F au lt s an d f r ac t u r e s at d e p t h - John T. Foster · 2018. 12. 10. · DPT DPT DPT TJO...

17
Faults and fractures at depth Faults and fractures at depth © Cambridge University Press (Fig. 5.5, pp. 150) Zoback, Reservoir Geomechanics

Transcript of F au lt s an d f r ac t u r e s at d e p t h - John T. Foster · 2018. 12. 10. · DPT DPT DPT TJO...

  • Faults and fractures at depthFaults and fractures at depth

    © Cambridge University Press (Fig. 5.5, pp. 150)Zoback, Reservoir Geomechanics

    http://www.amazon.com/Reservoir-Geomechanics-Paperback-Author-Zoback/dp/B00EFZ88EQ/ref=sr_1_2?ie=UTF8&qid=1422942834&sr=8-2&keywords=zoback+geomechanics

  • Geographical coordinate systemGeographical coordinate system

    =RG

    ⎢⎢

    cos α cos β

    cos α sin β sin γ − sin α cos γ

    cos α sin β cos γ + sin α sin γ

    sin α cos β

    sin α sin β sin γ + cos α cos γ

    sin α sin β cos γ − cos α sin γ

    − sin β

    cos β sin γ

    cos β cos γ

    ⎥⎥

  • Interactive widgetInteractive widget

  • Stress in geographical coordinate systemStress in geographical coordinate system

    = SSG RT

    GRG

  • Example: Strike-slip faultingExample: Strike-slip faulting

    S =

    ⎢⎢

    30

    0

    0

    0

    25

    0

    0

    0

    20

    ⎥⎥

    α

    β

    γ

    = 0∘

    = 0∘

    = 90∘

    Azimuth of SHmax

    =S1 SHmax

    =S2 Sv

    =RG

    ⎢⎢

    1

    0

    0

    0

    0

    −1

    0

    1

    0

    ⎥⎥

    =SG

    ⎢⎢

    30

    0

    0

    0

    20

    0

    0

    0

    25

    ⎥⎥

  • Example: Normal faultingExample: Normal faulting

    S =

    ⎢⎢

    30

    0

    0

    0

    25

    0

    0

    0

    20

    ⎥⎥

    α

    β

    γ

    = 0∘

    = −90∘

    = 0∘

    Azimuth of Shmin

    =S1 Sv

    =RG

    ⎢⎢

    0

    0

    −1

    0

    1

    0

    1

    0

    0

    ⎥⎥

    =SG

    ⎢⎢

    20

    0

    0

    0

    25

    0

    0

    0

    30

    ⎥⎥

  • Example: Reverse faultingExample: Reverse faulting

    S =

    ⎢⎢

    30

    0

    0

    0

    25

    0

    0

    0

    20

    ⎥⎥

    α

    β

    γ

    = 90∘

    = 0∘

    = 0∘

    Azimuth of SHmax

    =S1 SHmax

    =S2 Shmin

    =RG

    ⎢⎢

    0

    −1

    0

    1

    0

    0

    0

    0

    1

    ⎥⎥

    =SG

    ⎢⎢

    25

    0

    0

    0

    30

    0

    0

    0

    20

    ⎥⎥

  • Example: Strike-slip faultingExample: Strike-slip faulting

    S =

    ⎢⎢

    60

    0

    0

    0

    40

    0

    0

    0

    35

    ⎥⎥

    α

    β

    γ

    = 135∘

    = 0∘

    = 90∘

    Azimuth of SHmax

    =S1 SHmax

    =S2 Sv

    =RG

    ⎢⎢⎢

    −1

    2√

    0

    1

    2√

    1

    2√

    0

    1

    2√

    0

    1

    0

    ⎥⎥⎥

    =SG

    ⎢⎢

    47.5

    −12.5

    0

    −12.5

    47.5

    0

    0

    0

    40

    ⎥⎥

  • Fault orientationFault orientation

    © Cambridge University Press (Fig. 5.5, pp. 150)Zoback, Reservoir Geomechanics

    http://www.amazon.com/Reservoir-Geomechanics-Paperback-Author-Zoback/dp/B00EFZ88EQ/ref=sr_1_2?ie=UTF8&qid=1422942834&sr=8-2&keywords=zoback+geomechanics

  • Fault traction and stressFault traction and stress

    Traction on fault plane

    = ⋅t ⃗  SG n̂ 

    Normal stress to plane

    = ⋅Sn t ⃗ ⊺

    n̂ 

    Shear stress in dip direction

    = ⋅τd t ⃗ ⊺

    n̂ d

    Shear stress in strike direction

    = ⋅τs t ⃗ ⊺

    n̂ s

  • Example: Strike-slip faultingExample: Strike-slip faulting

    SG

    =

    ⎢⎢

    30

    −8.66

    0

    −8.66

    40

    0

    0

    0

    30

    ⎥⎥

    strike

    dip

    = 60∘

    = 90∘

    =n̂ 

    ⎢⎢

    −0.866

    0.5

    0

    ⎥⎥ =n̂ s

    ⎢⎢

    0.5

    0.866

    0

    ⎥⎥ =n̂ d

    ⎢⎢

    0

    0

    1.0

    ⎥⎥

    = 40 = 0 = 8.66Sn τd τs

  • Example: Normal faultingExample: Normal faulting

    SG

    =

    ⎢⎢

    4000

    0

    0

    0

    3000

    0

    0

    0

    5000

    ⎥⎥

    strike

    dip

    = 45∘

    = 60∘

    =n̂ 

    ⎢⎢

    −0.612

    0.612

    −0.5

    ⎥⎥ =n̂ s

    ⎢⎢

    0.707

    0.707

    0

    ⎥⎥ =n̂ d

    ⎢⎢

    −0.3535

    0.3535

    0.866

    ⎥⎥

    = 3875 = −650 = −433Sn τd τs

  • Example: Normal faultingExample: Normal faulting

    SG

    =

    ⎢⎢

    5000

    0

    0

    0

    4000

    0

    0

    0

    3000

    ⎥⎥

    strike

    dip

    = 225∘

    = 60∘

    =n̂ 

    ⎢⎢

    0.612

    −0.612

    −0.5

    ⎥⎥ =n̂ s

    ⎢⎢

    −0.707

    −0.707

    0

    ⎥⎥ =n̂ d

    ⎢⎢

    0.3535

    −0.3535

    0.866

    ⎥⎥

    = 4125 = −650 = −433Sn τd τs

  • Example: Revese faultingExample: Revese faulting

    SG

    =

    ⎢⎢

    2100

    −520

    0

    −520

    1500

    0

    0

    0

    1000

    ⎥⎥

    strike

    dip

    = 120∘

    = 70∘

    =n̂ 

    ⎢⎢

    −0.814

    −0.470

    −0.342

    ⎥⎥ =n̂ s

    ⎢⎢

    −0.5

    0.866

    0

    ⎥⎥ =n̂ d

    ⎢⎢

    0.2961

    −0.1710

    0.9396

    ⎥⎥

    = 1441 = 161 = 488Sn τd τs

  • Shear failure (slip on faults)Shear failure (slip on faults)

    Coulomb failure function

    = μτ

    σn

    f = τ − μ ≤ 0σn

  • Frictional strength of faultsFrictional strength of faults

    © Cambridge University Press (Fig. 4.23, pp. 126)Zoback, Reservoir Geomechanics

    http://www.amazon.com/Reservoir-Geomechanics-Paperback-Author-Zoback/dp/B00EFZ88EQ/ref=sr_1_2?ie=UTF8&qid=1422942834&sr=8-2&keywords=zoback+geomechanics

  • Induced seismicityInduced seismicity

    Fluid injection and seismicity at the Rocky Mountain Arsenal

    © Cambridge University Press (Fig. 4.22a, pp. 125)Zoback, Reservoir Geomechanics

    http://www.amazon.com/Reservoir-Geomechanics-Paperback-Author-Zoback/dp/B00EFZ88EQ/ref=sr_1_2?ie=UTF8&qid=1422942834&sr=8-2&keywords=zoback+geomechanics