Femtosecond Optical Synchronization System for FLASH

25
Femtosecond Optical Synchronization System for FLASH Achievements and challenges during the first implementation phase of an engineered version in the accelerator Matthias Felber - DESY for the LbSyn Team CLIC09 Workshop, CERN 15.10.2009 V. Arsov, M. Bock, P. Gessler, K. Hacker, F. Löhl, H. Schlarb, B. Schmidt, S. Schulz, A. Winter

description

Femtosecond Optical Synchronization System for FLASH. Achievements and challenges during the first implementation phase of an engineered version in the accelerator. Matthias Felber - DESY for the LbSyn Team CLIC09 Workshop, CERN 15.10.2009. - PowerPoint PPT Presentation

Transcript of Femtosecond Optical Synchronization System for FLASH

Page 1: Femtosecond Optical Synchronization System for FLASH

Femtosecond Optical Synchronization System for FLASH Achievements and challenges during the first implementation phase

of an engineered version in the accelerator

Matthias Felber - DESYfor the LbSyn Team

CLIC09 Workshop, CERN15.10.2009

V. Arsov, M. Bock, P. Gessler, K. Hacker, F. Löhl,H. Schlarb, B. Schmidt, S. Schulz, A. Winter

Page 2: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 2

Agenda

> Short Introduction to FLASH

> Synchronization Needs and System Layout

> The Basic Components of the System

> Arrival Time Measurements and Feedback

> RF Generation from Optical Pulse Train

> Closing Remarks

Page 3: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 3

FLASH – Free Electron LASer Hamburg

> Started as test facility for the TESLA project

> Superconducting cavities at 1.3 GHz (~25 MV/m)

> 3rd Harmonic Module at 3.9 GHz

> Two dispersive sections for high peak currents

> First user facility for VUV and soft X-ray laser pulses

> Photon pulses have few 10 fs length

> Pump-Probe experiments require synchronization on a 10 fs scale

machine layout after shutdown: March 2010

Page 4: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 4

Synchronization needs in an FEL facility

RF requirements for 10 fs arrival stability: < 0.005° @ 1.3 GHzA/A < 1.6*10-5

> Goal

Measure and stabilize (feedback) timing jitter + drifts

Lock various lasers (pump-probe, diagnostic, seed, …) on a 10 fs scale

Provide extremely stable RF reference signals

> Main sources for arrival-time changes

Arrival-time of the photo cathode laser pulses

Phase of the RF gun

Amplitude and phase of the booster module(s)

Master Clock

Pump-probe laserSeed laserPhoto cathode laser

Beam Diagnostics

Booster Modules Undulator

Page 5: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 5

Layout of the synchronization system

The reference timing information is encoded in the precise repetition rate of an optical pulse train

Each RF Station…….…

Splitting (16 Outputs)

Optical to

Optical

Optical to RF

Optical to RF

InjectorLaser

Low Level RF

Low Level RF

Beam Diag-nostic

….…BAM / EBPM

LINACGUN

Optical to

Optical

DiagnosticLasers(EOS, TEO)

Undulator

Optical to

Optical

Seed Laser

Pump-Probe Exp.

Optical to

Optical

Probe Laser

Master Laser

Oscillator

RF to Optical

RF Master

Oscillator

Fiber Links (≤ 300 m)

Laser Source lockedto machine reference

Distribution and active length stabilization

Page 6: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 6

Schematic of the optical synchronization system at FLASH

BC

SASE-Undulators

BC

RF gun

THz

TEO

MO

• beam based feedback stabilization of arrival-time• high precision synchronization of lasers • synchronization of all timing critical devices (up to 14)

Point-to-point synchronization ~ 10 fs rms (< 30 fs rms to beam) Permanent operation and long term stability / availability investigation

Laser buildingEO, HHG and

ORS

EBPMBAM

L2L

BAM

EBPM

BAM PP-laser

MLO

MLO

BAM

L2RF

DWC

L2L

Seed

Beam arrival monitor

ORS

L2L

L2L

L2L

L2L

L2RFDWC BAM

BAML2RFDWC

Seed

Seed

Experiment sFLASH

Dis

trib

uti

on

HHG

Photo-cathode

Laser

Laser to laser synchronization

Direct laser seeding

High precision downconverter

Laser to RF conversion

EBPM Energy BPM

Page 7: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 7

> Optical table (full expansion state)

two MLOs for redundancy

free-space distribution

four fiber (EDFA) distribution units

up to 14 link stabilization units (‘Fiber Links‘)

RF-lock unit for MLO

RF based link stabilization unit

> Four electronic racks

four VME crates (in future TCA)

18 DSP controls (feedback loops)

18 piezo drivers (± 300 V)

20 pump laser diode drivers

16 stepper motor drivers

> 40 temperature readouts

tons of monitor signals

~ 300 cables to/from optical table

The synchronization lab at FLASH

Page 8: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 8

Master laser oscillator (MLO)

1st generation MLO 2nd generation MLO 3st generation MLO

Original design: J. Chen et. al., Opt. Lett. 32, 1566-1568 (2007)

Courtesy F. Loehl, S. Schulz, A. Winter

‘Plan B‘ MLO

> Properties

mode-locked erbium-doped fiber laser

1550nm telecommunication wavelength

repetition rate of 216.66 MHz (1.3 GHz /6)

average power > 60 mW

pulse duration < 100 fs (FWHM)

Integr. timing jitter ~15 fs [1 kHz, 10 MHz] (limited by measurement)

amplitude noise < 2 10-4 [10 Hz, 40 MHz]

NPR type laser maybe not the best solution?

Page 9: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 9

Distribution to up to 16 outputs

> Properties

baseplate made of Invar

two free space inputs, 16 collimator outputs

same pathlength for each output

4-5 mW per output

~ 85% incoupling efficiency at all collimators

S. Schulz, FEL09, WEPC72

Page 10: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 10

Fiber link stabilization

216 MHzEr-dopedfiber laser

end station

J. Kim et al., Opt. Lett. 32,

1044-1046 (2007)

Courtesy F. Loehl

Page 11: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 11

Balanced optical cross-correlator (OCC)

(Development in collaboration with MIT)

F. Loehl, FEL08, THBAU02

link 1link 2

time

S. Schulz, FEL09, WEPC72

S. Schulz, FEL09, WEPC72

Page 12: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 12

Beam arrival-time monitor (BAM)

sampling times of ADCs

4.7 ns(216 MHz)

ADC1 (108 MHz)ADC2 (108 MHz)

Patented 2006 by DESYF. Loehl, PhD thesis, DESY-THESIS-09-031, 2009M. Bock, FEL09, WEPC66

Page 13: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 13

Arrival time difference contains:• high frequency laser noise (~3 MHz – 108 MHz)• stability of two fiber links• two BAMs

Single bunch resolution of entire measurement chain: < 6 fs (rms)

uncorrelated jitterover 4300 shots:8.4 fs (rms)

Arrival time correlation between two BAMs

F. Loehl, PhD thesis, DESY-THESIS-09-031, 2009

Page 14: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 14

Beam based injector feedback

Machine parameter: Monitor:

Arrival-time of PCL 1st arrival time monitorPhase of RF gun difference 1st and 2nd arrival-time monitorAmplitude of booster EBPM + BPMs / difference 3rd and 2nd arrival-time monitor (/ SLM)

Phase of booster module (bunch compression monitor / fiber laser + EO)

M. Bock, FEL09, WEPC66

RF Gun

Photo Cathode Laser (PCL)Energy BPM

(EBPM)

1

2

arrival-time monitors

BPMs bunch compr. monitor

synchrotronlight monitor SLM

3Booster

> Goal: Achieve stable arrival time, energy and compression

> Need: Many (different) monitor systems and complex regulation algorithms needed

Page 15: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 15

Intra bunch-train arrival time feedback

1200 shots:

F. Loehl, FEL08, THBAU02

Intra-pulse arrival jitter reduction by a factor of 5!

Page 16: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 16

RF generation from optical pulse train

> Direct Conversion

+ Drift: 10.7 fs over >15 h @ 1.3 GHz (M. Felber, PAC09, TH6REP088)

+ Jitter: 3.3 fs [1kHz,10MHz] @ 3 GHz (S. Hunziker, DIPAC09, TUPB43)

+ small and robust

+ 10 mW Popt sufficient

+ relatively cheap (<2k€)

− Small output power vs. amplifier drift

− Amplitude to phase conversion: 1-4 ps/mW

− Temperature dependency ~350 fs/°C

0 1 2 3 4 5 6 7-80

-70

-60

-50

-40

-30

-20

-10

0

Freq [GHz]

Pow

er [

dBm

]

RF Spectrum @ EF-3500F

ER80-8/125 70cm

ER110-4/125 79cmSMF

gating lower frequencies

here: small bandwidth PD

Page 17: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 17

RF generation from optical pulse train

J. Kim et al., Nature Photonics 225: 733-736, 2008

RF Out

> Balanced optical-microwave phase detector PLL feedback loop

High power output (amplifier can be included in feedback)

Balanced scheme potential for ultra-low drift: <7 fs over 7 h (M. Felber, PAC09, TH6REP088)

Page 18: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 18

Many more projects at LbSyn…

> RF-based fiber (short)link stabilization

RF based measurement of link length change <5 fs over 50 h (J. Zemella, FEL09, FROA05)

> Two-color optical cross-correlator

locking lasers of different wavelength, e.g. Ti:Sa (800 nm) (S. Schulz, PAC09, TH6REP091)

> Energy BPM (EBPM)

use orbit dependency of pickup signal in chicane + two BAM setups (K. Hacker, FEL09, WEPC70)

> …

Page 19: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 19

Requirements for developing a synchronization system

> Infrastructure Environment

Temperature stabilizationVibration suppressionEMI shielding

Typical laboratory equipment

Optical spectrum analyzerAutocorrelatorRF Phase- and amplitude noise analyzerBaseband analyzerFast scopes (≥8 GHz)RF spectrum analyzer (≥26 GHz desired)Splicer + PM splicing equipmentetc…

> Engineering skills

Optics (Free space- and fiber)Electronics (low noise analog / fast digital)FPGA programmingSoftware (Control system integration / feedback)Mechanical (small and precise / big and robust)RF

> Time, Money and Manpower

Page 20: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 20

Summary & Outlook

> Prototypes for all subsystems have been built and demonstrated <10 fs stability

> Engineered versions of key components have been developed, some with major problems (MLO), some with good performance (Links)

> At FLASH, the system is in the commissioning phase (2 MLOs, 4 Link stabilizations, 3 BAMs, and 1 EBPM in operation)

> Robustness and long-term (>month) reliability tests underway

> Installation of two more BAMs planned, till the end of the current shutdown (March 2010)

> Still a lot of development to do…

Page 21: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 21

Thank you for your attention!

During the past five years many fruitful collaborations contributed to the progress

Page 22: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 22

Backup

Page 23: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 23

BAM Layout

Courtesy M. Bock

Page 24: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 24

BAM measurements – arrival time dependencies

Most criticalat FLASH4.8 ps/%

Gun

Acc1

Acc23Acc456 no effect

Amplitude Phase

M. Bock et al., FEL09, WEPC66

Page 25: Femtosecond Optical Synchronization System for FLASH

Matthias Felber | Femtosecond Optical Synchronization System for FLASH | CLIC09 Workshop, CERN | 15.10.2009 | Page 25

BAM bunch train measurement - no arrival time feedback

Shot-to-shot fluctuations and intra bunch train pattern

Courtesy: F. Loehl