FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures...

32
FAÇADE EVALUATION FACILITY REPORT UNIVERSITY OF NEVADA, LAS VEGAS CENTER FOR ENERGY RESEARCH 2010

Transcript of FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures...

Page 1: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

 

FAÇADE EVALUATION FACILITY REPORT 

UNIVERSITY OF NEVADA, LAS VEGAS 

CENTER FOR ENERGY RESEARCH 2010

 

 

   

 

Page 2: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

1 | P a g e   

Table of Contents Objective ......................................................................................................................................... 2

Fundamental Requirements ........................................................................................................... 2

Physical Unit Requirements ..................................................................................................... 2

Experimental Data Requirements ........................................................................................... 5

List of Accruement .................................................................................................................... 6

Preparation ................................................................................................................................... 12

FEF Preparation ...................................................................................................................... 12

Installation .................................................................................................................................... 15

FEF Installation ....................................................................................................................... 15

Results: Sample Data .................................................................................................................... 24

Next Steps ..................................................................................................................................... 27 

Appendix ....................................................................................................................................... 28

Required Insulation Requirements Calculation ................................................................... 28

Abstract Submitted ................................................................................................................. 31

 

Table of Figures Figure 1 ‐ Façade Evaluation Facility with Carousel and Personnel Door Placement .................... 4 Figure 2 ‐ Façade Configuration Example (Double Pane Glass) ...................................................... 4 Figure 3 ‐ Personnel Door Provided and Installed by the Manufacturer ....................................... 5 Figure 4 ‐ Shading Analysis ............................................................................................................ 13 Figure 5 ‐ Façade Evaluation Facility Location and Setup ............................................................. 14 Figure 6 ‐ Weather station Setup .................................................................................................. 14 Figure 7 ‐ Insulation Installation ................................................................................................... 16 Figure 8 ‐ R‐Value Required for Given Fraction ............................................................................ 17 Figure 9 ‐ Fully Insulated Test Setup ............................................................................................. 17 Figure 10 ‐ Personnel Door ........................................................................................................... 18 Figure 11 ‐ Electrical and Data Logging Components ................................................................... 18 Figure 12 ‐ Mini Split Ductless A/C System ................................................................................... 19 Figure 13 ‐ RH, Temperature and Heat Flux Sensors .................................................................... 19 Figure 14 ‐ Precision Spectral Pyranometer ................................................................................. 20 Figure 15 ‐ Sensors installed into the Datalogger ......................................................................... 21 Figure 16 ‐ Datalogger interfacing with a Computer .................................................................... 21 Figure 17 ‐ Interior Components................................................................................................... 22 Figure 18 ‐ Double Pane Window Setup ....................................................................................... 23 Figure 19 ‐ Sample Double Pane Window Energy Data ................................................................ 24 Figure 20 ‐ Sample Double Pane Window Energy Data ................................................................ 25 Figure 21 ‐ Wall vs. Window Energy Gain ..................................................................................... 26

Page 3: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

2 | P a g e   

Objective The purpose of this report is to discuss the progress of the Façade Evaluation Facility (FEF) project. Evaluations of different types of façades are planned. Double pane windows are currently tested.

Fundamental Requirements Requirements were defined for the FEF to establish the design of the unit. Methods to satisfy those requirements then proceeded. These are listed below:

Physical Unit Requirements  

o Location of the testing is handled outdoors. Because this type of experiment is outdoor field testing, the structure should be made weatherproof. A steel shipping container fulfilled this requirement. This also provided advantages as the structure comes prebuilt.

o Protection of the unit when evaluation is not being conducted was another concern. When the unit is idle, the shipping container is shut to protect the façade as well as the contents within.

o Since the main doors accommodated the façade, a means of secondary entry was needed. A personnel door was installed to gain access within the unit and its contents.

o To minimize the heat transfer from the walls, roof and floor compared to windows to be tested, insulation is essential. Calculation of insulation thickness was completed and installed in the interior section of the unit. Due to outdoor exposure the structure was made aesthetically pleasing.

o Different types and sizes of façade configurations are planned. A method of interchangeability was produced. Each type of window is installed in a structurally supported slab of insulation and placed into the container. This can be removed and replaced with other types of windows.

Page 4: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

3 | P a g e   

o Adjusting the orientation of the test façade was another fundamental requirement. For this case, a carousel was installed underneath the unit. This allowed the ability to manipulate the orientation without difficulty.

After addressing the physical design requirements, a 3-D computer model was rendered using SolidWorks. The following figures display the by-product of each requirement. Note that the carousel modeled in Figure 1 was only a rough representation. Construction of the carousel was managed by a private company. Double pane glass configuration is illustrated in Figure 2. Figure 3 displays the personnel door provided by the manufacturer of the shipping container. Installation of this access door was handled by the manufacturer.

Page 5: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

4 | P a g e   

 Figure 1 - Façade Evaluation Facility with Carousel and Personnel Door Placement

 Figure 2 - Façade Configuration Example (Double Pane Glass)

Page 6: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

5 | P a g e   

 Figure 3 - Personnel Door Provided and Installed by the Manufacturer

Experimental data requirements for the FEF consisted primarily of sensors and data logging. Other assessments included interior temperature control which is further discussed in the next section.

Experimental Data Requirements 

o Temperature control within the unit is fundamental in reproducing standard building conditions. A mini split ductless A/C unit was used to maintain the indoor conditioning.

o Meteorological sensors required were ambient temperature probes, pyranometers and a wind sentry. A weather station was setup to house these sensors and is located adjacent to the FEF.

o Solar irradiance measurement sensors required were a precision spectral pyranometer and an albedometer. The precision spectral pyranometer measures the solar radiation received by the plane of the façade as well as the solar

Page 7: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

6 | P a g e   

radiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration characteristics of the façade.

o Temperature and heat flux measurements were achieved by high precision thermistors, and heat flux sensors. Heat gain through the façade and walls of the unit are evaluated with these sensors. These are all required to perform an accurate energy balance of the facility.

o Power measurement sensors include wattnodes and current transformers. Assessment of power consumption is primarily focused on the A/C unit. This sensor also plays a role in performing a proper energy balance by determining the amount of power the A/C unit consumes.

o The data acquisition system consists of a datalogger and multiplexers. An enclosure, power supply and various cables for data transfer was also needed. The datalogger records all the data from the sensors previously mentioned.

List of Accruement 

From these requirements, a list of accruement was assembled. The tables shown below list all the items purchased except otherwise noted.

Page 8: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

7 | P a g e   

Table 1 - Shipping Container with Carousel

Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost

1 Steel Container 10' Standard steel container

Quotation No.

909002965 Mobile Mini

Mobile Mini Inc www.mobilemini.com

(702) 699-5668 $1,995.00 $1,995.001 Install man door and paint unit 909002965 Mobile Mini Mobile Mini $1,500.00 $1,500.001 Delivery Zone A 909002965 Mobile Mini Mobile Mini $40.00 $40.00

1 Carousel Carousel (Custom-Built, use for changing container orientation) $4,200.00 $4,200.00

1 A/C System

Mini Split ductless A/C system *(Approximate) $4,000.00 $4,000.00

Total $11,735.00

Table 2 - Data Acquisition

Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost

1 Datalogger

Measurement and control module. 16 single-ended or 8 differential channels, two pulse counters, three excitation channels, and eight control ports. 4 MB SRAM for data storage, program storage and CPU usage.-ST Tested -25 to +50C-SW Standard 3yr Warranty-NC No Calibration Cert

CR1000-ST-SW-NC

Campbell Scientific

Campbell Scientific (435) 753-2342

www.campbellsci.com $1,440.00 $1,440.00

1 Wall Charger

18 V 1.2 Amp wall charger, 110Vac Input, 6ft Cable 9591

Campbell Scientific Campbell Scientific $45.00 $45.00

Page 9: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

8 | P a g e   

Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost

2 SDM Cable Datalogger to SDM Cable, 2ft per SDM cable

CABLE5CBL-L2

Campbell Scientific Campbell Scientific $29.00 $58.00

2

Analog Channel Multiplexer

16 or 32 Channel Relay Multiplexer-ST Tested -25 to +50C-SW Standard 1yr Warranty

AM16/32B-ST-SW

Campbell Scientific Campbell Scientific $645.00 $1,290.00

2

Multiplexer Power Cable

Multiplexer Power/Reset Cable, 2ft per mux cable

CABLE4CBL-L2

Campbell Scientific Campbell Scientific $30.16 $60.32

2

Multiplexer Signal Cable

Multiplexer Signal Cable, 2ft per mux cable

CABLE4CBL-L2

Campbell Scientific Campbell Scientific $30.16 $60.32

2

Switch Closure Module

8-Channel Switch Closure Input Module-SW Standard 1yr Warranty

SDM-SW8A-SW

Campbell Scientific Campbell Scientific $305.00 $610.00

1 Enclosures 16" x 18"

ENC 16/18 Weather Resistant Enclosure with Two Conduit Openings-DC 2 Conduits for Cables-NM No Enclosure Mounting

ENC16/18-DC-NM

Campbell Scientific Campbell Scientific $305.00 $305.00

1 Power Supply

12V power supply w/ charging regulator and 7Ahr sealed rechargeable battery-SW Standard 1yr Warranty PS100-SW

Campbell Scientific Campbell Scientific $245.00 $245.00

Total $4,113.64

Page 10: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

9 | P a g e   

Table 3 - Relevant Measurement Sensors Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost

2

Ambient Temperature Probe

Temp Probe (-35 to +50C) 40ft cable per probe 107-L40

Campbell Scientific Campbell Scientific $102.60 $205.20

2

Temp Probe Radiation Shield

RM Young 6-Plate Gill Solar Radiation Shield 41303-5A R.M. Young Campbell Scientific $120.00 $240.00

1 Sensor mountingTripod

10-ft Steel Tripod with grounding kit CM10

Campbell Scientific Campbell Scientific $475.00 $475.00

1 Mounting rail 1 x 1 inch NURAILCrossover Fitting 17953

Campbell Scientific Campbell Scientific $20.00 $20.00

1 Mounting Crossarm

Sensor Crossarm w/one CM210 Mounting Kit, 4ft CM204

Campbell Scientific Campbell Scientific $79.68 $79.68

1 Right Angle Mounting Base Right Angle Mounting Base CM220

Campbell Scientific Campbell Scientific $28.00 $28.00

2 Pyranometer

LI-COR Pyranometer, Fixed Calibration, 40ft cable per sensor

LI200X-L40 Li-Cor Campbell Scientific $372.60 $745.20

2 Pyranometer Leveling Base LI-COR Leveling Base LI2003S Li-Cor Campbell Scientific $75.00 $150.00

2 Mounting Stand Solar Sensor Mounting Stand CM225 Campbell Scientific Campbell Scientific $35.00 $70.00

4 Pyranometer

LI-COR Pyranometer, Fixed Calibration, 40ft cable per sensor

LI200X-L40 Li-Cor Campbell Scientific $372.60 $1,490.40

4 Pyranometer LI-COR Leveling Base LI2003S Li-Cor Campbell Scientific $75.00 $300.00

Page 11: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

10 | P a g e   

Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost Base

4 Mounting Stand Solar Sensor Mounting Stand CM225 Campbell Scientific Campbell Scientific $35.00 $140.00

1 Wind Sentry

RM Young Wind Sentry Set, 12ft per Speed Sensor, 12ft per Dir Sensor

03002-LS12-LD12 R.M. Young Campbell Scientific $603.04 $603.04

1

Normal Incidence Pyrheliometer

Normal Incidence Pyrheliometer Model NIP

Eppley Laboratoy, Inc

Eppley Laboratoy, Inc $2,350.00 $2,350.00

1

Precision Spectral Pyranometer Precision Spectral Pyranometer

Model PSP

Eppley Laboratoy, Inc

Eppley Laboratoy, Inc $2,300.00 $2,300.00

2 Albedometer

Albedometer-Eppley Labs recommends using two Model PSP Pyranometers for this measurement (price is for PSP X 2)

Model PSP

Eppley Laboratoy, Inc

Eppley Laboratoy, Inc $4,600.00 $9,200.00

4 WattNodes

true RMS AC watt-hour transducer with pulse output (solid state relay closure) proportional to kWH consumed.

WNB-3Y-208-P

Continental Control Syst.

Continental Control Systems, LLC. www.ccontrolsys.com(888) 928-8663 $175.00 $700.00

4 For Option P3, Option PV, Option DPO, add $18. $18.00 $72.00

2

Current Transformers (30 Amps)

Split core CTs have a removable section, so that they can be installed without interrupting the circuit, 0.75" I.D. Rated Amps 30

CTS-0750-yyy

Continental Control Syst.

Continental Control Syst. $42.00 $84.00

2 Current Transformers

Split core CTs have a removable section, so that they

Continental Control Syst.

Continental Control Syst. $42.00 $84.00

Page 12: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

11 | P a g e   

Qty Item Description Part No. Manufacturer Vendor Unit Cost Cost (100 Amps) can be installed

without interrupting the circuit, 0.75" I.D. Rated Amps 100

12 Temperature Probe

Temp Probe (-5 to +95C) 60ft cable per probe 108-L60

Campbell Scientific Campbell Scientific $111.40 $1,336.80

7 Thermocouples

(Comes in pack of 5) PFA-insulated Thermocouples, 5 each, type K calibration 72" long, 20 gauge, stripped lead termination,

5TC-TT-K-20-72

Omega Engineering

Omega Engineering www.omega.com (888) 826-6342 $70.00 $490.00

10 Heat Flux Sensors

Heat Flux Sensor for precise measurement of heat loss or gain on any surface.

HFS-4

Omega Engineering Omega Engineering

$160.00

$1,600.00

1 K-type extension wire

1000 feet of type K, extension grade thermocouple wire with 20 stranded gage

EXPP-K-20-TWSH -UL-1000

Omega Engineering Omega Engineering $670.00 $670.00

45 K-Type connectors

High temperature, low noise miniature male and female connector pair, type K calibration

HGMP-K-MF

Omega Engineering Omega Engineering $5.90 $265.50

Total $23,698.82

Page 13: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

12 | P a g e   

Preparation  After the requirements were defined for the FEF a list of accruement was prepared and each item was purchased and received. The completed preparation steps of the FEF are listed below.

FEF Preparation  

o A proper location for the steel shipping container was determined after shading was investigated to ensure that minimal shading would occur during testing. The shading chart is shown in Figure 4. The test location is held outdoors. Figure 5 displays the current setup.

o The carousel was installed and placed underneath the shipping container. This allows the orientation of the FEF to be set to desired testing conditions. Rotation of the shipping container can be adjusted by one person and can be locked into place to prevent unwanted rotation due to wind loads. The container and carousel were leveled and bolted together.

o Electrical requirements for the FEF were setup and installed by UNLV facilities. The provided electric outlets are used to power the sensors, instrumentation, data logging, and interior climate control.

o A weather station was setup near the FEF and is used to collect the meteorological data at the location. The weather station contains wind speed and direction data as well as ambient temperature. A depiction of the setup is shown in Figure 6.

Page 14: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

13 | P a g e   

 Figure 4 - Shading Analysis

Page 15: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

14 | P a g e   

 Figure 5 - Façade Evaluation Facility Location and Setup

 Figure 6 - Weather station Setup

Page 16: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

15 | P a g e   

Installation  Installation of the facility is listed below:

FEF Installation  

o Insulation was installed inside the shipping container as shown in Figure 7. The proper insulation thickness was determined after calculations were made, shown in Figure 8, in order to reduce heat gain from each wall of the container. This will ensure that the majority of the heat gain experienced in the container will come from the windows. Figure 9 shows a fully insulated setup where all facets of the container are insulated.

o Access to the inside of the facility is accomplished with a personnel door. The personnel door is sealed with an insulation plug. This is depicted in Figure 10.

o Following the insulation installation, electrical and data logging equipment were installed. Figure 11 displays the newly installed electrical outlets found outside the UNLV building, as well as the electrical source inside the container and data logging equipment.

o Interior climate control was achieved a mini-split ductless air conditioning system. Figure 12 shows the interior air handler with the corresponding condenser unit located outside of the container.

o Temperature probes, relative humidity and heat flux sensors were installed inside the container. Twelve temperature probes and ten heat flux sensors were installed. They were placed in various facets of the container. Temperature as well as relative humidity of the conditioned space is recorded with the sensors located at the center of container, suspended in air. These sensors are shown in Figure 13.

Page 17: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

16 | P a g e   

o Figure 14 shows the installation of the precision spectral pyranometer.

o Current transformers and wattnodes were installed to measure the power used by the air conditioning unit.

o All the sensors are connected to datalogger as shown in Figure

15. The datalogger is interfaced with a computer as shown in Figure 16.

 Figure 7 - Insulation Installation

Page 18: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

17 | P a g e   

0 10 20 30 40 50 60 70 80 90 1000

0.5

1

1.5

2

2.5

3

3.5

4R-Values Required for Given Fraction

R-value Required

Hea

t G

ain

Fra

ctio

n (W

alls

/Win

dow

s)

 Figure 8 - R-Value Required for Given Fraction

 Figure 9 - Fully Insulated Test Setup

Page 19: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

18 | P a g e   

 Figure 10 - Personnel Door

 Figure 11 - Electrical and Data Logging Components

Page 20: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

19 | P a g e   

 Figure 12 - Mini Split Ductless A/C System

 Figure 13 - RH, Temperature and Heat Flux Sensors

Page 21: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

20 | P a g e   

 Figure 14 - Precision Spectral Pyranometer

Page 22: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

21 | P a g e   

 Figure 15 - Sensors installed into the Datalogger

 Figure 16 - Datalogger interfacing with a Computer

Page 23: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

22 | P a g e   

 Figure 17 - Interior Components

Page 24: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

23 | P a g e   

 Figure 18 - Double Pane Window Setup

Page 25: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

24 | P a g e   

Results: Sample Data  Preliminary measurement data is shown Error! Reference source not found., 20 and 21.

The interior surface area of the shipping container after the insulation was installed is approximately 348 square feet. Temperature sensors are placed on the interior surfaces as well as heat flux sensors.

 Figure 19 - Sample Double Pane Window Energy Data 

 Figure 19 shows the inside and outside temperature measurements of the facility. Three temperature probes suspended in the center of the facility at differing heights measures the inside temperature. These readings are averaged and are shown in orange. Outside temperature is shown in green. The blue line shows the power consumption of the air conditioning unit at that minute. The air conditioning unit was set to cool at a set temperature of 78°F from 11am to 4pm. From the early morning to 11am the air conditioner was set to 

Page 26: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

25 | P a g e   

automatic mode to see the power consumption for heating and to maintain the conditioned space, but as the sun began to heat the inside of the facility the air conditioner was set to cooling mode to reject the heat that is gained inside the facility.       

 Figure 20 - Sample Double Pane Window Energy Data 

Figure 20 shows the sample data for a double pane window setup. The power consumption is shown in blue for the air conditioning unit, and the total measured energy gained from the windows and walls are shown in red. The amount of solar radiation transmitted through the window was measured with a precision spectral pyranometer while the energy transfers between the walls were measured using heat flux sensors.   

Page 27: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

26 | P a g e   

 Figure 21 - Wall vs. Window Energy Gain  Figure 21, a comparison of the energy gain between the window and the walls are shown. The data shows that the amount of energy gained from the window is magnitudes larger than the insulated walls of the container.  Note: At this point the data is not completely understood. Efforts are underway to analyze the results and fine tune the experimental set‐up. However, the initial data trends are encouraging to continue further on the project.

 

Page 28: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

27 | P a g e   

Next Steps  o Fine tune the experimental setup. o Different types of windows’ influence on the heating and

cooling loads will be experimentally measured. o Influence of orientation of the façades on the heat gain will

be evaluated. o Theoretical models to predict the window performance for

different orientations. The developed models will be validated against the measured data.

o The measured data will be used to validate the theoretical models developed.

Publications An abstract of the study was submitted titled ‘Development of Façade Evaluation  Facility  for  Experimental  Study  for  Building  Energy’ was submitted and accepted to ASME Energy Sustainability 2011.

 

Page 29: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

28 | P a g e   

 

Appendix 

Required Insulation Requirements Calculation clc clear all close all %---------- Surface Temperature Calculations ---------- taub=0.55; % (2009 ASHRAE LV Data) taud=1.674; % (2009 ASHRAE LV Data) day=209; % 07/28/2009 (highest temperature of last year) rho_g=0.2; % ground reflectivity (2009 ASHRAE Ch18.37) Psi=[180,0,270,90,0]; % (deg) wall orientation (west,east,north,south,roof)--- Sigma=[90,90,90,90,0]; % (deg) surface tilt from horizontal (west,east,north,south,roof)--- T_amb=111; % (deg F) outdoor design temp (wunderground.com) alpha=0.16; % absorptivity of white paint LST=16; % (hour) 4pm (2009 ASHRAE LV Data) lat=36.08; % (deg N) (2009 ASHRAE LV Data) long=115.16; % (deg W) (2009 ASHRAE LV Data) Gamma=(2*pi)*(day-1)/365; % (2009 ASHRAE Eq6 Ch14.7) % (min) equation of time (2009 ASHRAE Eq5 Ch14.7) ET=2.2918*(0.0075+0.1868*cos(Gamma)-3.2077*sin(Gamma)-1.4615*cos(2*Gamma)-4.089*sin(2*Gamma)); delta=23.45*sin((2*pi)*(day+284)/365); % (deg) declination (2009 ASHRAE Eq10 Ch14.8) E_sc=433.3; % (BTU/h*ft^2) solar constant (2009 ASHRAE Ch14.7) E_o=E_sc*(1+0.033*cos(2*pi*(day-3)/365)); % (BTU/h*ft^2) (2009 ASHRAE Eq4 Ch14.7) LSM=120; % (deg) local standard meridian pacific (2009 ASHRAE Table 3 Ch14.8) AST=LST+ET/60+(LSM-long)/15; % (hour) apparent solar time (2009 ASHRAE Eq7 Ch14.7) H=15*(AST-12); % (deg) hour angle (2009 ASHRAE Eq11 Ch14.8) % (deg) solar altitude (2009 ASHRAE Eq12 Ch14.7) Beta=(180/pi)*asin(cos(lat*pi/180)*cos(delta*pi/180)*cos(H*pi/180)+sin(lat*pi/180)*sin(delta*pi/180)); % (deg) solar azimuth (2009 ASHRAE Eq15 Ch14.8) Phi=(180/pi)*acos((sin(Beta*pi/180)*sin(lat*pi/180)-sin(delta*pi/180))/(cos(Beta*pi/180)*cos(lat*pi/180))); gamma=(Phi-Psi); % (deg) surface-solar azimuth (2009 ASHRAE Eq21 Ch14.10) % (deg) incident angle (2009 ASHRAE Eq22 Ch14.10) theta=(180/pi)*acos(cos(Beta*pi/180)*cos(gamma*pi/180).*sin(Sigma*pi/180)+sin(Beta*pi/180)*cos(Sigma*pi/180));

Page 30: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

29 | P a g e   

m=1/(sin(Beta)+(0.50572*(6.07995+Beta))^-1.6364); % relative air mass (2009 ASHRAE Eq16 Ch14.9) ab=1.219-0.043*taub-0.151*taud-0.204*taub*taud; % beam air mass exponent (2009 ASHRAE Eq19 Ch14.9) E_b=E_o*exp(-taub*m^ab); % (BTU/h*ft^2) beam normal irradiance (2009 ASHRAE Eq17 Ch14.9) E_tb=E_b*cos(theta*pi/180); % (BTU/h*ft^2) surface beam irradiance (2009 ASHRAE Eq26 Ch14.10) % sky diffuse radiation (vertical/horizontal) (2009 ASHRAE Eq28 Ch14.10) Y=max(0.45,0.55+0.437*cos(theta*pi/180)+0.313*cos(theta*pi/180).^2); ad=0.202+0.852*taub-0.007*taud-0.357*taub*taud; % diffuse air mass exponent (2009 ASHRAE Eq20 Ch14.9) E_d=E_o*exp(-taud*m^ad); % (BTU/hr*ft^2) diffuse irradiance - horizontal (2009 ASHRAE Eq18 Ch14.9) E_td=E_d*Y; % (BTU/hr*ft^2) diffuse irradiance - vertical (2009 ASHRAE Eq27 Ch14.10) % (BTU/hr*ft^2) ground reflectance irradiance (2009 ASHRAE Eq31 Ch14.10) E_tr=(E_b*sin(Beta*pi/180)+E_d)*rho_g*(1-cos(Sigma*pi/180))/2; E_t=E_tb+E_td+E_tr; % (BTU/hr*ft^2) total surface irradiance (2009 ASHRAE Eq25 Ch14.10) % (deg F) Sol-Air Temperature at given hour (2009 ASHRAE Eq30 Ch18.22) T_e=T_amb+alpha*E_t; % (west,east,north,south,roof)--- %---------- Dimensions --------- % Shipping Container Dimension h_o=94; % (in) height w_o=95.5; % (in) width l_o=115.5; % (in) length % Window Dimension h_d=91; % (in) height w_d=93.5; % (in) width % Shipping Container Area with Insulation % h_o=94-10; % (in) height % w_o=95.5-10; % (in) width % l_o=115.5-10; % (in) length % % % Window Dimension % h_d=91-10; % (in) height % w_d=93.5-10; % (in) width % Shipping Container Area

Page 31: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

30 | P a g e   

A_side=h_o*l_o/12^2; % (ft^2) Side (east,west walls) A_front=h_o*w_o/12^2; % (ft^2) Front (south) A_back=A_front; % (ft^2) Back (north) A_floor=l_o*w_o/12^2; % (ft^2) Floor A_roof=A_floor; % (ft^2) Roof % Window Area ftr=0.5; % window area / door area A_wdw=(h_d*w_d*ftr)/12^2; % (ft^2) (south) %---------- Conduction Heat Transfer for Surfaces ---------- T_in=70; % (deg F) Temperature inside T_gnd=T_amb; % (deg F) Assumed temperature of ground R_o=(1:1:100); % insulation resistance factor (BTU/hr*ft^2*deg F) Q_side=(max(T_e(1:3)-T_in)./R_o)*A_side; % (BTU/hr) max conduction through east,west walls Q_back=(max(T_e(1:3)-T_in)./R_o)*A_back; % (BTU/hr) conduction through north walls Q_front=(max(T_e(1:4)-T_in)./R_o)*(A_front-A_wdw); % (BTU/hr) conduction through south walls Q_floor=(max(T_gnd-T_in)./R_o)*A_floor; % (BTU/hr) conduction through floor Q_roof=(max(T_e(1:5)-T_in)./R_o)*A_roof; % (BTU/hr) conduction through floor Q_totw=2*Q_side+Q_back+Q_front+Q_floor+Q_roof; % (BTU/hr) total conduction %---------- Fenestration Heat Gain ---------- SHGC_t=0.6757; % (2009 ASHRAE Table 10 Ch15.21) SHGC_D=0.6; % (2009 ASHRAE Table 10 Ch15.21) q_b=A_wdw*E_tb(4)*SHGC_t; % (BTU/hr) Direct beam solar heat gain (2009 ASHRAE Eq13 Ch18.4) q_d=A_wdw*(E_td(4)+E_tr(4))*SHGC_D; % (BTU/hr) Diffuse solar heat gain (2009 ASHRAE Eq14 Ch18.4) U=0.55; % (BTU/h*ft^2*deg F) Overall U-Factor Double Glaze 1/4" (2009 ASHRAE Table 4 Ch15.8) q_c=U*A_wdw*(T_amb-T_in); % (BTU/hr) conductive heat gain (2009 ASHRAE Eq15 Ch18.14) Q_wdw=q_b+q_d+q_c; % (BTU/hr) fenestration heat gain (2009 ASHRAE Eq15 Ch18.15) %---------- Heat Gain Percentages ---------- y=Q_totw./Q_wdw; % Percetage of conduction through walls / heat gain from window plot(R_o,y); title('R-Values Required for Given Percentages') xlabel('R-value Required') ylabel('Heat Gain % (Windows/Walls)')

Page 32: FAÇADE EVALUATION FACILITY REPORTradiation transmitted through the facade. An albedometer measures the reflectivity of the façade. These sensors are utilized to determine the fenestration

31 | P a g e   

 

Abstract Submitted  Title: Development of Façade Evaluation Facility for Experimental Study for Building Energy  The goal of the project is to evaluate various types of facades’ behavior and effects on building energy,  focused  primarily  on  building  fenestrations  such  as  windows.  Facades  containing building  integrated  photovoltaic  panels  are  also  explored.  Development  of  the  façade evaluation facility and requirements are presented in this paper. The test facility is a complete standalone unit designed to replicate a section of a building. Accommodation for facilitating a wide  range of  fenestrations was an  important  criterion. An effective  solution was developed that  allowed  instant  interchangeability  of  the  façade  setup.  Although,  due  south  orientated facades was of primary  interest,  integration of  a  rotating  carousel base  allowed  flexibility  in adjusting  the  orientation  of  the  test  facility.  Experimental  procedures  and  instrumentation layout  are  discussed  in  detail.  The  temperature  of  the  indoor  environment  is  continuously controlled  and  monitored.  The  measured  fenestration  characteristics  include  thermal  and optical properties of  the windows.  The  test  results  reveal  the  fenestration performance  and when applicable, energy generation. The outcome of these tests enumerates the effects of the façade on the overall heating and cooling building energy loads. Further investigation into these characteristics  assists  in  improving  building  energy  efficiency.  Due  to  the  versatility  of  the facility, quick replacement of the  façade can accommodate several tests  in short durations of time.  Furthermore,  correlation  of  the  results  can  be  scaled  appropriately  for  residential  or commercial  settings providing practical  information  for wide utilization,  contingent upon  the window type.