Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for...

26
ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities in Synchrotron Light Sources ESRF Workshop March 2000 Work supported by DOE Contract DE-AC03- 76SF00515

Transcript of Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for...

Page 1: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Feedback Systems for Synchrotron

Light Sources

J. Fox

Stanford Linear Accelerator Center

Mastering Beam Instabilities in Synchrotron LightSources

ESRF Workshop March 2000

Work supported by DOE Contract DE-AC03-76SF00515

Page 2: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Y

Talk Outline

I Instabilities, and Feedback principles

Feedback requirements

II. Technical Challenges

Pickups, Kickers

Signal processing options

Gain Limits, Noise effects

III. Example Implementations

ALS, PEP-II/ et al, CESR, KEK-B

IV. Evaluating System performance and Margins

Examples from PEP-II, DAFNE, ALS and BESS

III. Summary

Page 3: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

r?

Feedback Principles - GeneralOverview

Principle of Operation

Longitudinal - measure - correct E

Transverse - measure ( , ) - kick in ,

Technical issues

Loop Stability? Bandwidth?

Pickup, Kicker technologies? Required output powe

Processing filter? DC removal? Saturation effects?

Noise? Diagnostics ( system and beam)?

δφ

δX δY X' Y'

sensornoise

processnoise

zw

u Controller

G

Hy

v

Beam

Page 4: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Harmonic Oscillators, Revisited

Equation of motion

where

Damping term proportional to

x γ x ω02

+ + f t( )=

ω0km----=

γ x

0 5 10 15 2010

−1

100

101

Frequency, kHz

Ma

gn

itud

e

0 5 10 15 20−200

−150

−100

−50

0

Frequency, kHz

Ph

ase

, d

eg

ree

s

0 0.2 0.4 0.6 0.8 1 1.2 1.4−6

−4

−2

0

2

4

6x 10

4

Time, ms

Am

plit

ud

e

Impulse response

Page 5: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

e

Normal Modes, Revisited

N coupled Oscillators,N Normal Modes

Driving term provides coupling

Broadband ( all-mode) vs. Narrowband Feedback

Time Domain vs. Frequency Domain formalism

• Pickup, Kicker signals the same

• Bandwidth Constraints identical

An all-mode frequency domain system ( with uniformgain) is formally equivalent to a bunch-by-bunch timdomain system - identical transfer functions

Page 6: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

rs

Technical Challenges

Short interbunch Interval

• KEK-B, ALS, BESSY, PLS- 2 ns, DAFNE 2.7 ns,PEP-II 4.2 ns

• requires wideband pickups, kickers

• sets required processing bandwidths

• Resolution - oscillation rms 0.6 picosecond

Many Bunches ( many unstable modes)

• KEK-B 5120, PEP-II 1746

• Need to compactly implement bunch by bunch filte

Ratio of Frev to Fosc

• Nyquist limit Fosc< 1/2 Frev

• Betatron Oscillations grossly undersampled

• Synchrotron oscillations typically oversampled

• low synchrotron frequency sets scale of requiredfilter memory

Delay-bandwidth product - implementation choices

Page 7: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

vrls

Filter Implementation Options

Terminology

• Time domain - bandpass bunch by bunch filters

• frequency domain - modal selection, notch at FreSampling process suggests discrete time filter ( filtegenerates correct output phase, limits noise, controsaturation)

General form of IIR filter ( infinite impulse response)

General form ofFIR filter ( finite impulse response)

Analog Approach -

• N parallel mode by mode filters - or -

• FIR/IIR from analog delay ( electrical, opticalacoustic)

• Taps ( multiplication of coefficients), SummationDigital approach

A/D at Fbunch, DSP FIR/IIR filter, D/A at Fbunch

yn akyn k– bkxn k–k 0=

M

∑+

k 1=

N

∑=

yn bkxn k–k 0=

M

∑=

Page 8: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Baseband transfer function

Baseband Filter transfer function

( each bunch sees this control filter)

Maximum gain at Synchrotron frequency

zero DC gain

Phase tailored for proper feedback phase and loopstability

Page 9: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

RF transfer function

Total RF transfer function

(superposition of all individual bunch filters)

Zero gain at revolution harmonics

maximum gains at n*Frev +/- synchrotron frequency

Page 10: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

)

IR

Existing/Example Feedback Systems

DESY - Kohaupt et al. ( transverse and longitudinal

• 96 ns bunch spacing - 70 bunches - 3 tap digital F

UVSOR ( Japan) - Kasuga et al. (longitudinal)

• 16 bunches - 16 analog filters with multiplexing

NSLS - Galayda, et al ( transverse)

• 2 tap analog FIR (“correlator filter”)

CESR - Billing, et al ( transverse and longitudinal)

• 16 ns bunch spacing, digital FIR filter

ALS - Barry, et al ( transverse)

• 2 ns bunch spacing -2 tap analog FIR filter

• quadrature pickups, sum for phase shift

PEP-II/ALS/DAFNE - Fox, et al (longitudinal)

• 2 - 4 ns bunch spacing, 120 - 1746 bunches

• general purpose DSP processing

KEK-B - Tobiyama, et al (transverse, longitudinal)

• 2 ns spacing, 5120 bunches, 2 tap digital FIR

Page 11: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities
Page 12: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

DESY

Page 13: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities
Page 14: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

ALS Transverse FeedbackImplementation

From W. Barry

Analog 2-tap FIR filter for DC orbit suppression

Quadrature processing via 2 pick-ups

Page 15: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

)

PEP-II/DAFNE/ALS

Phase Detection at 3*RF

General-Purpose DSP farm ( 40 - 80 processors)

QPSK-AM output modulator ( 9/4, 11/4 or 13/4 * RF

Kicker Structure

Comb Generator

Timing & Control

Beam Bunches

BPM

ExternalDriveInput

BunchError

Farm of DigitalSignal

Processors

QPSKModulator

Kicker Oscillator1.125 GHz

Phase-locked to Ring

Master OscillatorPhase-locked

at 6*RF of Cavity

Poweramp

Ho

ld-B

uff

er

D/A

A/D

Do

wn

sam

ple

r

DSP

X Low-pass Filter

10-96 8146A1

+

Page 16: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Six Bunches and associated longitudinalkicks

2 ns bunch spacing

Baseband risetime 320 ps

(2ns/div)

QPSK-AM modulation

Page 17: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities
Page 18: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

,

.

0

Kicker Implementations

Transverse-

Essentially all striplines. Length limited by bunchspacing. Operation at baseband ( except for KEK-Busing two sets of kickers/amplifiers)

Cornell ( CESR) has clever short-circuited design tokick counter-propagating beams. Also clever duty-cycle modulated kicker driver, as apposed to linearamplifier drive

Amplifiers - baseband ( 100kHz - 230 MHz)

Longitudinal - Several designs

Ceramic Gap ( UVSOR) - modest shunt impedance

Loaded (damped) Cavity - Designed by LNF-INFN,used by DAFNE, BESSY ( KEK-B?). Easy to cool.Needs circulator. Reasonable shunt impedance

Drift-tube structures - designed by LBL BeamElectrodynamics Group, used by ALS, PLS, PEP-IIUseful in-band directivity. Cooling issues for amperecurrents

Operating in 1 - 1.5 GHz band. GaAs power amps ( 20- 500 W), also TWT power stages ( 200 W)

Page 19: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Beam Quality (ALS)

Page 20: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

Undulator Spectrum

Thanks to Tony Warwick ( ALS) for UndulatorSpectrum

680 685 690 695 700 705 710 715 7200

1

2

3

4

5

6x 10

−9 Undulator Spectrum − Feedback on (−),off(− −)

Energy ( eV)

No

rma

lise

d O

ptic

al I

nte

nsi

ty (

arb

. u

nits

)

ALS 5th Harmonic Undulator Spectrum 108 mA 84 bunch pattern

Page 21: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

ng

ts

w-ing

)

,s

g

nd

Evolution of DSP-based Diagnostics

Original motivation - stabilize coupled-bunch instabilities

• Engineering-level system checks• Identification of unstable eigenmodes, growth/dampi

rates at full design currents• Beam Pseudospectra, Grow/Damp Modal Transien

Second-tier diagnostics

• Predictions of high-current unstable behavior from locurrent stable machine measurements (growth/damprates at design current estimated from low-currentcommissioning data)

• beam instrumentation - bunch by bunch currentmonitor, tune monitor, bunch power spectrum (noisemonitor

• Synchrotron tune vs. bunch number - gap transientstune spread, Landau damping - instability thresholdfor various configurations

• Longitudinal impedance vs. frequency from bunchsynchronous phases

• Eigenstructures of uneven fills, phase space trackin• Transverse Motion via DSP Data Recorder/ControlTechniques used at ALS, SPEAR, DAFNE, PEP-II, PLS aBESSY

Page 22: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

PLS Grow/Damp

010

20200

400

0

0.5

1

1.5

2

Time (ms)

a) Osc. Envelopes in Time Domain

Bunch No.

deg@

RF

010

20

0

200

400

0

0.2

0.4

Time (ms)

b) Evolution of Modes

Mode No.

deg@

RF

0

5

0

200

400

0

0.1

0.2

0.3

Time (ms)

c) Exp. Fit to Modes (pre−brkpt)

Mode No.

deg@

RF

0 100 200 300 4000

0.02

0.04

0.06

0.08

0.1

0.12

Mode No.

Rat

e (

1/m

s) d) Growth Rates (pre−brkpt)

18 20 22 24 26

0

200

400

0

0.1

0.2

0.3

Time (ms)

e) Exp. Fit to Modes (post−brkpt)

Mode No.

deg@

RF

0 100 200 300 400

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Mode No.

Rat

e (

1/m

s)

f) Growth Rates (post−brkpt)

PLS:dec1599/1237: Io= 150mA, Dsamp= 15, ShifGain= 5, Nbun= 460,Gain1= −1, Gain2= 0, Phase1= 30, Phase2= 30, Brkpt= 1150, Calib= 11.02.

Page 23: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

ewsntw

d-

d to

Harmonic Cavities at the ALS andLongitudinal Control

The addition of 5 3*RF passive cavities has added nHOM instabilities to the ALS, increasing growth ratefor the passively-tuned state. Additionally, the coheretune shifts from reactive impedances and current norequire a much wider control filter than the FIR banpass filter in use for five years.

Flexibility of the programmable DSP system allowedthis new control technique to be implemented as asoftware change. Transient-domain diagnostics useunderstand new operating requirements

0 5 10 15 200

10

20

30

40

50

Frequency, kHz

Mag

nitu

de

Frequency responses of FIR (red) and IIR (green) filters

0 5 10 15 20−400

−300

−200

−100

0

100

Frequency, kHz

Pha

se, d

egre

es

Page 24: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

f

off

Movie Synopsis

SPEAR -

• 70 bunch even fill, 30 mA

• FB stabilized mode (-3) grows when FB turned of

• 24 ms total sequenceDAFNE-

• 30 bunch even fill, 100 mA

• Mode zero unstable, beam lost in machine

• 650 microsecond total sequenceALS-

• 320 bunch fill (h=328), 95 mA

• FB stabilized mode (233) grows when FB turned

• 7 ms total sequenceLER PEP-II Phase Space tracking

• inner circle “modes “785 - 795, outer 805-815HER Bunch train (vertical motion) 22 ms

• 150 buckets, 4.2 ns spacing

• FB stabilized train grows when FB turned off

Page 25: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

.

ain

tial

Summary

Multi-bunch instability control-

Problem can be addressed withimpedance control,carefulcavity tuning, deliberatemodulation of fillingpatterns, and/or active feedback

• Design choices - all-mode vs. selected modes

• difference between damped HOM structures ( e.gbands of unstable modes) and narrowband HOMstructures

• Technology choices - processing approaches

• Issues of injected noise, required output power

Recent developments -

Longitudinal control of machines with harmoniccavities

• ALS experience - new IIR control techniques

Strategy of common hardware systems, softwareconfigured systems. Development of transient-dommachine diagnostics

Rapidly developing DSP technology suggests potenfuture applications ( Elettra/SLS work in progress)

Page 26: Feedback Systems for Synchrotron · 2019. 9. 20. · ESTABLISHED 1962 Feedback Systems for Synchrotron Light Sources J. Fox Stanford Linear Accelerator Center Mastering Beam Instabilities

ESTABLISHED1962

lesJ.mC),D.

IIrlett.

C.D.tt

..r

r-II,od

act

Acknowledgments

The PEP-II digital processing architecture and moduwere skillfully designed and developed by G. Oxoby,Olsen, J. Hoeflich and B. Ross (SLAC) - Systesoftware was designed and coded by R. Claus (SLAI. Linscott (Stanford), K. Krauter, S. Prabhakar andTeytelman (SLAC)

The wideband longitudinal kicker for ALS and PEP-was designed and developed by F. Voelker and J. Co(LBL). The kicker for DAFNE was designed by RBoni, A. Gallo, F. Marcellini, et.al.

Thanks to D. Andersen, P. Corredoura, M. Minty,Limborg, S. Prabhakar, W. Ross, J. Sebek,Teytelman, R. Tighe, U. Wienands (SLAC), I. Linsco(Stanford) , M. Tobiyama, E. Kikutani (KEK), ADrago, M. Serio ( LNF-INFN) and W. Barry, J. Byrd, JCorlett, G. Lambertson and M. Zisman (LBL) fonumerous discussions, advice and contributions.

Special thanks to Boni Cordova-Grimaldi (SLAC) fofabrication expertise and to the ALS, SPEAR, PEPand DAFNE operations groups for their consistent gohumor and help.

Work supported by U.S. Department of Energy contrDE-AC03-76SF0051