Experiencedchimpanzees*behave*more*gameF...

30
Chimpanzee game theory PNAS MANUSCRIPT 4/4/12 CLASSIFICATION: Biological Sciences, Social Sciences (Psychology, Economics) TITLE: Experienced chimpanzees behave more game theoretically than humans in simple competitive interactions AUTHORS: Christopher Flynn Martin 1 , Rahul Bhui 2 , Peter Bossaerts 2, 3 , Tetsuro Matsuzawa 1 , Colin Camerer 2, 3 1 Department of Brain and Behavioral Sciences, Kyoto University Primate Research Institute, Inuyama, Aichi 4848506 Japan, 2 HSS Division, Caltech, Pasadena CA 91125 USA, 3 Computational & Neural Systems, Caltech CORRESPONDING AUTHOR: Colin Camerer Caltech 1200 E. Calif. Blvd. Pasadena CA 91106 Email: [email protected] MANUSCRIPT INFORMATION: NUMBER OF TEXT PAGES (incl refs + fig. legends): 13 NUMBER OF FIGS.: 4 NUMBER OF TABLES: 0 ABBREVIATIONS: Nash equilibrium (NE)

Transcript of Experiencedchimpanzees*behave*more*gameF...

Page 1: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

PNAS  MANUSCRIPT  4/4/12  

 

CLASSIFICATION:  Biological  Sciences,  Social  Sciences  (Psychology,  Economics)  

 

TITLE:  Experienced  chimpanzees  behave  more  game-­‐theoretically  than  humans  in  simple  competitive  interactions    

 

AUTHORS:  Christopher  Flynn  Martin1,  Rahul  Bhui2,  Peter  Bossaerts2,  3,  Tetsuro  Matsuzawa1,  Colin  Camerer2,  3  

 

1Department  of  Brain  and  Behavioral  Sciences,  Kyoto  University  Primate  Research  Institute,  Inuyama,  Aichi  484-­‐8506  Japan,  2HSS  Division,  Caltech,  Pasadena  CA  91125  USA,  3Computational  &  Neural  Systems,  Caltech  

 

CORRESPONDING  AUTHOR:  

Colin  Camerer  

Caltech  

1200  E.  Calif.  Blvd.    

Pasadena  CA  91106  

Email:  [email protected]  

 

MANUSCRIPT  INFORMATION:  

  NUMBER  OF  TEXT  PAGES  (incl  refs  +  fig.  legends):  13  

  NUMBER  OF  FIGS.:  4     NUMBER  OF  TABLES:  0  

ABBREVIATIONS:  Nash  equilibrium  (NE)  

Page 2: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

 

ABSTRACT  WORD  COUNT:  245  words    

CHARACTER  COUNT:  (49,000  limit,  incl.  text,  spaces,  Figs.,  tables,  equations)  

  TEXT:  30,497  including  acknowledgements,  main  text,  footnotes,  Fig.  captions,  and  refs  

  FIGS.  &  EQUATIONS:  18,500  

  TOTAL:  48,997  

 

AUTHOR  CONTRIBUTIONS:  

Designed  research:  CM,  CC,  PB,  TM  

Performed  research:  CM  

Contributed  new  analyses:  RB,  PB  

Analyzed  data:  RB,  CM,  PB,  CC  

Wrote  paper:  CC,  CM,  TM,  RB  

   

Page 3: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

ABSTRACT:    [245  words]  

The  capacity  of  humans  and  other  animal  species  to  think  strategically  about  the  likely  payoff-­‐relevant  actions  of  conspecifics  is  not  thoroughly  understood.  Games  are  mathematical  descriptions  of  canonical  ways  in  which  joint  choices  determine  interdependent  rewards.  Game  theory  is  a  collection  of  ideas  about  how  strategic  thinking  and  learning  determine  choice.  We  test  predictions  of  game  theory  in  three  simple  competitive  abstract  games  with  chimpanzee  and  human  participants.  Subjects  make  choices  on  a  dual  touch-­‐screen  panel  and  earn  food  or  coin  rewards.  The  chimpanzee  and  human  protocols  are  closely  matched  on  experimental  procedures.  The  results  show  that  aggregated  frequencies  of  chimpanzee  choices  are  very  close  to  equilibrium  points;  and  choices  shift  with  reward  changes  almost  exactly  as  predicted  by  equilibrium  theory.  Remarkably,  chimpanzee  choices  are  closer  to  the  equilibrium  prediction  than  human  choices  are.  Chimpanzee  and  human  choices  also  exhibit  unpredictability  on  average  from  trial-­‐to-­‐trial  (a  property  which  is  adaptive  in  competitive  games),  but  individual  subject-­‐sessions  show  substantial  predictability  of  choices  from  past  choices  and  rewards.  The  results  are  generally  consistent  with  the  cognitive  tradeoff  hypothesis,  which  conjectures  that  some  human  cognitive  ability  inherited  from  chimpanzee  kin  may  have  been  displaced  by  dramatic  growth  in  the  human  neural  capacity  for  language  (and  perhaps  associated  skills).  As  a  result,  chimpanzees  retained  the  ability,  slightly  superior  to  humans,  to  adjust  strategy  competitively  and  in  unpredictable  ways,  conforming  remarkably  closely  to  equilibrium  predictions  from  game  theory.

Page 4: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

ACKNOWLEDGMENTS:  The  Ministry  of  Education,  Sports,  Technology,  and  Culture  (MEXT)  No.  16002001  and  No.  20002001,  JSPS-­‐GCOE    (A06,  Biodiversity)  (TM,  CM)  Tamagawa  GCOE    (CC),  and  the  Gordon  and  Betty  Moore  Foundation.  (CC,  PB).    Thanks  to  D.  Biro  for  help  in  task  design  and  M.  Tanaka  for  help  with  building  the  touchpanel  setup.    

 

 

   

Page 5: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

Humans  are  very  social.  Most  of  our  closest  great  ape  relatives  are  social  too.  However,  the  evolutionary  origin  and  extent  of  sociality  in  all  these  species  in  ecologically  important  situations  is  still  not  well  understood  (even  for  humans).  We  take  a  step  forward  by  observing  and  comparing  behavior  of  humans  and    our  closest  extant  relatives,  chimpanzees  (Pan  troglodytes)  as  they  make  choices  in  incentivized  interactions  with  similar  experimental  protocols  (1).  

Our  experimental  design  is  guided  by  the  formal  structure  of  game  theory.  Games  are  mathematical  distillations  of  the  basic  action-­‐reward  structures  of  ecologically  valid  situations.  Interactive  experimental  strategic  games  with  reward  payoffs  have  been  used  with  primates  and  apes  to  assess  prosociality  and  coordination  of  mutually  beneficial  actions  (2-­‐4),  and  in  hundreds  of  human  studies  (5).  A  recent  study  (1)  introduced  a  standardized  experimental  method  for  ‘uplinking’  game-­‐playing  protocols  used  in  monkeys  to  humans.      

 We  extend  this  experimental  method  to  interactions  that  are  direct  and  competitive:  Joint  actions  always  create  one  winner  and  one  loser.  Both  players  have  two  possible  actions,  pressing  Left  or  Right  touch-­‐screen  buttons.  A  Matcher  player  earns  rewards  if  their  choices  match  (e.g.,  Left-­‐Left).  A  Mismatcher  earns  rewards  if  their  choices  mismatch  (e.g.,  Right-­‐Left).  The  interactions  are  also  direct  because  the  joint  actions  of  both  players  immediately  determine  their  reward  through  the  shared  touch-­‐screen  software,  with  no  subject-­‐experimenter  interaction  (cf.  (1))  .  Ours  is  the  first  experiment  in  which  chimpanzees  compete  directly  with  other  chimpanzees  for  competitively-­‐determined  rewards.  We  compare  their  outcomes  to  those  from  humans.  

Game  theory  offers  a  benchmark  of  optimal  performance:  Players  should  guess  accurately  what  others  actually  do,  and  should  choose  strategies  with  maximal  expected  reward  given  those  guesses  (a  “Nash  equilibrium”).  Superior  performance  of  this  type  depends  on  recognizing  patterns  in  the  opponent’s  history  of  play,  while  hiding  patterns  in  one’s  own  history.  

The  behavior  of  chimpanzees  in  these  games  is  interesting  because  many  important  interactions  in  the  wild  have  similar  competitive  reward  structures.  It  has  been  hypothesized  (6-­‐7)  that  primates  are  well-­‐adapted  to  such  games,  and  may  even  be  cognitively  superior  to  humans  (8).  This  prediction  about  game-­‐theoretic  play  is  interesting  for  social  science  because  the  lab  and  mixed  field  evidence  suggests  that  human  choices  often  deviate  from  game  theory  predictions  in  competitive  games  (5;  Supplemental  Online  Material  (SOM)).  

Our  experiments  therefore  address  two  questions:  Does  game  theory  accurately  predict  how  chimpanzees  play  competitive  games?  And  what  similarities  and  differences  are  there  between  chimpanzee  and  human  play?    

Methods  

Players  made  choices  on  pairs  of  computer  touch-­‐panel  screens.  Each  screen  displayed  two  identical  stimuli  (45mm  light  blue  square  buttons)  on  the  left  and  

Page 6: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

right  sides  of  the  screen  (Fig.  1a).  If  both  subjects  chose  the  button  on  the  right,  or  if  both  subjects  chose  the  button  on  the  left,  then  the  “Matcher”  was  rewarded.  If  the  subjects  chose  buttons  on  different  sides,  then  the  “Mismatcher”  was  rewarded.    Payoff  structures  changed  across  three  kinds  of  games  (Fig.  1c).    Pairs  played  200  rounds  of  a  game  per  session.  Chimpanzees  switched  roles  between  sessions  and  played  game  1  (symmetric  matching  pennies)  for  10  sessions,  game  2  (asymmetric  matching  pennies)  for  5  sessions,  and  game  3  (inspection  game)  for  4  sessions.    Pairs  of  humans  played  game  3  (inspection  game)  for  2  sessions,  switching  roles  once.  During  the  games,  players  were  seated  in  an  experimental  booth  facing  away  from  each  other  (Fig.  1b).  Universal  feeding  machines  (Biomedica  Model  BUF-­‐310),  delivered  8  by  8mm  cubes  of  apple  (or  coins  in  the  case  of  humans)  on  a  trial-­‐to-­‐trial  basis.    A  single  PC  running  a  Visual  Basic  6  program  controlled  all  experimental  events  involving  the  two  touch-­‐screens  and  feeders.    

Subjects  

Six  chimpanzees  (Pan  Troglodytes)  at  the  Kyoto  University  Primate  Research  Institute  voluntarily  participated  in  the  experiment.  The  subjects  were  three  mother-­‐offspring  dyads:  Ai  and  son  Ayumu  (ages  31  and  9);  Chloe  and  daughter  Cleo  (30  and  9);  and  Pan  and  daughter  Pal  (27  and  9).  These  dyads  were  pair-­‐matched  with  each  other  for  all  the  experimental  games.  All  participants  had  previously  taken  part  in  cognitive  studies,  including  social  tasks  involving  food  and  token  sharing  (10,11),  and  a  dual  touch-­‐panel  study  in  which  they  observed  and  copied  the  behavior  of  a  conspecific  model  (12).  However,  the  dual  touch-­‐panel  competitive  game  in  this  study  was  novel  to  the  participants.  The  6  participants  lived  with  7  other  chimpanzees  in  a  semi-­‐natural  enriched  enclosure  (312),  and  were  not  food  or  water  deprived  during  the  period  of  the  study.  The  use  of  the  chimpanzees  during  the  experimental  period  adhered  to  the  Guide  for  the  Care  and  Use  of  Laboratory  Primates  (2002)  of  the  Primate  Research  Institute  of  Kyoto  University.  

16  human  participants  (13  female)  participated  in  the  experiment.  The  participants  were  students  of  Gifu  University  and  Kyoto  University.  In  a  player-­‐matched  design,  pairs  of  subjects  were  exposed  to  50  training  trials  in  each  of  the  Matcher  and  Mismatcher  roles,  to  gain  familiarity  with  the  task  and  payoff  structure.  They  then  played  200  rounds  in  each  of  the  two  roles.  The  experimental  design  and  procedure  was  identical  that  of  the  chimpanzee  task,  except  that  coins  (1  yen  pieces)  were  dispensed  from  the  feeders  instead  of  apple  pieces,  and  an  opaque  barrier  was  placed  between  the  stations  to  prevent  collusion.  In  order  to  maximize  parity  between  chimpanzee  and  human  conditions,  the  human  subjects  were  given  minimal  verbal  instructions  prior  to  the  task  (they  were  told  only  “try  to  gain  as  many  coins  as  possible”),  and  were  not  told  that  they  were  to  play  a  competitive  game  against  each  other.  After  completing  the  task,  participants  were  given  500-­‐yen  (approximately  6  US  dollar)  gift-­‐cards.  The  ethical  committee  of  Primate  Research  Institute  of  Kyoto  University  approved  the  use  of  human  subjects.  

Results:  

Page 7: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

The  behavioral  results  can  be  summarized  using  three  types  of  statistics:  Frequencies  of  Left  (L)  and  Right  (R)  choices,  (P(L)  and  P(R)  respectively);  statistical  tests  for  dependence  of  current  choices  on  previous  history;  and  rewards  accumulated.  

There  is  little  evidence  that  experience  across  sessions  generally  moves  behavior  closer  to  the  predicted  equilibrium  play.  Data  are  therefore  aggregated  across  trials.  Figs.  2a-­‐c  plot  the  frequencies  with  which  the  different  specific  chimpanzee  subjects  chose  each  action  in  the  three  games,  along  with  the  Nash  equilibrium  (NE)  prediction.  The  theory  predicts  that  for  Matchers,  P(R)=.50  in  all  three  games.  The  theory  also  predicts  that  Mismatchers  will  vary  P(R)  from  .50  to  .75  to  .80  across  the  three  games.  Note  that  these  predictions  are  extremely  counterintuitive  because  they  state  that  behavior  will  only  change  across  the  games  for  the  player  whose  own  rewards  do  not  change.    

Fig.  2d  plots  the  cross-­‐subject  averages  from  all  trials  for  all  three  games.  This  plot  highlights  whether  the  chimpanzees’  behavior  changed  across  the  three  payoff  conditions  as  predicted  by  equilibrium  theory.  The  Matcher  P(R)  rates  are  indeed  close  to  half  on  average.  Even  more  strikingly,  the  Mismatchers’  P(R)  frequencies  do  shift  in  close  numerical  proximity  to  those  predicted  rates  (overall  frequencies  are  0.50  to  0.73  to  0.79,  within  .01  of  the  predicted  rates  on  average).    

Fig.  2c  also  plots  choice  frequencies  for  the  human  group  in  the  Inspection  game  (game  3),  using  the  closely  matched  low-­‐information  protocol.  Across  both  roles,  the  absolute  average  human  deviation  is  .135,  which  is  consistent  with  other  human  data  (see  SOM  Fig.  S1).  The  human  deviation  is  much  higher  than  the  chimpanzees’  average  deviation  of  .03.    

Figs.  2a-­‐c  also  plot  the  predictions  of  two  bounded  rationality  theories  that  allow  parametric  imperfections  in  either  response  to  payoffs  (QRE)  or  in  depth  of  strategic  guessing  about  other  players  (CH).  These  theories  have  been  shown  to  explain  when  human  behavior  deviates  from  NE  in  a  wide  variety  of  games  (14-­‐17).  However,  the  chimpanzee  behavior  tends  to  deviate  only  slightly  from  NE  in  the  direction  of  these  alternative  theories  of  bounded  rationality  (see  SOM  for  details).  

The  next  empirical  question  is  whether  choices  depend  predictably  on  previous  choices.  In  many  domains  humans  who  are  motivated  to  randomize  independently  actually  switch  too  frequently,  as  if  they  regard  long  streaks  as  “not  random”,  and  switch  to  balance  recent  subsample  frequencies  (18-­‐19).    

A  simple  measure  of  independence  is  how  often  each  subject  in  each  session  switches  choices  (from  L  to  R,  or  R  to  L  on  successive  trials).  Figs.  3a-­‐d  show  histograms  of  the  deviation  between  the  actual  numbers  of  switches  in  each  subject-­‐session,  and  the  number  switches  expected  if  choices  were  statistically  independent  from  trial  to  trial,  for  the  inspection  game.  The  average  deviation  in  switching  is  close  to  zero  (i.e.,  overall,  choices  are  roughly  temporally  independent)  but  there  is  a  large  percentage  of  individual  sequences  with  too  few  or  too  many  switches  (for  

Page 8: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

chimpanzees  and  humans,  only  33%  and  63%  are  within  their  95%  confidence  intervals  (CI)).    In  the  first  two  games,  played  only  by  chimpanzees,  there  is  a  little  more  variability  in  switching  (see  SOM  Fig.  S2),  which  means  that  the  chimpanzees’  extensive  experience  across  games  is  apparently  necessary  for  producing  approximate  equilibration  and  partial-­‐independence.  

Switching  rates  are  only  one  measure  of  predictability.    A  more  demanding  test  uses  logit  regression  to  see  whether  choices  in  period  t  depend  on  any  previous  choice  and  reward  variables.  These  regressions  do  show  more  predictability;  most  typically,  a  subject’s  choice  depended  statistically  on  their  opponent’s  previous  two  choices  (SOM).  Chimpanzee  predictability  is  somewhat  higher  than  for  human  choices,  but  the  differences  are  not  reliably  significant.    

The  final  analysis  is  about  payoffs  won.  First,  note  that  Nash  equilibrium  play  is  not  generally  equivalent  to  joint  payoff  maximization.  Choosing  the  equilibrium  strategy  is  optimal  only  if  opponents  are    playing  their  equilibrium  strategies.  One  group  of  players  can  deviate  from  NE  but  earn  higher  payoffs  (if  others  are  not  optimizing).    

To  show  payoff  implications  of  behavior,  Figs.  4a-­‐b  show  histograms  of  average  payoffs  for  each  subject-­‐session,  for  both  chimpanzees  and  humans  in  the  inspection  game  (see  SOM  for  other  games).  The  expected  Nash  equilibrium  payoffs  are  also  shown.    There  are  no  payoff  differences  between  chimpanzee  and  NE  benchmarks.  However,  for  humans  payoffs  are  higher  for  Matchers.    Furthermore,  in  some  previous  experiments  in  a  full-­‐information  protocol  with  complete  information  about  all  possible  payoffs,  humans  deviated  even  further  from  Nash  equilibrium  (and  Matchers  earned  even  higher  payoffs;  see  SOM).    

The  behavioral  payoff  effect  can  also  be  seen  in  heat  maps  overlaid  on  the  average  choice  frequencies  for  the  Matcher  (Fig.  4c)  and  Mismatcher  (Fig.  4d).  In  the  vicinity  of  the  actual  frequencies,  the  Matcher  payoffs  increase  as  the  Mismatcher  frequency  P(R)  decreases.  This  observation  means  that  the  Matcher  in  the  human  games  are  actually  earning  more  than  their  chimpanzee  counterparts  on  average  (1.16  vs.  .85  per  trial,  where  NE  predicts  .80).  Their  earnings  are  higher  because  the  human  Mismatchers  choose  R  less  often  than  theory  predicts,  which  benefits  the  Matchers.    However,  the  Mismatcher  payoff  map  (Fig.  4d)  exhibits  no  such  effect  (the  payoffs  are  1.03  vs  1.00,  where  NE  predicts  1.00).  For  Mismatchers,  the  payoff  isoquants  are  shaped  differently  and  so  the  difference  in  the  Mismatchers’  P(R)  frequencies  for  chimpanzees  and  human  do  not  change  their  own  payoffs  very  much.  

Finally,  there  is  an  interesting  unpredicted  difference  in  response  times  (RTs):  Mismatchers’  RTs  are  significantly  slower  than  Matcher  RTs  (see  SOM  Fig.  S3)  for  all  species  and  all  games.  In  the  Inspection  game,  the  median  difference  within  each  subject  is  78ms  (paired  Wilcoxon  signed-­‐rank  test,  p=0.03)  for  chimpanzees  and  206ms  (p=0.003)  for  humans.  The  RT  difference  might  be  due  to  a  default  response  to  match  the  behavior  of  another  animal  rather  than  to  mismatch  (perhaps  a  byproduct  of  the  capacity  for  physical  imitation).    

Page 9: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

In  an  inspection  game  with  the  same  payoffs  as  ours,  differential  neural  activation  was  observed  in  Mismatcher  brains,  reflecting  extra  computational  effort  (20).  The  difference  was  attributed  to  better  reward  prospects  when  the  Mismatcher  takes  into  account  the  influence  that  her  winning  could  have  on  future  play  of  the  opponent.  The  matcher  has  lower  influence  value  and  may  therefore  spend  less  time  computing  it.  However,  this  hypothesis  cannot  account  for  the  role  differential  in  the  symmetric  matching  game.    

Discussion    

We  studied  strategic  interactions  between  chimpanzees,  using  a  simple  touch-­‐screen  protocol,  to  measure  how  well  competitive  behaviors  match  the  predictions  of  game  theory.  In  humans,  behavior  in  such  games  has  been  used  successfully  to  calibrate  different  degrees  of  strategic  thinking  (5,  17)  and  prosociality  (21,22),  correlate  prosociality  with  cultural  factors,  and  to  show  the  strategic  effects  of  psychiatric  disorders  (23-­‐25).  

Chimpanzees’  choice  frequencies  are  extremely  close  on  average  to  those  predicted  by  equilibrium  analysis  (NE).  Behavior  varies  with  changes  in  payoff  structure  across  three  games  almost  exactly  as  theory  predicts.  In  addition,  the  number  of  switches  from  one  trial  to  another  are,  on  average,  close  to  the  number  of  switches  predicted  if  choices  were  independent.  However,  individual  subject-­‐sessions  often  exhibit  too  few  or  too  many  switches,  and  are  often  significantly  dependent  on  the  previous  two  choices  and  outcomes.    

In  one  game  we  compared  chimpanzee  and  human  behavior  in  a  low-­‐information  protocol  designed  to  match  what  the  two  species  know  as  closely  as  possible.    Remarkably,  human  play  is  actually  further  from  the  NE  predicted  frequencies  than  the  chimpanzee  play  is  (in  the  direction  of  equal  choice  frequency).1    The  average  deviation  in  pooled  data  is  about  .033  for  chimps  and  .135  for  humans  (compared  to  deviations  of  .05-­‐.10  in  other  human  experimental  studies;  see  SOM).    

As  a  result  of  this  behavioral  difference,  human  players  in  one  of  the  two  player  roles  actually  earn  more  than  their  chimpanzee  counterparts  (because  a  deviation  by  one  player  benefits  the  opponent).  Statistical  dependence  from  trial  to  trial  is  a  little  higher  for  chimpanzees  than  for  humans,  but  the  difference  is  not  reliably  significant.  

Since  non-­‐human  subjects  cannot  verbally  report  on  their  decision-­‐making  processes,  we  could  not  directly  test  whether  the  chimpanzees  comprehended  that  rewards  were  contingent  on  joint  actions.  Perhaps  due  to  this  difficulty,  the  issue  of                                                                                                                  1  The  SOM  reports  the  first  comparison  of  boundedly  rational  game  theory  models,  used  to  study  humans,  to  nonhuman  behavioral  data.  Perhaps  surprisingly,  the  boundedly  rational  models  discussed  in  SOM  offer  little  general  improvement  over  NE  in  explaining  the  chimpanzees’  choices.  

 

Page 10: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

non-­‐human  subjects’  understanding  of  jointly  determined  actions  in  games  has  been  largely  avoided  in  previous  studies  that  have  pitted  non-­‐human  animal  subjects  against  computer  algorithms  (26-­‐27  and  conspecifics  (28).    

We  do  have  several  reasons  to  believe  that  the  subjects  were  aware  of  the  social  nature  of  the  task.  First,  one  subject  was  occasionally  observed  looking  away  from  her  monitor  and  toward  the  location  of  her  opponent  during  delays  in  the  game,  suggesting  that  she  was  waiting  for  the  other  individual  to  respond.  Such  behavior  is  atypical  for  these  chimpanzees,  since  almost  all  of  their  experimental  histories  are  comprised  of  non-­‐social  touch-­‐panel  tasks  in  which  their  attention  is  directed  toward  only  their  own  monitor.  Second,  before  this  experiment,  the  same  subjects  did  a  social  imitation  task  in  the  same  location  and  using  the  same  apparatus  (12),  increasing  chances  that  they  were  aware  that  the  touch-­‐panels  were  interconnected.  Third,  the  chimpanzees  might  have  noticed  that  feedback  sound  cues  and  actual  rewards  were  synchronized  between  pair  members.    

But  the  finding  that  chimpanzee  subjects  did  play  close  to  the  Nash  Equilibrium,  in  itself  suggests  (implicit  or  explicit)  understanding  of  joint-­‐action  contingencies.    Adjustment  dynamics  that  do  not  rely  on  such  understanding  typically  do  not  lead  precisely  to  Nash  Equilibrium  mixtures.  

There  are  two  broad  hypotheses  consistent  with  the  facts  that  chimpanzee  choices  are  closer  to  theory  than  human  choices.  The  first  is  that  there  is  some  species-­‐specific  confound  in  the  experimental  protocols  which  would  bring  the  chimpanzee  and  human  results  closer  together  if  the  confound  could  be  eliminated.    The  second  is  that  chimps  actually  are  better  at  competitive  interaction,  and  hence  learn  to  better  approximate  equilibrium  choices.    

Indeed,  there  are  some  obvious  confounds.  The  humans  might  have  been  less  motivated  to  work  for  coins  than  the  chimpanzees  are  for  food.  The  chimpanzees  are  also  genetically  related  mother-­‐child  pairs  (though  we  would  therefore  expect  them  to  be  less  competitive  and  more  willing  to  maximize  joint  payoffs  than  the  human  strangers).    And  the  chimpanzees  are  highly  experienced  with  working  memory  tasks  and  touch-­‐screen  interaction  (their  RTs  were  much  faster  than  the  humans’).  It  is  possible  that  similarly-­‐experienced  humans  would  behave  like  chimpanzees.  

Unfortunately,  it  is  extremely  difficult  to  control  for  species  confounds  based  on  reward  and  experience.  However,  note  that  the  type  of  deviations  in  human  play  from  NE  observed  in  this  experiment  are  quite  typical,  rather  than  unusual.    Many  human  lab  experiments  and  some  competitive  field  settings  show  that  human  choice  frequencies  are  typically  partway  between  equal  mixing  and  the  NE  prediction,  just  as  in  this  experiment  (e.g.,  20,31,  SOM).  

It  is  well  known  that  chimpanzees  have  physical  advantages  over  humans—they  are  stronger  and  faster—which  have  fitness  value  in  their  environment.  That  chimpanzees  are  close  to  NE  (in  our  experiment)  and  humans  are  further  from  NE  

Page 11: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

(here  and  elsewhere),  suggests  that  a  “cognitive  advantage”  hypothesis  is  a  potential  explanation  for  the  chimp-­‐human  difference.    

One  cognitive  advantage  emerges  in  lab  tasks  requiring  memory  of  briefly  exposed  (210  ms)  spatial  displays  of  Arabic  numerals.    Highly-­‐trained  young  chimpanzees  are  better  at  remembering  ordered  spatial  locations  than  humans  (32).  Thus,  Matsuzawa  (9)  hypothesizes  that  chimpanzees  are  better  at  such  tasks  than  humans  are,  because  human  evolution  degraded  certain  memory  skills  to  make  room  in  the  brain  for  development  of  human  language-­‐related  skills.  Chimpanzees  also  appear  to  have  cognitive  advantages  over  humans  in  recognizing  upside-­‐down  faces  (33)  and  voice-­‐face  matching  (34).    

In  the  wild,  chimpanzees  also  engage  in  many  strategic  interactions  such  as  predatory  stalking  (35),  young  chimpanzee  wrestling  (36),  border  patrolling  (which  is  very  much  like  the  Inspection  game)  (37)  and  raiding  crops  from  human  farms  (38).  Because  competitive  reward  games  are  common  in  chimpanzee  life,  evolutionary  theory  predicts  that  chimpanzees  would  have  developed  cognitive  adaptations  to  detect  patterns  in  opponent  behavior  and  to  create  undetectable  predictability  in  their  own  behavior.  More  generally,  chimpanzees  are  capable  of  strategic  thinking  in  cooperative  hunting  (39),  sneaky  copulation  (40),  future  planning  (41),  and  many  elements  of  theory  of  mind  computation  (42).  Some  have  argued  that  the  capacity  to  randomize  effectively  evolved  because  primate  predatory  behavior  and  routine  social  interaction  selects  for  unpredictability  in  counter-­‐strategies  (6,7).  Experiments  also  show  that  chimpanzees  are  better  at  competitive  tasks  than  at  comparable  cooperative  ones  (43).  

Finally,  the  results  have  implications  for  what  game  theory  might  describe  most  accurately.  Mathematical  game  theory  is  usually  implicitly  thought  of  as  an  "eductive"  model  of  human  reasoning  about  strategy.  An  alternative  view  is  that  game  theory  is  "evolutive"—i.e.,  it  describes  the  limiting  the  outcome  of  a  long  history  of  evolutionary  adaptation  or  strategic  "trial  and  error"  learning  by  animals  (including  humans)  (29-­‐30),  or  the  result  of  social  protean  (6)  processes.  Our  results  support  the  evolutive  view.    

 

   

Page 12: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

Fig.  captions  

Fig.  1:  The  trial  progression,  touch-­‐panel  setup,  and  game  payoffs.  (A)  Two  players  interacting  through  touch-­‐panel  screens  are  shown  a  self-­‐start  key  (circle)  at  the  beginning  of  each  trial.  After  both  players  press  the  start  key,  two  choice  actions  are  displayed,  represented  by  squares  on  the  left  and  right  sides  of  the  screens.  After  both  players  make  a  choice,  rewards  are  dispensed  to  the  winner  and  both  players  get  feedback  about  their  opponent’s  choice.  (B)  Payoff  matrices  for  the  3  games  in  this  study.    (C)  Subjects  sit  perpendicular  to  each  other  facing  touch-­‐panel  screens  that  are  embedded  in  the  walls  of  the  experimental  booth.  

Fig.  2:  Frequencies  of  R  choices  for  all  pairs  in  both  roles  show  that  chimpanzee  behavior  is  close  to  game  theoretic  (NE)  predictions.  (A)  Chimpanzees  in  the  symmetric  MP  game,  (B)  chimpanzees  in  the  asymmetric  MP  game,  and  (C)  chimpanzees  and  humans  in  the  Inspection  game.  Predictions  of  Nash  equilibrium  (NE),  cognitive  hierarchy  (CH),  and  Quantal  Response  Equilibrium  (QRE)  trajectory  (for  a  range  of  response  sensitivities  λ)  are  marked.  (D)  Average  behavior  over  all  chimpanzees  compared  to  NE  for  all  three  games.  

Fig.  3:  The  number  of  choice  switches  from  trial-­‐to-­‐trial  show  approximate  statistical  independence  for  both  species.    Numbers  were  calculated  by  taking  the  observed  number  of  switches  in  a  game  and  subtracting  the  number  of  switches  expected  from  the  observed  probability  mixture  in  that  game  assuming  independent  choices.  Chimpanzees  had  (A)  Matcher  average  =  -­‐13,  sd  =  20,  and  (C)  Mismatcher  average  =  -­‐3,  sd  =16.  Japanese  humans  had  (B)  Matcher  average  =  6,  sd  =  15,  and  (D)  Mismatcher  average  =  1,  sd  =  17.  Chimpanzee  and  human  averages  are  within  95%  confidence  intervals  (CIs)  but  only  33%  (chimpanzee)  and  63%  (human)  of  individual  subject-­‐sessions  are  within  their  session-­‐specific  CIs  (see  SOM  Fig.  S2  for  CI  construction).  

Fig.  4:  In  the  Inspection  game,  chimpanzees  make  close  to  NE  payoffs  while  Matcher  humans  earn  more  than  NE.  (A)  Histogram  of  Matcher  payoff  averages.  (B)  Histogram  of  Mismatcher  payoff  averages.  (Expected  average  payoffs  given  NE  play  shown  with  dotted  vertical  lines  in  A  and  B).  (C)  Matcher  payoff  isoquant  heat  map  for  the  Inspection  game.  Lighter  regions  show  higher  payoffs;  thin  lines  show  isoquants  (sets  of  frequencies  that  give  equal  payoffs  to  Matchers).  Empirical  relative  frequencies  of  choices  are  overlaid.  The  human  choice  frequencies  are  closer  to  a  higher-­‐value  isoquant  than  chimpanzee  frequencies,  indicating  that  human  Matchers  earn  more.  (D)  Mismatcher  payoff  isoquant  heat  map  for  the  Inspection  game,  overlaid  with  relative  frequencies  of  choices.  The  chimpanzee  and  human  choice  frequencies  are  different,  but  neither  is  closer  to  a  higher-­‐value  isoquant,  indicating  that  human  Mismatchers  do  not  earn  more  than  chimpanzees.  

 

 

Page 13: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

References  

1.   Brosnan  SF,  et  al.  (2011)  Responses  to  the  Assurance  game  in  monkeys,  apes,  and  humans  using  equivalent  procedures.  Proc  Natl  Acad  Sci  U  S  A  108(8):3442-­‐3447.  

2.   Jensen  K,  Call  J,  &  Tomasello  M  (2007)  Chimpanzees  are  rational  maximizers  in  an  ultimatum  game.  Science  318(5847):107-­‐109.  

3.   Melis  AP,  Hare  B,  &  Tomasello  M  (2009)  Chimpanzees  coordinate  in  a  negotiation  game.  Evolution  and  Human  Behavior  30(6):381-­‐392.  

4.   Bullinger  AF,  Wyman  E,  Melis  AP,  &  Tomasello  M  (2011)  Coordination  of  Chimpanzees  (Pan  troglodytes)  in  a  Stag  Hunt  Game.  Int  J  Primatol  32(6):1296-­‐1310.  

5.   Camerer  CF  (2003)  Behavioral  Game  Theory:  Experiments  in  Strategic  Interaction  (Princeton  Univ  Press,  Princeton,  NJ).  

6.   Miller  GF  (1997)  Protean  primates:  the  evolution  of  adaptive  unpredictability  in  competition  and  courtship.  Machiavellian  Intelligence  eds  Whiten  A  &  Byrne  R  (Cambridge  University  Press,  Cambridge,  UK),  Vol  2,  pp  312  -­‐  340.  

7.     Hare,  B  (2001)  Can  competitive  paradigms  increase  the  validity  of  social  cognitive  experiments  in  primates?  Animal  Cogn,  4:  269-­‐280.  

8.   Matsuzawa  T  (2007)  Comparative  cognitive  development.  Dev  Sci  10(1):97-­‐103.  

9.   Matsuzawa  T  (2009)  Symbolic  representation  of  number  in  chimpanzees.  Current  Opinion  in  Neurobiology  19(1):92-­‐98.  

10.   Tanaka  M  &  Yamamoto  S  (2009)  Token  transfer  between  mother  and  offspring  chimpanzees  (Pan  troglodytes):  mother-­‐offspring  interaction  in  a  competitive  situation.  Anim  Cogn  12  Suppl  1:S19-­‐26.  

11.   Yamamoto  S  &  Tanaka  M  (2009)  Do  chimpanzees  (Pan  troglodytes)  spontaneously  take  turns  in  a  reciprocal  cooperation  task?  J  Comp  Psychol  123(3):242-­‐249.  

12.   Martin  CF,  Biro  D,  &  Matsuzawa  T  (2011)  Chimpanzees'  use  of  conspecific  cues  in  matching-­‐to-­‐sample  tasks:  public  information  use  in  a  fully  automated  testing  environment.  Anim  Cogn  .  

13.   Matsuzawa  T  (2003)  The  Ai  project:  historical  and  ecological  contexts.  Anim  Cogn  6(4):199-­‐211.  

14.   Camerer  CF,  Ho  T-­‐H,  &  Chong  J-­‐K  (2004)  A  Cognitive  Hierarchy  Model  of  Games.  Quarterly  Journal  of  Economics  119(3):861-­‐898.  

15.   Goeree  JK  &  Holt  CA  (2001)  Ten  Little  Treasures  of  Game  Theory  and  Ten  Intuitive  Contradictions.  The  American  Economic  Review  91(5):1402-­‐1422.  

16.   McKelvey  RD  &  Palfrey  TR  (1995)  Quantal  Response  Equilibria  for  Normal  Form  Games.  Games  and  Economic  Behavior  10(1):6-­‐38.  

17.   Crawford  VP,  Costa-­‐Gomes  M,  A.,  &  Iriberri  N  (submitted)  Strategic  Thinking.  J  Econ  Lit.  

18.   Rapoport  A  &  Budescu  DV  (1997)  Randomization  in  Individual  Choice  Behavior.  Psychological  Review  104(3):603-­‐617.  

19.   Tversky  A  &  Kahneman  D  (1971)  Belief  in  the  law  of  small  numbers.  Psychological  Bulletin  76(2):105-­‐110.  

Page 14: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

20.   Hampton  AN,  Bossaerts  P,  &  O'Doherty  JP  (2008)  Neural  correlates  of  mentalizing-­‐related  computations  during  strategic  interactions  in  humans.  Proceedings  of  the  National  Academy  of  Sciences  105(18):6741-­‐6746.  

21.   Camerer  CF  &  Fehr  E  (2004)  Measuring  social  norms  and  preferences  using  experimental  games:  A  guide  for  social  scientists.  Foundations  of  Human  Sociality:  Economic  Experiments  and  Ethnographic  Evidence  from  Fifteen  Small-­‐Scale  Societies,  eds  Henrich  J,  Boyd  R,  Bowles  S,  Camerer  CF,  Fehr  E,  &  Gintis  H  (Oxford  Univ  Press,  Oxford,  UK),  pp  55-­‐95.  

21.   Henrich  J,  et  al.  (2005)  “Economic  man”  in  cross-­‐cultural  perspective:  Behavioral  experiments  in  15  small-­‐scale  societies.  Behavioral  and  Brain  Sciences  28(06):795-­‐815.  

23.   King-­‐Casas  B,  et  al.  (2008)  The  Rupture  and  Repair  of  Cooperation  in  Borderline  Personality  Disorder.  Science  321(5890):806-­‐810.  

24.   Kishida  KT,  King-­‐Casas  B,  &  Montague  PR  (2010)  Neuroeconomic  Approaches  to  Mental  Disorders.  Neuron  67(4):543-­‐554.  

25.   Krajbich  I,  Adolphs  R,  Tranel  D,  Denburg  NL,  &  Camerer  CF  (2009)  Economic  Games  Quantify  Diminished  Sense  of  Guilt  in  Patients  with  Damage  to  the  Prefrontal  Cortex.  The  Journal  of  Neuroscience  29(7):2188-­‐2192.  

26.   Lee  D,  Conroy  ML,  McGreevy  BP,  &  Barraclough  DJ  (2004)  Reinforcement  learning  and  decision  making  in  monkeys  during  a  competitive  game.  Cognitive  Brain  Research  22(1):45-­‐58.  

27.   Dorris  MC  &  Glimcher  PW  (2004)  Activity  in  Posterior  Parietal  Cortex  is  Correlated  with  the  Subjective  Desireability  of  an  Action.  .  Neuron  44:365-­‐378.  

28.   Sanabria  F  &  Thrailkill  E  (2009)  Pigeons  (Columba  Livia)  Approach  Nash  Equilibrium  in  Experimental  Matching  Pennies  Competitions.  (Translated  from  English)  Journal  of  the  Experimental  Analysis  of  Behavior  91(2):169-­‐183  (in  English).  

29.   Binmore  K  (1987)  Modeling  Rational  Players:  Part  I.  Economics  and  Philosophy  3(02):179-­‐214.  

30.   Binmore  K  (1988)  Modeling  Rational  Players:  Part  II.  Economics  and  Philosophy  4(01):9-­‐55.  

31.   Ochs  J  (1995)  Games  with  Unique,  Mixed  Strategy  Equilibria  -­‐  an  Experimental-­‐Study.  Game  Econ  Behav  10(1):202-­‐217.  

32.   Inoue  S  &  Matsuzawa  T  (2007)  Working  memory  of  numerals  in  chimpanzees.  Current  Biology  17(23):R1004-­‐R1005.  

33.   Tomonaga  M,  Itakura  S,  &  Matsuzawa  T  (1993)  Superiority  of  conspecific  faces  and  reduced  inversion  effect  in  face  perception  by  a  chimpanzee.  Folia  Primatol  (Basel)  61(2):110-­‐114.  

34.   Izumi  A  &  Kojima  S  (2004)  Matching  vocalizations  to  vocalizing  faces  in  a  chimpanzee  (Pan  troglodytes).  Anim  Cogn  7(3):179-­‐184.  

35.   Teleki  G  (1973)  Notes  on  chimpanzee  interactions  with  small  carnivores  in  Gombe  National  Park,  Tanzania.  Primates  14(4):407-­‐411.  

36.   Hayaki  H  (1985)  Social  play  of  juvenile  and  adolescent  chimpanzees  in  the  Mahale  Mountains  National  Park,  Tanzania.  Primates  26(4):343-­‐360.  

Page 15: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimpanzee  game  theory  

37.   Bates  LA  (2009)  Sex  differences  in  the  movement  patterns  of  free-­‐ranging  chimpanzees  (Pan  troglodytes  schweinfurthii):  foraging  and  border  checking.  Behav  Ecol  Sociobiol  64(2):247-­‐255.  

38.   Hockings  KJ,  Anderson  JR,  &  Matsuzawa  T  (2010)  Flexible  feeding  on  cultivated  underground  storage  organs  by  rainforest-­‐dwelling  chimpanzees  at  Bossou,  West  Africa.  J  Hum  Evol  58(3):227-­‐233.  

39.   Boesch  C  (1994)  Cooperative  Hunting  in  Wild  Chimpanzees.  Anim  Behav  48(3):653-­‐667.  .  

40.   Watts  DP  (1998)  Coalitionary  mate  guarding  by  male  chimpanzees  at  Ngogo,  Kibale  National  Park,  Uganda.  Behavioral  Ecology  and  Sociobiology  44(1):43-­‐55.  

41.   Osvath  M  (2009)  Spontaneous  planning  for  future  stone  throwing  by  a  male  chimpanzee.  Curr  Biol  19(5):R190-­‐191.  

42.   Call  J  &  Tomasello  M  (2008)  Does  the  chimpanzee  have  a  theory  of  mind?  30  years  later.  Trends  Cogn  Sci  12(5):187-­‐192.  

43.     Hare  B  &  Tomasello  M  (2004)  Chimpanzees  are  more  skilful  in  competitive  than  in  cooperative  cognitive  tasks.  Animal  Behav.  68:571-­‐581.  

44.   von  Neumann  J  &  Morgenstern  O  (1944)  Theory  of  Games  and  Economic  Behavior  (Princeton  Univ  Press,  Princeton,  NJ).  

45.   Schelling  TC  (1960)  The  strategy  of  conflict  (Oxford  University  Press,  Oxford,  UK).  

46.   Maynard  Smith  J  (1982)  Evolution  and  the  theory  of  games  (Cambridge  University  Press,  Cambridge,  UK).  

47.   Fretwell  SD  &  Lucas  HL  (1969)  On  territorial  behavior  and  other  factors  influencing  habitat  distribution  in  birds.  Acta  Biotheoretica  19(1):16-­‐36.  

48.   Krivan  V,  Cressman  R,  &  Schneider  C  (2008)  The  ideal  free  distribution:  a  review  and  synthesis  of  the  game-­‐theoretic  perspective.  Theor  Popul  Biol  73(3):403-­‐425.  

 

 

Page 16: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

MatcherLeft Right

Left

Rig

htM

ism

atch

er

MatcherLeft Right

Left

Rig

htM

ism

atch

er

MatcherLeft Right

Left

Rig

htM

ism

atch

er

Symmetric Matching Pennies

Asymmetric Matching Pennies

Inspection Game

Matcher Mismatcher

Matcher Mismatcher

Matcher Mismatcher

A) Task B) Game Payoffs

Trial start, self-start stimuli presented.

Left/Right choices appear. Players make choice.

Food reward dispensed to winner. Opponent’s choice shown as blinking stimulus for 2000ms.

C) Setup

1

11

10

0

0

0

3

12

20

0

0

0

4

12

20

0

0

0

Page 17: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Mis

mat

cher

P(R

ight

)

NE, CH, QRE

Chimp PairAi, AyumuPan, PalChloe, Coo

1 SE

Symmetric MP

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

NECH

QRE

Chimp PairAi, AyumuPan, PalChloe, Coo

1 SE

Asymmetric MP

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Matcher P(Right)

Mis

mat

cher

P(R

ight

)

NECH

QRE

Experiment groupChimpanzeesHumans

1 SE (Human)

1 SE (Chimp)

Inspection Game

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Matcher P(Right)

Inspection GameAsymmetric MPSymmetric MP

Nash Equilibrium

All Games (Chimps Only)

A B

C D

Page 18: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

−60 −40 −20 0 20 40 60

02

46 Random CIAverage

Fre

quen

cy

−60 −40 −20 0 20 40 60

02

46 Random CIAverage

Switch count (deviation from random)

Fre

quen

cy

−60 −40 −20 0 20 40 60

02

46 Random CIAverage

−60 −40 −20 0 20 40 60

02

46 Random CIAverage

Switch count (deviation from random)

Page 19: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Freq

uenc

y (C

him

ps)

01

2

0.4 0.6 0.8 1 1.2 1.4 1.6

NE Average = 0.85

01

2

0.4 0.6 0.8 1 1.2 1.4 1.6

NE Average = 1

Average reward (Matcher)

Freq

uenc

y (H

uman

s)0

12

34

5

0.4 0.6 0.8 1 1.2 1.4 1.6

NE Average = 1.16

Average reward (Mismatcher)

01

23

45

0.4 0.6 0.8 1 1.2 1.4 1.6

NE Average = 1.03

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

NE

�CH

QRE

Experiment groupChimpanzeesHumans

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

NE

�CH

QRE

Experiment groupChimpanzeesHumans

0.5

0.5

1 1

1.5

1.5

A

B

C D

Page 20: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

 

Supplemental  Online  Material  

 

Experienced  chimpanzees  behave  more  game-­‐theoretically  than  humans  in  simple  competitive  interactions    

Chris  Martin,  Rahul  Bhui,  Peter  Bossaerts,  Tetsuro  Matsuzawa,  Colin  Camerer  

 

Contents  

I.    Discussion  of  Nash  equilibrium  and  boundedly  rational  theories  

II.    Previous  lab  and  field  evidence  from  humans    

III.    Temporal  dependence  regression  

IV.    An  interesting  difference  between  Matcher  and  Mismatcher  response  times  (RTs)  

V    Histograms  of  payoffs  across  subjects  and  games  

 

 

I.    Discussion  of  Nash  equilibrium  and  boundedly  rational  theories    

Nash  equilibria  in  simple  games  like  ours  satisfy  two  properties:  (a)  Players  accurately  guess  what  strategies  (or  mixtures  of  strategies)  others  will  play;  and  (b)  players  choose  the  optimal  strategy  with  the  highest  expected  payoff—their  “best  response”—given  their  (accurate)  beliefs  from  (a).      

In  competitive  games  like  those  we  study,  the  Nash  equilibrium  mixtures  are  proportions  which  lead  to  (weak)  mutual  best  responses.  For  the  Inspection  game,  denote  NE  Matcher  P(Left)  by  p*  and  Mismatcher  P(Left)  by  q*.  The  values  of  p*  and  q*  will  satisfy  2p*=2(1-­‐p*)  and  4q*=1(1-­‐q*),  or  p*=.5,  q*=.2.    

Note  that  the  mixture  probabilities  for  one  player  depend  only  on  the  payoffs  of  the  other  player.    For  example,  if  the  (Left,  Left)  Matcher  payoff  was  X  (rather  than  4),  the  NE  mixtures  would  be  p*=.5  (i.e.,  the  Matcher  is  not  predicted  to  change  

Page 21: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

behavior  at  all)  and  q*=1/(X+1)  (i.e.,  the  Mismatcher  is  predicted  to  choose  Left  less  often,  as  if  to  deny  the  Matcher  the  high  X  payoff).  This  is  a  counter-­‐intuitive  feature.  Any  learning  algorithm  that  is  guided  by  received  payoffs  (such  as  reinforcement  learning)  will  therefore  adapt,  at  least  in  the  short-­‐run,  in  the  wrong  direction.    

Besides  learning  theories  (1),  two  prominent  types  of  boundedly  rational  theories  have  been  explored  since  the  mid-­‐1990s  (and  see  (2)  for  newer  theories;  but  cf.  (3)).      

“Quantal  response  equilibrium”  (QRE)  retains  assumption  (a)  but  relaxes  the  optimization  condition  (b)  to  allow  “softmax”  stochastic  imperfections  in  perceiving  and  responding  to  payoff  differences  (4).  This  can  be  seen  as  a  biologically  plausible  hybrid  that  combines  the  formal  precision  of  assumption  (a)  with  a  reasonable  psychophysical  constraint  on  the  ability  to  produce  a  perfectly  optimizing  response.  QRE  typically  uses  a  single  parameter  (λ)  to  encode  sensitivity  of  responses;  when  the  parameter  is  at  its  maximal  value  then  QRE  is  equivalent  to  NE.    

Another  class  of  “cognitive  hierarchy”  (CH)  (or  level-­‐k)  theories  accounts  for  limited  strategic  thinking  by  maintaining  the  optimality  condition  (a)  and  relaxing  the  assumption  of  accurate  beliefs  (b)  (5-­‐8).  Simple  level-­‐0  subjects  choose  using  an  intuitive  heuristic  with  no  cognition  about  likely  choices  of  others.  Higher  level  subjects  guess  accurately  what  lower-­‐level  subjects  are  likely  to  do  and  optimize.  More  levels  of  strategic  thinking  generally  correspond  to  a  more  accurate  model  of  the  social  environment  and  higher  rewards.  In  the  Camerer,  Ho,  and  Chong  (7)  variant  the  frequency  of  subjects  at  each  level  corresponds  to  a  Poisson  distribution  with  mean  and  variance  of  τ.  

Our  paper  includes  the  first  test  of  this  wide  range  of  rational  and  boundedly  rationality  game  theory  models  using  nonhuman  behavioral  data.  Text  Figure  2  shows  the  QRE  prediction  set.  It  is  graphed  as  a  continuous  curve  spanning  values  of    λ=0  (random  play,  P(Left)=.5  for  both  players)  to  NE  (λ→∞).  CH  predictions  are  graphed  for  a  single  value,  τ=1.5  (which  fits  many  experimental  and  field  data  sets  reasonably  well).  NE,  QRE,  and  CH  all  make  the  same  prediction  in  symmetric  matching  pennies.  For  the  other  two  games,  the  QRE  and  CH  are  actually  not  more  accurate  than  NE  for  the  chimpanzees.  However,  QRE  fits  the  human  Inspection  game  data  more  closely.    

These  results  are  surprising  because  QRE  and  CH  typically  reliably  fit  human  data  as  accurately  as  NE  (correcting  for  their  extra  degree  of  freedom,  of  course).  The  fact  that  the  chimpanzees  are  so  close  to  NE  in  general,  and  their  behavior  is  not  well  described  by  QRE  and  CH,  also  supports  our  conclusion  that  the  experienced  chimpanzees  seem  to  have  some  ability  to  choose  NE  mixtures  which  is  apparently  superior  to  that  of  humans,  at  least  in  these  simple  games.    

II.    Previous  lab  and  field  evidence  from  humans    

Many  studies  with  human  subjects  have  examined  how  well  behavior  corresponds  to  NE  predictions.  This  section  is  abridged  from  a  longer  discussion  in  Camerer  (1)  

Page 22: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

(chapter  3).  The  empirical  background  is  important  for  establishing  that,  for  humans,  there  are  typically  substantial  deviations  between  NE  predicted  frequencies  and  human  choices,  and  that  choices  are  typically  not  independent  over  time  either.  

The  earliest  studies  were  conducted  in  the  1950s,  shortly  after  many  important  ideas  were  consolidated  and  extended  in  Von  Neumann  and  Morgenstern’s  (1944)  landmark  book.  John  Nash  himself  conducted  some  informal  experiments  during  a  famous  summer  at  the  RAND  Corporation  in  Santa  Monica,  California.  Nash  was  reportedly  discouraged  that  subjects  playing  games  repeatedly  did  not  show  behavior  predicted  by  theory:  “The  experiment,  which  was  conducted  over  a  two-­‐day  period,  was  designed  to  test  how  well  different  theories  of  coalitions  and  bargaining  held  up  when  real  people  were  making  the  decisions.  …  For  the  designers  of  the  experiment  …  the  results  merely  cast  doubt  on  the  predictive  power  of  game  theory  and  undermined  whatever  confidence  they  still  had  in  the  subject.”(9)  

In  the  1960s  similar  early  experimental  results  were  discouraging.  However,  subjects  were  often  not  financially  motivated  and  sometimes  played  computerized  opponents.  One  striking  result  (10)  showed  that  people  were  capable  of  mixing  game-­‐theoretically  in  a  special  setting:  In  their  experiment  subjects  chose  first,  picked  an  explicit  distribution  of  strategies  (a  truly  mixed  strategy),  then  the  computer  observed  their  mixture  and  selected  a  best  response.  The  only  way  for  subjects  to  win  is  to  choose  the  equilibrium  mixture  (since  any  other  choice  will  be  instantly  exploited  by  the  computer).  In  this  special  setting,  they  were  able  to  hone  in  very  precisely  on  NE  mixing  (65%  were  playing  the  exact  mixture  by  the  end  of  a  five-­‐game  sequence).    

These  discouraging  results  turned  attention  away  from  mixed-­‐strategy  games.  Game  theorists  began  to  activity  research  games  with  private  information,  and  repeated  games.  A  revival  of  interest  in  competitive  games  began  with  O’Neill’s  (11)  elegant  design,  a  4x4  game  played  500  periods.  He  reported  overall  frequencies  of  play  that  were  much  closer  to  those  predicted  by  NE  than  the  early  c.  1960s  studies.    

However,  O’Neill’s  data  were  reanalyzed  by  Brown  and  Rosenthal  (12).  They  used  more  careful  tests  to  show  that  choices  often  depend  strongly  on  previous  choices  and  previous  outcomes  (i.e.,  independence  is  violated).  (The  tests  they  used  are  the  same  ones  we  conducted,  reported  below  in  this  Supplemental  material  section  III).  Others  closely  replicated  these  results  in  games  similar  in  structure.    

While  there  are  clearly  reliable  deviations  between  NE  and  human  choice,  it  is  notable  that  the  deviations  are  often  small  in  magnitude,  and  across  different  strategies  and  games  there  is  a  substantial  correlation  between  NE  predictions  and  actual  choice  frequencies.  Intuitively,  if  one  strategy  X  is  predicted  to  be  chosen  more  often  than  another  strategy  Y,  then  X  is  almost  always  chosen  more  often.  A  glimpse  of  several  studies  illustrating  the  accuracy  of  this  theory-­‐behavior  

Page 23: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

correspondence  comes  from  a  figure  in  Camerer  (1),  reprinted  with  our  human  data  added  as  Fig.  S1  below.    

The  correlation  between  predictions  and  behavior  is  .84.  The  mean  absolute  deviation  between  predictions  and  data  is  .067.  Furthermore,  keep  in  mind  that  predictions  usually  depend  on  auxiliary  assumptions  like  neutrality  toward  risk;  if  those  assumptions  are  violated  then  the  behavior  should  be  a  little  different  than  predicted.  These  results  are  therefore  quite  positive  in  establishing  some  predictive  value  of  Nash  equilibrium  predictions.  A  notable  set  of  experiments  with  a  similarly  positive  conclusion  is  Binmore  et  al.  (2001).  One  lesson  from  these  data,  then,  is  that  under  some  experimental  conditions  behavior  close  to  Nash  equilibrium  choice  can  occur.  

 

Figure  S1:  A  cross-­‐study  comparison  of  actual  strategy  choices  frequencies  with  predictions  from  Nash  mixed-­‐strategy  equilibrium  (MSE).  Each  data  point  is  one  strategy  from  one  study.  The  light  blue  circles  represent  human  data  reported  in  this  study.  See  Camerer  (2003,  chapter  3)  for  details.    

The  next  important  wave  of  research  sought  to  test  whether  typical  findings  in  highly-­‐controlled  lab  settings  were  also  evident  in  naturally-­‐occurring  settings  

Page 24: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

where  randomization  is  expected.  (The  quality  of  field-­‐lab  correspondence  is  often  of  interest,  since  economists  hope  to  discover  theories  which  work  equally  well  in  highly-­‐controlled,  artificial  lab  settings  and  in  field  settings  with  similar  features.  Camerer  (13)  discusses  the  ideas  and  debate  about  this  topic  within  experimental  economics  (see  also  Heckman  and  Falk  (14)).  He  also  surveys  the  best  available  studies.  Those  studies  generally  show  good  correspondence  between  patterns  in  field  data  and  patterns  in  closely-­‐matched  lab  settings.)  Most  of  the  studies  use  zero-­‐sum  competitive  sporting  events,  in  which  repeatedly  playing  the  same  strategy  predictably—such  as  always  serving  to  the  same  side  of  the  service  box  in  tennis—would  typically  be  noticed  and  exploited  by  an  opponent.    

Early  studies  of  tennis  (15,  16)  and  soccer  (17-­‐21)  found  that  players’  frequencies  corresponded  fairly  closely  to  those  predicted  by  an  NE  analysis,  and  that  choices  were  also  roughly  independent.    The  Palacios-­‐Huerta  and  Volij  study  is  particularly  impressive  because  they  are  able  to  match  data  from  actual  play  on  the  field  from  one  group  of  players  (in  European  teams)  with  laboratory  behavior  of  some  players  from  that  group  (although  not  matching  the  same  players’  field  and  lab  data).  Importantly,  PHV  also  found  that  high  school  students  as  a  group  behaved  less  game  theoretically  than  the  soccer  pros,  except  that  high  school  students  with  substantial  experience  playing  soccer  were  much  closer  to  game-­‐theoretic.  However,  a  reanalysis  by  Wooders  (22)  later  showed  a  higher  degree  of  statistical  dependence  than  shown  by  PHV.  

Levitt,  List,  and  Reiley  (23)  compared  behavior  of  poker,  bridge  and  soccer  players  (from  US  teams)  in  abstract  games  conducted  off  the  field.  They  find  substantial  deviation  from  NE  and  violations  of  independence.  However,  the  soccer  players  playing  for  US  teams  in  the  sample  might  have  been  less  likely  than  their  counterparts  in  PHV  to  actually  randomize  independently  in  the  field,  so  it  is  not  clear  their  players  are  randomizing  less  in  the  lab  than  in  the  field.  (The  key  point  here  is  that  the  best  players,  and  perhaps  the  best  randomizers,  play  in  soccer-­‐crazy  Europe  rather  than  in  the  US.)  

Another  field  study  used  a  simple  lottery  played  in  Sweden  by  about  50,000  people  per  day,  over  seven  weeks  (24).  Participants  in  the  “LUPI”  lottery  paid  1  euro  to  pick  an  integer  from  1  to  99,999.  The  lowest  unique  positive  integer  won  10,000  euros.  The  symmetric  NE  has  a  dramatic  shape,  with  numbers  from  1  to  5513  being  chosen  almost  equally  often,  but  with  slightly  declining  probability  (i.e.,  1  is  most  probable,  2  is  slightly  less  probable,  etc.).  A  bold  prediction  is  that  numbers  above  5000—a  range  that  includes  95%  of  all  available  numbers-­‐-­‐  should  rarely  be  chosen.  The  actual  behavior  is  not  far  from  the  NE  prediction  and  converges  over  the  seven  weeks  toward  the  statistical  prediction  of  the  NE  prediction  (e.g.,  the  mean,  variance,  and  other  statistics  all  move  toward  NE).  In  a  scaled-­‐down  laboratory  replication  behavior  is  even  closer  to  NE,  even  before  there  is  much  feedback  to  learn  from.    

The  general  picture  from  these  decades  of  field  and  lab  studies  is  that  people  are  capable  of  approximating  Nash  mixtures  (and  certainly  of  moving  in  their  direction  with  learning),  but  that  substantial  deviations  are  to  be  expected.  For  simple  matrix  

Page 25: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

games  like  those  we  study,  an  absolute  deviation  of  0.05-­‐0.10    between  NE  prediction  and  actual  frequency  is  to  be  expected  for  human  subjects.  The  average  absolute  deviations  in  the  Inspection  Game  3  are  0.05  and  0.22    ,  which  are  comparable  to  these  guesses  from  many  other  studies.  For  chimpanzees,  the  average  across  all  roles  and  games  is  0.033  (compared  to  0.135  for  humans).    

Table  S1:  Absolute  deviations  between  NE  predictions  and  average  overall  frequencies  by  role,  game  and  species  

Deviation  (to  2  digits)  (All  are  negative  dev’ns)  

Matcher   Mismatcher  

Sym  Chimps   0   0  

Asym  Chimps   0.14   0.02  

Insp  Chimps   0.03   0.01  

Insp  Humans   0.05   0.22  

 

III.    Temporal  dependence  regression  

The  histograms  in  the  text  (Figure  2)  show  the  results  of  a  simple  test  comparing  the  number  of  switches  in  each  subject’s  time  series  of  L-­‐R  responses  to  the  number  of  expected  assuming  statistical  independence.  The  switching  rate  histograms  for  the  game-­‐role  pairs  from  the  symmetric  and  asymmetric  matching  pennies  payoff  games  are  shown  in  Figure  S2  below.  They  show  a  little  more  deviation  from  random  independent  play.  

Individual  95%  confidence  intervals  for  each  subject-­‐session  uses  the  mixture  probabilities  for  that  subject-­‐session,  which  imply  the  mean  and  variance  of  the  number  of  runs  under  the  hypothesis  of  independence  (the  basis  for  a  Wald-­‐Wolfowitz  runs  test:  Let  the  number  of  L  choices  =  n,  R  choices  =  m.  Then  the  mean  =  2nm/(n+m)  +  1  and  variance  =  2nm(2nm  –  n  –  m)/((n  +  m)2  (n  +  m  –  1)))  .  The  number  of  runs  is  asymptotically  normal,  providing  a  95%  confidence  interval  for  each  subject-­‐session  with  that  mean  and  variance.    These  95%  confidence  intervals  were  averaged  to  produce  the  confidence  intervals  shown  in  Figures  3a-­‐d  and  S2a-­‐d.  

Our  version  of  the  Brown-­‐Rosenthal  (BR)  equation  is  

!!!! = !! + !!!! + !!!!!! + !!!!!!∗ + !!!!∗ + !!!!!!∗ + !!!! + !!!!!!  

where  !!  is  the  player’s  choice,  !!∗  is  the  opponent’s  choice,  and  !!  denotes  the  winner  in  period  t.  This  logit  regression  tests  for  a  variety  of  temporal  dependence  effects.  

Table  S2  shows  the  percentage  of  role-­‐subject  session  time  series  which  yield  BR  coefficients  that  are  significant  at  the  5%  level,  for  each  group  of  coefficients.  For  

Page 26: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

example,  for  human  matchers  (role  m),  50%  of  the  16  subjects’  regressions  indicated  significant  dependence  of  a  player’s  choices  on  the  previous  two  opponent  choices.  A  joint  test  for  all  effects  of  previous  outcomes  and  choices  (the  bottom  row  of  the  Table)  indicates  that  in  almost  all  cases  some  of  the  coefficients  are  significantly  nonzero,  when  tested  together  jointly.    

 

Fig.  S2a-­‐d:  Switch  deviations  for  chimpanzees  in  symmetric  matching  pennies  (top  row)  and  asymmetric  matching  pennies  (bottom  row).  Matchers  (left)  and  Mismatchers(right)  are  plotted  separately.    

Importantly,  however,  the  human  and  chimp  percentage  differences  in  significant  dependence  rates  (shown  in  the  right-­‐hand  columns)  are  generally  close  together.  Z-­‐tests  of  the  difference  in  percentages  across  chimps  and  humans  do  not  indicate  any  strong  differences  which  persist  for  both  roles.    

Table  S2:  Percentage  of  significant  temporal  dependence  effects  for  chimp  and  human  inspection  games  

 

Page 27: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

Table  S2  shows  corresponding  percentages  (averaging  across  both  Matcher  and  Mismatcher  roles)  for  the  symmetric  and  asymmetric  matching  pennies  games,  and  for  Brown  and  Rosenthal’s  (1990)  original  analysis  of  human  data  (playing  500  trials).  Both  human  data  results,  and  the  chimp  inspection  game,  are  comparable  in  the  rates  of  significant  dependence.  

 

Table  S3:  Percentage  of  significant  temporal  dependence  effects  for  all  chimp  and  human  games,  and  original  Brown-­‐Rosenthal  (1990)  human  data  

 

 

 

IV.        An  interesting  difference  between  Matcher  and  Mismatcher  response  times  (RTs)  

There  are  some  interesting  patterns  in  response  times  (RTs).  Each  point  Figure  S3  shows  the  pair  of  averaged  RT  for  each  subject,  when  playing  as  both  Matcher  (x-­‐axis)  and  Mismatcher  (y-­‐axis).  One  evident  result  is  that  Mismatcher  RTs  are  always  longer  (i.e.,  slower)  than  Matcher  reactions.  One  theory  to  account  for  this  difference  is  that,  in  equilibrium,  the  Mismatchers  have  to  choose  unequal  portions  of  L  and  R  responses.  However,  the  slight  RT  difference  is  even  evident  in  the  symmetric  games,  where  L  and  R  responses  are  predicted  to  be  equally  common  (and  actually  are,  empirically)  for  both  Matcher  and  Mismatcher.    

Page 28: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

 

Figure  S3:  Average  reaction  times  for  individual  subjects  when  playing  as  Matcher  (x-­‐axis)  and  Mismatcher  (y-­‐axis).    

We  speculate  that  the  RT  differential  might  indicate  some  kind  of  highly  evolved  (and  conserved  across  species)  speed  for  physical  imitation  of  movements,  compared  to  anti-­‐imitation.    

A  paired  sign  test  for  differences  in  medians  for  intra-­‐subject  RTs  rejected  the  hypothesis  of  equal  medians  (median  difference  127ms,  p<10-­‐8)  even  when  including  an  outlier  (Matcher  RT  1748ms,  Mismatcher  RT  1086ms).  

V    Histograms  of  payoffs  across  subjects  and  games  

Page 29: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

 

Figure  S4:  Average  payoff  distributions  across  all  chimpanzee-­‐sessions  in  Matching  Pennies  and  Asymmetric  Matching  Pennies  games.  (These  correspond  to  Fig.  4a-­‐b  in  the  main  text.)  

1.   Camerer  CF  (2003)  Behavioral  Game  Theory:  Experiments  in  Strategic  Interaction  (Princeton  Univ  Press,  Princeton,  NJ).  

2.   Selten  R,  Abbink  K,  Buchta  J,  &  Sadrieh  A  (2003)  How  to  play  (3  x  3)-­‐games.  A  strategy  method  experiment.  Game  Econ  Behav  45(1):19-­‐37.  

3.   Brunner  C,  Camerer  CF,  &  Goeree  JK  (2011)  Stationary  Concepts  for  Experimental  2  x  2  Games:  Comment.  American  Economic  Review  101(2):1029-­‐1040.  

4.   McKelvey  RD  &  Palfrey  TR  (1995)  Quantal  Response  Equilibria  for  Normal  Form  Games.  Game  Econ  Behav  10(1):6-­‐38.  

5.   Nagel  R  (1995)  Unraveling  in  Guessing  Games:  An  Experimental  Study.  The  American  Economic  Review  85(5):1313-­‐1326.  

Page 30: Experiencedchimpanzees*behave*more*gameF …econ.ucsb.edu/~tedb/Courses/GameTheory/CamererChimps.pdf · 2014. 1. 23. · Chimpanzee*game*theory* PNASMANUSCRIPT4/4/12% % CLASSIFICATION:Biological*Sciences,*Social*Sciences*(Psychology,*Economics)!

Chimp  game  theory  

6.   Stahl  D,  O.  &  Wilson  P,  W.  (1995)  On  Players'  Models  of  Other  Players:  Theory  and  Experimental  Evidence.  Game  Econ  Behav  10(1):218-­‐254.  

7.   Camerer  CF,  Ho  TH,  &  Chong  JK  (2004)  A  cognitive  hierarchy  model  of  games.  Quarterly  Journal  of  Economics  119(3):861-­‐898.  

8.   Crawford  V,  Costa-­‐Gomes  M,  &  Iriberri  N  (2010)  Strategic  Thinking.  9.   Nasar  S  (1998)  A  Beautiful  Mind:  A  Biography  of  John  Forbes  Nash  Jr  (Simon  &  

Schuster,  New  York).  10.   Kaufman  H  &  Becker  GM  (1961)  Empirical  Determination  of  Game-­‐

Theoretical  Strategies.  Journal  of  Experimental  Psychology  61(6):462-­‐&.  11.   O'Neill  B  (1987)  Nonmetric  Test  of  the  Minimax  Theory  of  Two-­‐Person  

Zerosum  Games.  Proc  Natl  Acad  Sci  U  S  A  84(7):2106-­‐2109.  12.   Brown  JN  &  Rosenthal  RW  (1990)  Testing  the  Minimax  Hypothesis:  A  Re-­‐

Examination  of  O'Neill's  Game  Experiment.  Econometrica  58(5):1065-­‐1081.  13.   Camerer  C  (2012)  The  Promise  and  Success  of  Lab-­‐Field  Generalizability  in  

Experimental  Economics:  A  Critical  Reply  to  Levitt  and  List.  14.   Falk  A  &  Heckman  JJ  (2009)  Lab  Experiments  Are  a  Major  Source  of  

Knowledge  in  the  Social  Sciences.  Science  326(5952):535-­‐538.  15.   Walker  M  &  Wooders  J  (2001)  Minimax  Play  at  Wimbledon.  American  

Economic  Review  91(5):1521-­‐1538.  16.   Hsu  SH,  Huang  CY,  &  Tang  CT  (2007)  Minimax  play  at  Wimbledon:  Comment.  

American  Economic  Review  97(1):517-­‐523.  17.   Palacios-­‐Huerta  I  &  Volij  O  (2008)  Experientia  Docet:  Professionals  Play  

Minimax  in  Laboratory  Experiments.  Econometrica  76(1):71-­‐115.  18.   Chiappori  PA,  Levitt  S,  &  Groseclose  T  (2002)  Testing  Mixed-­‐Strategy  

Equilibria  When  Players  Are  Heterogeneous:  The  Case  of  Penalty  Kicks  in  Soccer.  American  Economic  Review  92(4):1138-­‐1151.  

19.   Palacios-­‐Huerta  I  (2003)  Professionals  play  minimax.  Review  of  Economic  Studies  70(2):395-­‐415.  

20.   Moschini  GC  (2004)  Nash  equilibrium  in  strictly  competitive  games:  live  play  in  soccer.  Economics  Letters  85(3):365-­‐371.  

21.   Azar  OH  &  Bar-­‐Eli  M  (2011)  Do  soccer  players  play  the  mixed-­‐strategy  Nash  equilibrium?  Applied  Economics  43(25):3591-­‐3601.  

22.   Wooders  J  (2010)  Does  Experience  Teach?  Professionals  and  Minimax  Play  in  the  Lab.  Econometrica  78(3):1143-­‐1154.  

23.   Levitt  SD,  List  JA,  &  Reiley  DH  (2010)  What  Happens  in  the  Field  Stays  in  the  Field:  Exploring  Whether  Professionals  Play  Minimax  in  Laboratory  Experiments.  Econometrica  78(4):1413-­‐1434.  

24.   Östling  R,  Wang  JT-­‐y,  Chou  EY,  &  Camerer  CF  (2011)  Testing  Game  Theory  in  the  Field:  Swedish  LUPI  Lottery  Games.  American  Economic  Journal:  Microeconomics  3(3):1-­‐33.  

25.              Binmore,  K,  Swierzbinsk,  J,  Proulx,  C.  (2001).    Does  Minimax  Work?  An  Experimental  Study,  Economic  Journal,  111:  445-­‐464.