p. 183-200,1995.

SHU-LI HUANG. Urban ecosystems,energetic hierarchies, and ecologicaleconomics of Taipei metropolis,Journal of Environmental Management,52, p. 39-51, 1998.

� Referências Bibliográficas

Ferramenta para Tomada de Decisão Considerando a Interação dos Sistemas de Produção e o Meio Ambiente

Revista Produção, v. 15, n. 1, p. 087-101, Jan./Abr. 2005 101

� Agradecimentos

Os autores agradecem à Vice-Reitoria de Pesquisa e Pós Graduação pelo apoio a este trabalho e ao Dr. Ian Olsson(Oskarhamn, Suécia) pelas proveitosas discussões e valiosas sugestões. A ferramenta apresentada ainda está em faseinicial de desenvolvimento e, portanto, deverá ser testada o maior número de vezes possíveis, permitindo que as suasfuncionalidades possam ser revisadas e alteradas, otimizando as tomadas de decisões que nela se apóiam. Os autoresdisponibilizam a ferramenta para os interessados e agradecem qualquer colaboração que possa surgir, com sugestões ecríticas, que possa de alguma forma ajudar a aprimorá-la.

Flávio A. BarrellaUniversidade Paulista – UNIPMestrando do curso de Engenharia de Produção – Produção e Gestão Ambiental – Produção e Meio Ambiente e Ciência eProdução mais Limpa.End.: Rua Lenine Severino, 89 – São Paulo – SP – CEP 05353-230Tel.: (11) 3714-6992Cel.: (11) 9948-9885E-mail: [email protected]

Cecília M. Villas Boas de AlmeidaUniversidade Paulista – UNIPProfa. Dra. do curso de mestrado de Engenharia de Produção – Produção e Gestão Ambiental – Produção e Meio Ambiente eCiência e Produção mais Limpa.End.: Rua Dr. Bacelar, 1212 – Saúde – São Paulo – SP – CEP 04028-002Tel.: (11) 5586-4127E-mail: [email protected]

Biagio F. GiannettiUniversidade Paulista – UNIPProf. Dr. do curso de mestrado de Engenharia de Produção – Produção e Gestão Ambiental – Produção e Meio Ambiente eCiência e Produção mais Limpa.End.: Rua Dr. Bacelar, 1212 – Saúde – São Paulo – SP – CEP 04028-002Tel.: (11) 5586-4127E-mail: [email protected]