Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of...

22
Q1: Consider a balancer depicted below. Answer its equation of motion and natural angular frequency. The mass of the stick can be ignored and a small angle assumption is available: sin โ‰… . เฌต เฌถ เฌต เฌถ Exercise of mechanical vibration (1-dof vibration (rotation) Basic Q2: A stick with a mass m is supported by a frictionless pin, around which the stick rotates. An end of the stick is connected to the wall by a spring. When เตŒ0, its length is natural. Gravity force acts on the mass. Answer the equation of motion of the system about ฮธ and the period of free vibration. m เฌต เฌถ k Basic Q3: A pulley, which rotates around the center of mass, with a string hangs mass m. The mass moment of inertia of the pulley is denoted by I. There is no slippage between the pulley and string. The string is supported by a spring of coefficient k. Answer the period of free vibration of the system. m R k g Basic o Z Y X a b Q4: Consider a homogeneous stick of which volume can be negligible. Its lengths and mass are l and m, respectively. Answer its mass moment of inertia about the center O. Q5: Consider a rectangle plate made of a homogeneous material. Its thickness is small enough to be neglected. The mass and dimensions are m and 2a by 2b, respectively. X and Y axes are on the surface and along with its edges. Z axis is normal to the plate. Answer the mass moments of inertia about each of the three axes. Basic

Transcript of Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of...

Page 1: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q1: Consider a balancer depicted below. Answer its equation of motion and natural angular frequency. The mass of the stick can be ignored and a small angle assumption is available: sin ๐œƒ โ‰… ๐œƒ.

๐‘“ ๐‘“

Exercise of mechanical vibration (1-dof vibration (rotation)

Basic

Q2:  A stick with a mass m is supported by a frictionless pin, around which the stick rotates. An end of the stick is connected to the wall by a spring. When ๐œƒ 0, its length is natural. Gravity force acts on the mass. Answer the equation of motion of the system about ฮธ and the period of free vibration.

m

๐‘™๐‘™

๐œƒk

Basic

Q3: A pulley, which rotates around the center of mass, with a string hangs mass m. The mass moment of inertia of the pulley is denoted by I. There is no slippage between the pulley and string. The string is supported by a spring of coefficient k. Answer the period of free vibration of the system.

m

R

k

g

Basic

๐‘™oZY

X

ab

Q4: Consider a homogeneous stick of which volume can be negligible. Its lengths and mass are l and m, respectively. Answer its mass moment of inertia about the center O.

Q5: Consider a rectangle plate made of a homogeneous material. Its thickness is small enough to be neglected. The mass and dimensions are m and 2a by 2b, respectively. X and Y axes are on the surface and along with its edges. Z axis is normal to the plate. Answer the mass moments of inertia about each of the three axes.

Basic

Page 2: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q6: A slender rod of mass m and length l, moves around a circular trackunder the influence of gravity. The small rollers at the ends of therod are confined to the circular track and roll without friction.Neglect the mass of the rollers. The radius of the track is r and ๐‘™3๐‘Ÿ. Find an equation of motion of the rod as a function of thecoordinate, ฮธ, as shown in the figure.

๐œƒ

๐‘™ 3๐‘Ÿ๐‘Ÿ๐‘Ÿ2Basic

Q7: A cuckoo clock pendulum consists of two pieces glued together:ใƒป a slender rod of mass m1 and length l, andใƒป a circular disk of mass m2 and radius r, centered at the slenderrodโ€™s midpoint.

The pendulum is attached at one end to a fixed pivot (center ofrotation), O. , as shown below. The gravity acts.a) Find the mass moment of inertia about O.b) Find the pendulumโ€™s angular momentum about O.c) Find the equation of motion of the pendulum about ฮธ.

Basic

ฮธ

O

rl

m1

m2

Basic

Q8: Consider a pendulum made by a homogeneous plate. Its dimensionsare, a, b, and h as shown in the figure. The plate rotates around Ounder the gravity force, and smallโ€angleโ€assumption applies. Thematerial density is ฯ = m / (abh) as the mass and thickness of theplate are m and h, respectively. ฮธ is 0 at the equilibrium position ofthe system.

(1) Obtain the plateโ€™s mass moment of inertia about O.(2) Obtain the equation of motion in terms of ฮธ.(3) Find the natural angular frequency of the pendulum.(4) Solve the rotational behavior of the object ฮธ(t) with the initial

conditions ๐œƒ 0 ๐œƒ and ๐œƒ 0 0.(5) Solve the rotational behavior of the object with the initial

conditions ๐œƒ 0 0 and ๐œƒ 0 ๐œ” .

Basic

Page 3: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

a ฮธ

O

b/2b/2

Basic

Q9: Consider a homogenous plate of skewed Tโ€shape as is shown in thefigure. It is composed of two parts M1 and M2, each of which hasthe same dimensions and mass m.

(1) Obtain the mass moment of inertia about an axis passingthrough O.

(2) Obtain the centroid (center of gravity) of the plate using x and y.

Oa

bb/2

M1

M2

X

Y

Basic

Q10: Consider a cylinder that rolls without slipping. Let x = 0 denote therest position of the cylinder. The mass of the cylinder is m. Neglectthe mass of the spring. The mass moment of inertia of the cylinderis I.

Rk

ฯ†

x

ฮธ

Basic

(1) Obtain the equation of motion in terms of x.

(2) Determine the natural angular frequency of the cylinder.

(3) Let ฮด is the static deflection of the spring. Answer the kinetic and potential energy of the system.

(4) Suppose ๐‘ฅ ๐ดcos ๐‘๐‘ก , answer the maximum kinetic and potential energy of the cylinder as well as the minimum potential energy.

(5) Solve ๐‘‡ ๐‘ˆ ๐‘ˆ for p to obtain the natural angular frequency of the cylinder.

Basic

Page 4: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q11:  As shown in the figure, one end of the spring of constant k is fixed to the wall. The other end hangs the mass of m through the a pulley. The radius and mass of the pulley are a and M, respectively. The pulley rotates smoothly around its fixed central axis and the mass vibrates along the vertical direction. The string does not slip on the pulley. x and ฮธ are the displacement of the mass and the rotation angle of the pulley from their statistically equivalent position.

1) What is the moment of inertia of the pulley about its rotation axis?

2) When the displacement of the mass is x, answer tension Tusing x and k. Furthermore, answer the relation between x and ฮธ.

Basic

x

MT

Tโ€™

Tโ€™Displacement from the statically equivalent position

ฮธ

3) Answer the equation of motion about x. Use m, M, k, and a, and not T and Tโ€™.

4) Answer kinetic energy of K in this system.5) Answer potential energy of U in this system.6) By Lagrangeโ€™s method, answer the motion equation.

* Lagrangeโ€™s method is not the scope of mini quiz.

Basic

Q12:  Consider a disk with a handle. The disk rotates around its center, which is fixed to the ground. The length of the handle is l, and its width is negligibly small. Two ends of the disk are linked to the wall by springs of coefficient k. Answer the following problems.1) Mass of the disk and handle is m, for each. Answer the mass 

moment of inertia of the disk with a handle around the rotation axis.

2) Establish the equation of motion about ฮธ.3) Answer the natural frequency of the disk.

ฮธ

Radius r

Length l

Basic

Q13: Consider a thin circular disk of radius a and mass m. Answer the mass moment of inertia around axis Y.

X

Y d๐œƒdr

rdrd๐œƒa

Q14: Consider a cylinder of radius a and height l. Answer the mass moment of inertia around axis Y.

Y

Z

a

Basic

Page 5: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q15: A simplified model of a rackโ€andโ€pinion steering system is shown inthe figure. A gear of radius r and mass moment of inertia I isattached to a shaft of torsional stiffness kt, for which the restoringtorque is given by ๐œ ๐‘˜ ฮ”๐œƒ. The gear rolls without slip on therack of mass m. The rack is attached to a spring of coefficient k. x isthe horizontal displacement of the rack from the systemโ€™sequilibrium position.

k

x

Rack (m)

Pinion (I)

ฮธ

Basic

(1) Derive the differential equation governing the motion of thesystem using x.

(2) Looking at the rackโ€andโ€pinion system as a 1โ€DOF springโ€masssystem, the above equation is rewritten as ๐‘š ๐‘ฅ ๐‘˜ ๐‘ฅ 0.Answer the equivalent mass me and spring constant ke.

(3) Answer the kinetic energy of the system using x.(4) Answer the potential energy of the system using x.(5) Suppose ๐‘ฅ ๐ดcos ๐‘๐‘ก , solve p based on the energy

conservation law.

Basic

mm

l

a a

R1: Consider a balancer that has two weights at each side and rotates around O. The weight of the stick is ignorable. Find the equation of motion of a balancer (ใ‚„ใ˜ใ‚ในใˆ) and its natural angular frequency p.

Given that ฮธโ‰ช 1, sinฮธ โ‰‚ ฮธ and cosฮธ โ‰‚ 1 โ€“ ฮธ2/2

O

Intermediate

R2: When the arm of the balancer is circular, answer l such that the natural frequency becomes 1 Hz.

mm l

l

l

Intermediate

Page 6: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R3: Consider the following system which consists of a disk of mass m andspring. The spring is fixed to the disk at its center of gravity, around whichthe disk rotates. The motion of the disk is constrained along xโ€axis. Theslippage between the disk and ground does not occur. Mass moment ofthe disk is I.

rk

x

(1) Answer the equation of motion about x.

(2) Answer the kinetic energy of translation (Tt) and rotation (Tr) using ๐‘ฅ and ๐œƒ, respectively.

(3) Answer the potential energy of the spring (U) using x.

(4) When ๐‘ฅ =๐ด cos ๐œ” ๐‘ก, find the natural frequency of the system (๐œ” ) based on the relationship of T ๏ผ๐‘ˆ .

m

Intermediate

R4: ๅŠๅพ„Rใฎๅ††็ญ’ๅ†…ใง่ปขใŒใ‚ŠใชใŒใ‚‰ๅพฎๅฐๆŒฏๅ‹•ใ‚’ใ™ใ‚‹่ณช้‡m๏ผŒๅŠๅพ„r ใฎๅ††ๆŸฑใ‚’่€ƒใˆใ‚‹๏ผŽๅ††็ญ’ใฏ๏ผŒๆป‘ใ‚‰ใชใ„ใ‚‚ใฎใจใ™ใ‚‹๏ผŽ(1)โ€(4)ใฎๅ•ใ„ใซ็ญ”ใˆใ‚ˆ๏ผŽๅ›ž็ญ”ใซใฏ๏ผŒฮฆใฏ็”จใ„ใฆใฏใชใ‚‰ใชใ„๏ผŽ

(1) ไธฆ้€ฒใฎ้‹ๅ‹•ใ‚จใƒใƒซใ‚ฎใƒผ๐‘‡ ใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ

(2) ๅ††็ญ’ใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใ‚’ I ใจใ™ใ‚‹ใจใ๏ผŒๅ††็ญ’ใฎๅ›ž่ปขใฎ้‹ๅ‹•ใ‚จใƒใƒซใ‚ฎใƒผ๐‘‡ ใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ

(3) ไฝ็ฝฎใ‚จใƒใƒซใ‚ฎใƒผU ใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽฮธใŒๅๅˆ†

ใซๅฐใ•ใ„ใจใ—๏ผŒcos ๐œƒ 1 ใฎ่ฟ‘ไผผใ‚’

็”จใ„ใ‚‹ใ“ใจ๏ผŽ

(4) ๐œƒ=๐ด cos ๐‘๐‘ก ใจใ—ใฆ๏ผŒๅ††็ญ’ใฎๆœ€ๅคง่ง’ๅบฆ๐œƒ ๐ด ใงใ‚ใ‚Š๏ผŒๆœ€ๅคง่ง’้€Ÿๅบฆ ๐œ”๐ด๐‘ ใจใชใ‚‹๏ผŽใ“ใฎใจใ๏ผŒ๐‘‡ ๐‘ˆ ใ‚’ ๐‘ใซใคใ„ใฆ่งฃใ‘๏ผŽใชใŠ๏ผŒ๐‘ ใฏใ“ใฎ็ณปใฎๅ›บๆœ‰่ง’ๅ‘จๆณขๆ•ฐใงใ‚ใ‚‹๏ผŽ

๐œƒR ๐œ™ r

ๅ‡บ้กŒ: ใƒ†ใ‚ญใ‚นใƒˆใฎๆผ”็ฟ’ๅ•้กŒ 2.8aIntermediate

R5๏ผš Figure (1) shows a simplified seesaw. The main plate is of length 2land mass M. Its width and thickness are small enough to be neglected. The supporting pivot O is at d from the plate. The gravity acceleration is g. Using the small inclination of the seesaw ๐œƒ, establish the equation of motion. Also, find the natural frequency.Furthermore, as is shown in Fig. (2), when a mass point is at 

each end, answer the equation of motion and the natural frequency.

๐œƒd

ll

(1) ๐œƒd

ll

(2)

m

mM M

Intermediate

R6: The inverted pendulum is connected by two springs as shown in the figure.  Assume small angles of vibration and neglect the rod mass. 

a) Derive the equation of motion of the system about ๐œƒ. 

b) What is the relation among ๐‘™ , ๐‘™ , ๐‘š, and ๐‘˜ for the characteristic roots to include at least one positive real value?

c) Describe the behavior of the system when the characteristic roots include positive real values.

๐‘š๐‘˜ ๐‘˜๐‘™๐‘™ ๐‘™

๐œƒ

๐œƒ๐‘”

Intermediate

Page 7: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R7: A Tโ€shaped plate is made from two solid plates M1 and M2 ofuniform density. Their dimensions are shown in the figure. M1 andM2 have mass 2m and 2/3m, respectively. G1 and G2 are thecenters of mass of each plate.a) Find the location of the center of mass of the combined plate,

G12, which lies somewhere on the vertical line. Express it as adistance s measured from the top of the object.

b) Find the mass moment of inertia of the plate about its gravitycenter, G12.

M1

M2

a

b G1

G2

sG12

b

bIntermediate

R8: A grandpa accidentally dropped a rice ball (weight m, radius r), andit rolled on a curved surface of which radius was R. The rice ball did not slip on the surface. The angle of the rice ball is denoted by ฮธ.

(1) Assume that the rice ball is a homogeneous sphere. Answer the moment of inertia of the rice ball around its centroid.

(2) Answer the equation of motion of the rice ball about ฮธ.

(3) Using a small angle assumption (sinฮธ ~ ฮธ), determine the natural frequency of the ball.

R

mg

ฮธ

hr

Riceball

Intermediate

R9: The mass moment of inertia of a tire can be investigated by rolling it on a slope, i.e., release it from rest at a certain height. Answer what quantities and which formula should be used for calculating the mass moment of inertia. Note that the density of the tire is not disclosed.

ฮธg

Intermediate

R10: A pendulum of length l and mass m is fixed to a pin on a rodrotating at a constant angular speed ๐œ”. The pendulum rotatesaround the pin and its rotation angle is denoted by ๐œƒ. ๐œƒ is smallenough ๐œƒ 0 when the pendulum aligns with the gravitationalacceleration.(1) Find the equation of 

motion about ๐œƒ.(2) Find the natural frequency 

of the pendulum when ๐œƒ is small enough and the smallโ€angle approximation of trigonometric functions is available.

๐‘™๐œƒ

๐œ”Frictionlesspin

m๐‘”

Intermediate

Page 8: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R11: We calculate the natural frequency of a rocking chair. The base ofthis rocking chair is a circular arc, and its center of mass (m) moveson the xโ€y plane as the chair rocks back and forth. The radius of thearc is R. The position of the center of mass is L from the bottom.The origin of the coordinate system lies at the contact pointbetween the arc and floor when ๐œƒ 0.(1) Express the coordinate (x and y) of the center of mass as a

function of ๐œƒ.(2) Find the kinetic energy of the center of mass.(3) From the principle of energy conservation, find

the natural frequency of the chair when ฮธ issmall. Use g as the gravitational acceleration.

ใƒญใƒƒใ‚ญใƒณใ‚ฐใƒใ‚งใ‚ขใฎใ‚ˆใ†ใช่ปขใŒใ‚‹ๆŒฏๅญใ‚’๏ผŒ่ปขๅ‹•ๆŒฏๅญ๏ผˆ่ปขใŒใ‚ŠๆŒฏๅญ๏ผ‰ใจๅ‘ผใถ๏ผŽIntermediate

Rm

L

m

x

y

(x, y)๐œƒ

O O

Intermediate

R12: Consider a physical pendulum made of a homogeneous rod of which length and mass are l and m, respectively. The rod rotates about the frictionless pivot. The gravitational acceleration is g. The rotational angle of the rod is ๐œƒ, for which ๐œƒ 0 at its equilibrium position.

(1) Find the mass moment of inertia of the rod about the pivot.(2) Find the natural angular frequency of the pendulum, when ๐œƒ is 

small enough that small angle assumptions are available.(3) Find the position of pivot d such that the natural angular 

frequency becomes maximum. d is the distance between the pivot and the centroid of the rod.

Intermediate

๐‘™3

๐œƒ๐‘”2๐‘™3 ๐‘™2

๐‘‘ Distance between the pivot and the mass center of the rod.

Intermediate

Page 9: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R13: Inertial mass damper. The mechanism in the figure realizes an effective mass significantly greater than the actual mass. When the displacement arises at the tip of the ball screw, it revolves the flywheel, of which radius is r, in the chamber. When the mass and mass moment of inertia of the flywheel are m and  1/2 ๐‘š๐‘Ÿ . Find the effective mass.

[Sugimoto et al., J. Struct. Constr. Eng., 2018]

rTorque: ฯ„

Force: fDisplacement: x

Flywheel: I

Intermediate

(1) Ld is the displacement of the screw when it revolves 2๐œ‹ rad. Find the angular velocity ๐œƒ of the flywheel when the velocity of the ball screw is ๐‘ฅ.

(2) Ld also determines the ratio of force f and torque ๐œ: ๐œ ๐‘“. Find the relationship between f and ๐œƒ.

(3) Find the effective (apparent) mass by using following values: ๐ฟ 0.02 m, ๐‘Ÿ 0.3 m, and ๐‘š 1.0 kg.

Intermediate

S1: A rod of mass M and length 2a revolves around its frictionless center O. Thickness of the rod is small enough to be neglected. A weight m is attached at b from the center. The gravity force acts on the mass and rod, and they behave as a pendulum. Answer the following problems.(1) Answer the mass moment of 

inertia of the pendulum around O.

(2) Answer the centroid of the pendulum from O.

(3) Using a small angle assumption (sinฮธ ~ ฮธ), determine the natural frequency of the pendulum.

(4) Determine b, such that the pendulum rotates most quickly.

O

a

am

b

M

g

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! ๅๅคๅฑ‹ๅคงๅญฆ 2018ๅนดๅค–ๅ›ฝไบบ็•™ๅญฆ็”Ÿ่ฉฆ้จ“

S2: Consider a cube made by solid bars of which lengths are l and masses are negligible. The mass points of m or 2m are distributed on the corners as in the figure. The origin O is set on one of the corners. Answer the following problems.(1) Find the center of mass of the cube.(2) Find the mass moment of inertia of the cube with respect to 

the Xโ€axis.(3) Find the mass moment of inertia about an axis passing through 

the center of mass and parallel to the Xโ€axis.(4) When the gravitational acceleration g acts on the masses in the 

negative Z direction, answer the moment vector about O.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! ๅๅคๅฑ‹ๅคงๅญฆ 2018ๅนดๅค–ๅ›ฝไบบ็•™ๅญฆ็”Ÿ่ฉฆ้จ“

Page 10: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

X

Y

Z

2m

2m

2mm

m

l

l

l

O

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! ๅๅคๅฑ‹ๅคงๅญฆ 2018ๅนดๅค–ๅ›ฝไบบ็•™ๅญฆ็”Ÿ่ฉฆ้จ“

S3: Consider a mass particle and a stepped cylinder wound by masslesscables. Their motions are linear along the Zโ€axis. A gravitationalforce is acting in the downward direction, and the acceleration ofgravity is g. The cylinder has mass m1 and the moment of inertia Iwith respect to the rotational axis located at the mass center of thecylinder. The upper cable is fixed on the ceiling, and its positivetension is denoted by T1. r1 and r2 denote the radii of the cylinder.z1 and z2 are the positions from the ceiling, and ๐œƒ denotes therotational angle of the cylinder. The mass particle of the mass m2 isattached to the lower cable, and its positive tension is denoted byT2. Answer the following questions.(1) Find the equation of translational motion of the mass particle.

You may use T2 in the answer.(2) Find the equations of translational and rotational motions of

the cylinder. You may use T1 and T2 in the answer.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! ๅๅคๅฑ‹ๅคงๅญฆ 2018ๅนดๅค–ๅ›ฝไบบ็•™ๅญฆ็”Ÿ่ฉฆ้จ“

๐‘š

๐‘š๐‘Ÿ๐‘Ÿ

๐‘š๐‘Ÿ

๐‘Ÿ

๐œƒ ๐‘š๐‘ง

๐‘ง

(3) Represent the velocity ๐‘ง using the angular velocity ๐œƒ.(4) The angular acceleration ๐œƒ can be given by ๐œƒ ๐›ผ๐‘”, where ๐›ผ is

a constant. Find ๐›ผ, not using T1 and T2.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! ๅๅคๅฑ‹ๅคงๅญฆ 2018ๅนดๅค–ๅ›ฝไบบ็•™ๅญฆ็”Ÿ่ฉฆ้จ“

S4:  Two masses are supported by four rigid links. This system is symmetric about zโ€axis and revolves around zโ€axis at constant angular velocity ๐œ”. Points O and B are connected by a spring of coefficient k. The springโ€™s natural length is 2๐ฟ. The position of B is limited to 0 ๐‘ง 2๐ฟ. The gravitational acceleration is g. The angle between link OA is denoted by ๐œƒ.(1) Find the equation of force at B using ๐‘“ which is the tension of 

link AB.(2) Find the equation of motion of the mass about x and z using  ๐‘“

and  ๐‘“ which is the tension of link OA.(3) Find the equation of motion of the mass about ๐œƒ by removing ๐‘“ and ๐‘“ from the equations found in (1) and (2).(4) The generalized coordinate of the system is ๐œƒ. Find the kinetic 

energy of the system.(5) The generalized coordinate of the system is ๐œƒ. Find the 

potential energy of the system.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! H31ๅนดๅบฆๅคง้˜ชๅคงๅญฆโ€ไธ€้ƒจ

Page 11: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

S4: Cont.

ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! H31ๅนดๅบฆๅคง้˜ชๅคงๅญฆโ€ไธ€้ƒจ

A: Translate the following paragraph on pulley dynamics into Japanese.

The figure provides an example of pulley dynamics. The pulleyโ€™scenter is fixed, and forces f1 and f2 are the tensions in the cord oneither side of the pulley. From law of rotational motion,

The tension forces are equal if ๐ผ๐œƒ is negligible.This condition is satisfied if either the pulleyrotates at a constant speed or the pulleyinertia is negligible compared to the otherinertias in the system. The pulley inertia willbe negligible if either its radius or its mass issmall. The force on the support at the pulleycenter is f3 = f1 + f2. If ๐ผ๐œƒ is negligible, then thesupport force is 2f1.

๐ผ๐œƒ ๐‘“ ๐‘… ๐‘“ ๐‘….R

ฮธ

f1 f2

f3

COLUMN: Monkey climb puzzle from Lewis Carrol

ไธๆ€่ญฐใฎๅ›ฝใฎใ‚ขใƒชใ‚นใง็Ÿฅใ‚‰ใ‚Œใ‚‹ Lewis Carrol ใฎๆœ‰ๅใชใƒ‘ใ‚บใƒซใŒใ‚ใ‚‹๏ผŽ

ๆ‘ฉๆ“ฆใฎ็„กใ„ๆป‘่ปŠใซ่ณช้‡ใ‚’็„ก่ฆ–ใงใใ‚‹ใƒญใƒผใƒ—ใŒๆŽ›ใ‘ใ‚‰ใ‚ŒใฆใŠใ‚Š๏ผŒใใฎไธก็ซฏใซๅŒใ˜่ณช้‡ใฎใŠใ‚‚ใ‚Šใจใ‚ตใƒซใŒใถใ‚‰ไธ‹ใŒใฃใฆใ„ใ‚‹๏ผŽใ‚ตใƒซใฏ๏ผŒใƒญใƒผใƒ—ใ‚’ใคใŸใฃใฆไธŠใซ็™ปใ‚ใ†ใจใ™ใ‚‹๏ผŽใ‚ใ‚‹ไบบใฏ๏ผŒใ‚ตใƒซใฏใƒญใƒผใƒ—ใ‚’็™ปใ‚‹ใ“ใจใŒใงใใšใซๅŒใ˜ๅ ดๆ‰€ใซ็•™ใพใ‚‹๏ผŒใ‚‚ใ—ใใฏไธ‹ใซ่ฝใกใฆใ—ใพใ†ใจ่จ€ใ†๏ผŽๅˆฅใฎไบบ

ใฏ๏ผŒใ‚ตใƒซใฏใƒญใƒผใƒ—ใ‚’็™ปใ‚‹ใ“ใจใŒใงใใ‚‹ใจ่จ€ใ†๏ผŽใ•ใฆ๏ผŒใ‚ตใƒซใฏใƒญใƒผใƒ—ใ‚’็™ปใ‚‹ใ“ใจใŒใงใใ‚‹ใ ใ‚ใ†ใ‹๏ผŸใใฎ็†็”ฑใฏ๏ผŸ

mmๆผ”็ฟ’ๅ•้กŒใŠใ‚ˆใณ่งฃ็ญ”ใซใฏใƒŸใ‚นใŒใ‚ใ‚Šใพใ™๏ผŽใƒŸใ‚นใ‚’ๅˆใ‚ใซ่ฆ‹ใคใ‘ใฆๆ•™ใˆใฆใใ‚ŒใŸไบบใซใฏ๏ผŒๆœ€็ต‚ๆˆ็ธพใซๅŠ ็‚นใ—ใพใ™๏ผŽ1ๅ€‹็›ฎใชใ‚‰2็‚น๏ผŒ2ๅ€‹็›ฎไปฅ้™ใฏ1็‚นใšใคใ‚’ๅŠ ็‚นใ—ใพใ™๏ผŽ

Solution (Basic)Q1: ๐‘˜๐‘™ ๐œƒ ๐‘š๐‘™ ๐œƒ 0

๐‘ ๐‘™๐‘™ ๐‘˜๐‘š๐œƒ ๐‘š๐‘”๐‘™ ๐‘™ ๐‘˜๐‘š๐‘™ ๐œƒ 0๐‘ ๐‘š๐‘”๐‘™ ๐‘™ ๐‘˜๐‘š๐‘™

Q2:

Q3: ๐ผ ๐‘š๐‘… ๐œƒ ๐‘… ๐‘˜๐œƒ 0๐‘ ๐‘… ๐‘˜๐ผ ๐‘š๐‘…

๐‘‡ 2๐œ‹๐‘๐‘‡ 2๐œ‹๐‘

Page 12: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

๐ผ ๐‘š๐‘™12Q4: Q5: ๐ผ 13 ๐‘š๐‘๐ผ 13 ๐‘š๐‘Ž๐ผ 13 ๐‘š ๐‘Ž ๐‘ ๐ผ ๐ผ

๐‘Ÿ๐œƒ ๐‘”sin๐œƒ 0Q6:

๐ผ 13 ๐‘š ๐‘™ ๐‘š ๐‘Ÿ2 ๐‘™4Q7:

a)

๐ผ ๐œƒb)

13 ๐‘š ๐‘™ ๐‘š ๐‘Ÿ2 ๐‘™4 ๐œƒ ๐‘š ๐‘š ๐‘” ๐‘™2 sin๐œƒ 0c)

Q8:(1)

22412

bamIO

(2)

(3)

(4)

(5)

Q9:(1)

a

b

O X

Y

COG2

COG1r1

r2

a/4

(3a+b)/4

S

(2)ๅ›ž่ปขไธญๅฟƒOใ‹ใ‚‰ไธ‹่จ˜ใฎไฝ็ฝฎS

Q10:R3ใจๅŒใ˜้‹ๅ‹•ๆ–น็จ‹ๅผใซใชใ‚Šใพใ™๏ผŽ

๐œƒ ๐‘ก ๐œƒ cos ๐‘๐‘ก๐œƒ ๐‘ก ๐œ”๐‘ sin ๐‘๐‘ก

๐ผ ๐‘š12 20๐‘Ž 12๐‘Ž๐‘ 5๐‘๐œƒ ๐‘š๐‘”๐‘Ž2๐ผ ๐œƒ 0๐‘ ๐‘š๐‘”๐‘Ž2๐ผ 6๐‘”๐‘Ž4๐‘Ž ๐‘

Q11:

I 12

Ma2 T kxx a

1) 2)

021

kxxmM 3)

U 12

kx2

4)

5)

6)

Q12:1 ๐ผ ๐ผ ๐ผ๐ผ 12 ๐‘š๐‘…๐ผ 13 ๐‘š๐‘™3 ๐‘ 2๐‘Ÿ ๐‘˜ ๐ผ

2 ๐œƒ 2๐‘Ÿ ๐‘˜ ๐ผ ๐œƒ 0

Q13: 14 ๐‘š๐‘Ž 14 ๐‘š๐‘Ž 112 ๐‘š๐‘™Q14:

Page 13: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q15:

๐ผ๐‘Ÿ ๐‘š ๐‘ฅ ๐‘˜ ๐‘˜๐‘Ÿ ๐‘ฅ 0(1)

(3) ๐‘‡ 12 ๐‘š ๐ผ๐‘Ÿ ๐‘ฅ๐‘ˆ 12 ๐‘˜ ๐‘˜๐‘Ÿ ๐‘ฅ(4)

(2) ๐‘š ๐ผ๐‘Ÿ ๐‘š ๐‘˜ ๐‘˜ ๐‘˜๐‘Ÿ

๐‘ ๐‘˜ ๐‘˜๐‘Ÿ๐ผ ๐‘š๐‘Ÿ(5)

R1: ๐œƒ ๐‘”๐‘™๐‘Ž ๐‘™ ๐œƒ 0๐‘ ๐‘”๐‘™๐‘Ž ๐‘™

R2: ๐‘™ ๐‘”8๐œ‹

(1)๐ผ 12 ๐‘š๐‘Ÿ๐‘š ๐ผ๐‘Ÿ ๐‘ฅ ๐‘˜๐‘ฅ 0(3)๐‘ˆ 12 ๐‘˜๐‘ฅ

R3:

(2)๐‘‡ 12 ๐‘š๐‘ฅ ,๐‘‡ 12 ๐ผ๐œƒ 12 ๐ผ ๐‘ฅ๐‘Ÿ(4)๐‘ ๐‘˜๐‘š ๐ผ๐‘Ÿ

R4:

(1) ๐‘‡ 12 ๐‘š ๐‘… ๐‘Ÿ ๐œƒ ่ณช้‡ไธญๅฟƒใฎไฝต้€ฒ้€Ÿๅบฆใฏ๏ผŒ ๐‘… ๐‘Ÿ ๐œƒใงใ‚ใ‚‹

(2) ๐‘‡ 12 ๐ผ ๐‘… ๐‘Ÿ๐‘Ÿ ๐œƒ ๐œ™ใฏๆŽฅ่งฆ็‚นใ‹ใ‚‰ใฎ่ง’ๅบฆใงใ‚ใ‚‹ใฎใง๏ผŒๅ††็›ค่‡ชไฝ“ใฎๅ›ž่ปข่ง’ๅบฆใฏ๏ผŒ๐œ™ ๐œƒใงใ‚ใ‚Š๏ผŒ๐‘…๐œƒ ๐‘Ÿ๐œ™ ใง

ใ‚ใ‚‹ใŸใ‚๏ผŒๅ††็›คใฎ่ง’้€Ÿๅบฆ ๐œ™ ๐œƒ 1 ๐œƒใจใชใ‚‹๏ผŽ

(3) ๐‘ˆ ๐‘š๐‘” ๐‘… ๐‘Ÿ 1 cos ๐œƒโˆผ ๐‘š๐‘” ๐‘… ๐‘Ÿ ๐œƒ2(4) ๐‘‡ ๐œƒ ๐‘‡ ๐‘‡ 12 ๐‘… ๐‘Ÿ ๐œƒ ๐‘š ๐ผ๐‘Ÿ ๐œƒ ๐ด๐‘

๐‘‡ ๐œƒ ๐ด๐‘2 ๐‘… ๐‘Ÿ ๐‘š ๐ผ๐‘Ÿ

๐‘ˆ ๐œƒ โˆผ ๐‘š๐‘” ๐‘… ๐‘Ÿ ๐ด2 ๐œƒ ๐ด๐‘ˆ ๐œƒ ๐‘‡ ๐œƒ ใ‹ใ‚‰๏ผŒ

๐‘ ๐‘š๐‘”๐‘Ÿ๐‘… ๐‘Ÿ ๐‘š๐‘Ÿ ๐ผ

Page 14: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

(1)ๆฃ’ใฎไธญๅฟƒๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใฏ

ใงใ‚ใ‚Š๏ผŒpivotๅ‘จใ‚Šใงใฏ ๐‘€๐‘‘๐‘ ๐‘”๐‘‘๐‘™3 ๐‘‘ ๏ผŽ

(2)ๆฃ’ใฎไธญๅฟƒๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใฏ2๐‘š๐‘™ ใงใ‚ใ‚Š๏ผŒpivotๅ‘จใ‚Šใงใฏ2๐‘š๐‘™ ๐‘€ 2๐‘š ๐‘‘

R5: R6: ๐‘š๐‘™ ๐œƒ 2๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ 0a) 2๐‘˜๐‘™ ๐‘š๐‘”๐‘™ 0b)

c) The pendulum falls down. ใชใœใชใ‚‰ใฐ๏ผŒ๐œƒ ๐ดexp ๐œ†๐‘กใงใ‚ใ‚‹ใจใ—ใฆ๏ผŒ๐œ†ใŒๆญฃใฎๅฎŸ้ƒจใ‚’ๆœ‰ใ™ใ‚‹ใชใ‚‰๏ผŒๆ™‚้–“ใจใจใ‚‚ใซ๏ผŒฮธใŒๅคงใใใชใ‚Š็ถšใ‘ใ‚‹ใ‹ใ‚‰๏ผŽ

๐‘ ๐‘€ 2๐‘š ๐‘”๐‘‘๐‘€ ๐‘™3 ๐‘‘ 2๐‘š(d2+l2)

๐‘  34 ๐‘R7:

a) ๐ผ ๐ผ ๐‘‘ ๐‘š ๐ผ ๐‘‘ ๐‘šb) ๐‘‘ 14 ๐‘ ๐‘‘ 34 ๐‘๐ผ 2๐‘š12 ๐‘Ž ๐‘๐ผ ๐‘š๐‘9d1 and d2 are the distances from G12 to G1and G2, respectively.

๐ผ ๐‘š ๐‘Ž6 79 ๐‘

(1)

(2)

2

52 mrI

(3)

R8:

ๅŠๅพ„rใฎ็ƒใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใจใ—ใฆ

๐‘š๐‘…๐œƒ ๐‘š๐‘”sin๐œƒ ๐น๐ผ ๐œ™ ๐œƒ ๐‘Ÿ๐น๐‘… ๐‘Ÿ ๐œƒ ๐‘Ÿ๐œ™๐œƒ 5๐‘”7๐‘… ๐œƒ 0

๐œ” 5๐‘”7๐‘…ฮธ

h

h๐œ™๐œ™ใ‚’็ƒใฎๅ›ž่ปข่ง’ๅบฆ๏ผˆๅœฐ้ขใจใฎๆŽฅ็‚นใ‹ใ‚‰ใฎ๏ผ‰ใจใ™ใ‚‹ใจ๏ผŒ๐‘… ๐‘Ÿ ๐œƒ ๐‘Ÿ๐œ™ใจใชใ‚‹ใ“ใจใซๆณจๆ„๏ผŽQ7ใ‚‚ๅ‚่€ƒใซใ—ใฆไธ‹ใ•ใ„๏ผŽ

๐‘…

R9: We should measure the following parameters:m: mass of the tirer: radius of the tirex: position of the tire on the slope

and use the formula:

ฮธ

x

๐‘“ ๐‘š๐‘”sin๐œƒ ๐‘“ ๐‘“๐‘š๐‘ฅ ๐ผ ๐‘ฅ๐‘Ÿ

๐ผ ๐‘Ÿ ๐‘š๐‘”sin๐œƒ๐‘ฅ ๐‘šfx: Force along xโ€axisft: Force for translationfr: Force for rotation

Page 15: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R9: From the preservation of energy, we may use the following relationships. In this case, we need to measure the velocity of the tire after the slope and the height of the slope.

ฮธ

x

๐‘ˆ ๐‘š๐‘”๐‘™Initial energy

๐‘‡ 0

l

After the slope๐‘ˆ 0๐‘‡ 12 ๐‘š๐‘ฅ 12 ๐ผ๐œ”12 ๐‘š ๐ผ๐‘Ÿ ๐‘ฅ๐‘ˆ ๐‘‡

R10:

๐œƒ๐œ”

m

๐‘š๐‘”๐‘š๐œ” ๐‘™sin๐œƒCentrifugalforce

(1)

๐‘š๐‘™ ๐œƒ ๐‘š๐‘”๐‘™sin๐œƒ ๐‘š๐œ” ๐‘™sin๐œƒ๐‘™cos๐œƒ(2)

๐‘š๐‘™ ๐œƒ ๐‘š๐‘”๐‘™๐œƒ ๐‘š๐œ” ๐‘™ ๐œƒ

้ ๅฟƒๅŠ›ใฏ๏ผŒๅธธใซฮธใฎๆญฃใฎๆ–นๅ‘ใซๅƒใใ“ใจใซๆณจๆ„ใ—ใฆ

ๅ›ž่ปข่ง’ๅบฆใฎ่ฟ‘ไผผใ‚’็”จใ„ใ‚‹ใจ๏ผŒ(1)ใฎๅผใฏไธ‹่จ˜ใฎ้€šใ‚Šใซใชใ‚‹๏ผŽ

๐‘™๐œƒ ๐œƒ ๐‘” ๐‘™๐œ” 0๐œ” ๐‘” ๐‘™๐œ”๐‘™

R11:(1)

m๐œƒ

O

๐‘ฅ ๐‘…๐œƒ ๐‘… ๐ฟ sin๐œƒ๐‘…๐œƒ ๐‘… ๐ฟ sin๐œƒ๐‘ฆ ๐‘… ๐‘… ๐ฟ cos๐œƒ

๐‘… ๐ฟ cos๐œƒ(2) ๐‘ฅ ๐‘…๐œƒ ๐‘… ๐ฟ ๐œƒcos๐œƒ๐‘ฆ ๐‘… ๐ฟ ๐œƒsin๐œƒ๐‘‡ 12 ๐‘š๐‘ฃ 12 ๐‘š ๐‘ฅ ๐‘ฆ12 ๐‘š๐œƒ ๐‘… 2๐‘… ๐‘… ๐ฟ cos๐œƒ ๐‘… ๐ฟ

~ 12 ๐‘š๐ฟ ๐œƒ cos๐œƒ 1 ใฎใจใ

(3)ๅทฆ่พบ: ้‹ๅ‹•ใ‚จใƒใƒซใ‚ฎใƒผใŒๆœ€ๅคงใซใชใ‚Š๏ผŒไฝ็ฝฎใ‚จใƒใƒซใ‚ฎใƒผใŒๆœ€ๅฐใซใช

ใ‚‹ๅงฟๅ‹ข ๐œƒ 0ๅณ่พบ: ้‹ๅ‹•ใ‚จใƒใƒซใ‚ฎใƒผใŒๆœ€ๅฐ๏ผˆ0๏ผ‰ใซใชใ‚Š๏ผŒไฝ็ฝฎใ‚จใƒใƒซใ‚ฎใƒผใŒๆœ€ๅคง

ใซใชใ‚‹ๅงฟๅ‹ข ๐œƒ ๐œƒ12 ๐‘š๐ฟ ๐œƒ ๐ฟ๐‘š๐‘” 0 ๐‘… ๐‘… ๐ฟ cos๐œƒ ๐‘š๐‘”๐œƒ ใŒๅๅˆ†ใซๅฐใ•ใ„ใฎใง๏ผŒ cos๐œƒ ~1 ๐œƒ ใจใ—ใฆๆ•ด็†ใ™ใ‚‹ใจ12 ๐‘š๐ฟ ๐œƒ ๐‘… ๐ฟ ๐‘š๐‘”๐œƒ2Rayleighโ€™s method (๐œƒ ๐‘Žsin๐œ”๐‘ก) ใ‚’็”จใ„ใฆๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใ‚’ๅพ—ใ‚‹

๐œ” ๐‘… ๐ฟ ๐‘”๐ฟ

Page 16: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R12:(1) ๐ผ 19 ๐‘š๐‘™(2)

(3)

๐œ” 3๐‘”2๐‘™ ๐ผ ๐œƒ 16 ๐‘š๐‘”๐‘™๐œƒ 0๐‘‘ ๐‘™2 3

R13:(1)

(2)

(3)

Effective mass: kg

1 kg ใฎ่ณช้‡ใฎใƒ•ใƒฉใ‚คใƒ›ใ‚คใƒผใƒซใŒ๏ผŒ4 t ใ‚‚ใฎ่ณช้‡ใฎๅฝนๅ‰ฒใ‚’ๆžœใŸใ™๏ผŽ

S1:

(1) ๐ผ 13 ๐‘€๐‘Ž ๐‘š๐‘ (2) ๐‘๐‘š๐‘š ๐‘€(3) ๐‘”๐‘๐‘š13 ๐‘€๐‘Ž ๐‘š๐‘ (4) ๐‘ ๐‘Ž ๐‘€3๐‘š

S2:(1) ้‡ๅฟƒใฎไฝ็ฝฎใƒ™ใ‚ฏใƒˆใƒซ rG, ่ณช็‚นiใฎไฝ็ฝฎใƒ™ใ‚ฏใƒˆใƒซri

๐’“ ๐‘š ๐’“ ๐‘š8๐‘š๐’“ ๐‘™๐‘š 100 ๐‘™๐‘š 010 2๐‘™๐‘š 101 +2๐‘™๐‘š 111 ๐‘™๐‘š 534 ๐’“ ๐‘™8 534

(2) ๐ผ ๐‘š๐‘™ 2๐‘š๐‘™ 2๐‘š 2๐‘™ 7๐‘š๐‘™(3) ๐ผ ๐ผ 8๐‘š 0, ๐‘Ÿ , ๐‘Ÿ ๐ผ 8๐‘š ๐‘™64 3 4 ๐ผ 258 ๐‘š๐‘™

๐ผ ๐ผ 258 ๐‘š๐‘™ 56 258 ๐‘š๐‘™ 318 ๐‘š๐‘™

Page 17: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

(4) ๐’Ž 1 21 40 ๐‘š๐‘™๐‘” 350 ๐‘š๐‘™๐‘”S3:

(1) ๐‘š ๐‘ง ๐‘š ๐‘” ๐‘‡(2) ๐‘š ๐‘ง ๐‘š ๐‘” ๐‘‡ ๐‘‡๐ผ๐œƒ ๐‘Ÿ ๐‘‡ ๐‘Ÿ ๐‘‡(3) ๐‘ง ๐‘ง ๐‘Ÿ ๐œƒ๐‘Ÿ ๐œƒ ๐‘Ÿ ๐œƒ๐‘Ÿ ๐‘Ÿ ๐œƒ

(4) (1)โ€(3)ใงๅพ—ใ‚‰ใ‚ŒใŸๅผใ‚’้€ฃ็ซ‹ใ•ใ›ใฆ๏ผŒ็ญ‰ๅŠ ้€Ÿๅบฆ้‹ๅ‹•ใฎๅŠ ้€Ÿๅบฆใ‚’ๅพ—ใ‚‹๐ผ๐œƒ ๐‘Ÿ ๐‘‡ ๐‘Ÿ ๐‘‡๐‘Ÿ ๐‘š ๐‘” ๐‘š ๐‘Ÿ ๐‘Ÿ ๐œƒ๐‘Ÿ ๐‘š ๐‘š ๐‘” ๐‘š ๐‘Ÿ ๐‘Ÿ ๐œƒ๐‘š ๐‘Ÿ ๐œƒ๐‘š ๐‘Ÿ ๐‘Ÿ ๐œƒ ๐‘š ๐‘Ÿ ๐œƒ ๐‘š ๐‘Ÿ ๐‘”๐‘Ÿ ๐‘š ๐‘š ๐‘” ๐œƒ ๐‘š ๐‘Ÿ ๐‘Ÿ ๐‘š ๐‘š๐ผ ๐‘š ๐‘Ÿ ๐‘Ÿ ๐‘š ๐‘Ÿ ๐‘”

S4:(1) 2๐‘˜๐ฟ 1 sin๐œƒ 2๐‘“ sin๐œƒ(2) ๐‘š๐‘ฅ ๐‘š๐ฟcos๐œƒ๐œ” ๐‘“ cos๐œƒ ๐‘“ cos๐œƒ๐‘š๐‘ง ๐‘š๐‘” ๐‘“ sin๐œƒ ๐‘“ sin๐œƒ(3) ๐‘ฅ ๐ฟcos๐œƒ ๐‘ง ๐ฟsin๐œƒ๐‘š๐ฟ ๐œƒ ๐‘š๐‘”๐ฟcos๐œƒ ๐‘š๐ฟ ๐œ” cos๐œƒsin๐œƒ 2๐‘˜๐ฟ cos๐œƒ 1 sin๐œƒ(4) ๐‘‡ ๐‘š๐ฟ ๐œƒ ๐œ” cos ๐œƒ(5) ๐‘ˆ 12 ๐‘˜ 2๐ฟ 1 sin๐œƒ 2๐‘š๐‘”๐ฟsin๐œƒ2๐‘˜๐ฟ 1 sin๐œƒ 2๐‘š๐‘”๐ฟsin๐œƒ

1st comp: Inertia around point O2nd comp: Centrifugal force about zโ€axis

A: Translate the following paragraph on pulley dynamics into Japanese.

ๅ›ณใฏ๏ผŒใƒ—ใƒผใƒชใฎๅ‹•ๅŠ›ๅญฆใฎไพ‹ใงใ‚ใ‚‹๏ผŽใƒ—ใƒผใƒชใฎไธญๅฟƒใฏๅ›บๅฎšใ•ใ‚ŒใฆใŠใ‚Š๏ผŒf1 ใŠใ‚ˆใณ f2 ใฏใใ‚Œใžใ‚Œ๏ผŒใƒ—ใƒผใƒชใฎไธก็ซฏใฎ็ดใฎๅผตๅŠ›ใงใ‚ใ‚‹๏ผŽๅ›ž่ปข้‹ๅ‹•ใฎๆณ•ๅ‰‡ใ‚ˆใ‚Š๏ผŒ

๐ผ๐œƒ ใŒ็„ก่ฆ–ใงใใ‚‹ใจใ๏ผŒ2ใคใฎๅผตๅŠ›ใฏ็ญ‰ใ—ใ„๏ผŽใ“

ใฎๆกไปถใฏ๏ผŒใƒ—ใƒผใƒชใŒ็ญ‰้€Ÿใงๅ›ž่ปขใ—ใฆใ„ใ‚‹ใจใใ‚„๏ผŒใƒ—ใƒผใƒชใฎๆ…ฃๆ€งใŒ็ณปใฎไธญใฎไป–ใฎๆ…ฃๆ€งใซๆฏ”ในใฆ็„ก่ฆ–ใงใใ‚‹ใจใใซๆบ€ใŸใ•ใ‚Œใ‚‹๏ผŽใƒ—ใƒผใƒชใฎๅŠๅพ„ใ‚‚ใ—ใใฏ่ณช้‡ใŒๅฐใ•ใ„ใจใใฏ๏ผŒใƒ—ใƒผใƒชใฎๆ…ฃๆ€งใฏ็„ก่ฆ–ใงใใ‚‹๏ผŽใƒ—ใƒผใƒชไธญๅฟƒใฎๆ”ฏๆŒ้ƒจใซๅŠ ใ‚ใ‚‹ๅŠ›ใฏf3 = f1 + f2 ใจใชใ‚‹๏ผŽ๐ผ๐œƒ ใŒ็„ก่ฆ–ใงใใ‚‹ใจใใฏ๏ผŒๆ”ฏๆŒๅŠ›ใฏ 2f1 ใจใชใ‚‹๏ผŽ

๐ผ๐œƒ ๐‘“ ๐‘… ๐‘“ ๐‘….R

ฮธ

f1 f2

f3

Q1:

ไธฆ้€ฒใฎๆ–น็จ‹ๅผใ‹ใ‚‰๏ผš๐‘“ ๐‘˜๐‘™ sin ๐œƒ๐‘“ ๐‘š ๐‘‘ ๐‘™ sin ๐œƒ๐‘‘๐‘ก ๐‘š๐‘™ ๐œƒ๐‘“ ๐‘™ ๐‘“ ๐‘™๐‘˜๐‘™ sin ๐œƒ ๐‘š๐‘™ ๐œƒ๐‘˜๐‘™ ๐œƒ ๐‘š๐‘™ ๐œƒ 0๐‘ ๐‘™๐‘™ ๐‘˜๐‘š

ๅ›ž่ปขใฎๆ–น็จ‹ๅผใ‹ใ‚‰๏ผš๐ผ ๐‘š๐‘™๐‘€ ๐ผ๐œƒ ๐‘š๐‘™ ๐œƒ๐‘˜๐‘™ sin ๐œƒ ๐‘˜๐‘™ ๐œƒ๐‘˜๐‘™ ๐œƒ ๐‘š๐‘™ ๐œƒ 0

Page 18: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q2:๐œƒ 0 ใฎใจใ๏ผŒใฐใญใฏ่‡ช็„ถ้•ทใซใชใ‚Š๏ผŒๆฃ’ใฎ่ณช้‡ใฏ็„ก่ฆ–ใงใใ‚‹๏ผŽๅ›ž่ปข้‹ๅ‹•ฮธใซ้–ขใ™ใ‚‹้‹ๅ‹•ๆ–น็จ‹ๅผใ‚’็ซ‹ใฆ๏ผŒๅ‘จๆœŸTใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ

๐‘š๐‘”๐‘™ ๐‘ ๐‘–๐‘›๐œƒ ๐‘™ ๐‘˜๐‘ ๐‘–๐‘›๐œƒ ๐‘š๐‘™ ๐œƒ๐œƒ ๐‘š๐‘”๐‘™ ๐‘™ ๐‘˜๐‘š๐‘™ ๐œƒ 0๐‘ ๐‘š๐‘”๐‘™ ๐‘™ ๐‘˜๐‘š๐‘™

๐‘‡ 2๐œ‹๐‘

Q3:

m

R

k

g

่ณช้‡mใฎๅค‰ไฝใ‚’xใ€ใฒใ‚‚ใฎๅผตๅŠ›ใ‚’Tใจใ—ใŸใจใใ€ใคใ‚Šใ‚ใ„ใฎๅผใ‚ˆใ‚Šใ€๐‘š๐‘ฅ ๐‘‡ๆป‘่ปŠๅ‘จใ‚Šใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใฏใ€๐ผ๐œƒ  ๐น ๐‘‡๐ผ๐œƒ ๐‘˜๐‘…๐œƒ ยท ๐‘… ๐‘š๐‘ฅ๐ผ๐œƒ ๐‘˜๐‘… ๐œƒ ๐‘š๐‘…๐œƒ๐ผ ๐‘š๐‘… ๐œƒ ๐‘˜๐‘… ๐œƒ 0ใ—ใŸใŒใฃใฆๅ›บๆœ‰่ง’ๆŒฏๅ‹•ๆ•ฐใฏ๐‘ ๐‘˜๐‘…๐ผ ๐‘š๐‘…

๐‘‡ 2๐œ‹๐‘ 2๐œ‹ ๐ผ ๐‘š๐‘…๐‘˜๐‘…

I

๐ผ 2 ๐‘ฅ ๐‘‘๐‘š , ๐‘‘๐‘š ๐‘š๐‘ ๐‘‘๐‘ฅ 2 ๐‘š๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘š๐‘™12

Q4: Q5:ZY

X

ab

ๅฏ†ๅบฆฯใฏ ๐œŒ ๐‘š4๐‘Ž๐‘ใ“ใฎใจใใ€ๅพฎๅฐ้ข็ฉใซใŠใ‘ใ‚‹่ณช้‡dmใฏd๐‘š ๐œŒd๐‘  ๐œŒd๐‘ฅd๐‘ฆ

ๅพฎๅฐ้ข็ฉd๐‘  d๐‘ฅd๐‘ฆ

x่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ๐‘ฆ ๐œŒd๐‘ฅd๐‘ฆ๐‘š4๐‘Ž๐‘ ๐‘‘๐‘ฅ ๐‘ฆ ๐‘‘๐‘ฆ13 ๐‘š๐‘

y่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ๐‘ฅ ๐œŒd๐‘ฅd๐‘ฆ๐‘š4๐‘Ž๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ13 ๐‘š๐‘Ž

z่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ๐‘ฅ ๐‘ฆ ๐œŒd๐‘ฅd๐‘ฆ๐‘š4๐‘Ž๐‘ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ๐‘‘๐‘ฅ ๐‘ฆ ๐‘‘๐‘ฆ13 ๐‘š ๐‘Ž ๐‘ ๐ผ ๐ผ

Page 19: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

Q8:

a ฮธ

O

b/2b/2๐ผ ๐‘š ๐‘Ž3 ๐‘121)

๐ผ๐œƒ ๐‘š2 ๐‘”๐‘Žsin๐œƒ2)

๐‘š ๐‘Ž3 ๐‘12 ๐œƒ ๐‘š๐‘”๐‘Ž2 sin๐œƒ 0

Q6: ๐ผ 112 ๐‘š 3๐‘Ÿ ๐‘š ๐‘Ÿ4๐‘š ๐‘Ÿ2๐ผ๐œƒ ๐‘š๐‘” ๐‘Ÿ2 ๐œƒ๐‘Ÿ๐œƒ ๐‘”๐œƒ 0

3)

4)

๐‘ ๐‘š๐‘”๐‘Ž2๐‘š ๐‘Ž3 ๐‘12๐‘ 6๐‘”๐‘Ž4๐‘Ž ๐‘

๐‘š ๐‘Ž3 ๐‘12 ๐œƒ ๐‘š๐‘”๐‘Ž2 sin๐œƒ 0๐œƒ 0 ๐ด๐‘ ๐‘–๐‘› ๐‘๐‘ก ๐œ‘ ๐œƒ๐œƒ 0 ๐ด๐‘๐‘๐‘œ๐‘  ๐‘๐‘ก ๐œ‘ 0

๐‘ 6๐‘”๐‘Ž4๐‘Ž ๐‘๐œ‘ 90ยฐ๐ด ๐œƒ๐œƒ ๐‘ก ๐œƒ cos 6๐‘”๐‘Ž4๐‘Ž ๐‘ ๐‘ก

๐œƒ 0 ๐ด๐‘ ๐‘–๐‘› ๐‘ ยท 0 ๐œ‘ 0๐œƒ 0 ๐ด๐‘๐‘๐‘œ๐‘  ๐‘ ยท 0 ๐œ‘ ๐œ”๐‘ 6๐‘”๐‘Ž4๐‘Ž ๐‘๐œ‘ 0ยฐ๐ด ๐œ”๐‘๐œƒ ๐‘ก ๐œ”๐‘ sin 6๐‘”๐‘Ž4๐‘Ž ๐‘ ๐‘ก

5)

Q9:

a

b

O X

Y M1

COG2

da+b/2

a/2

a

(1)

IO IO1 IO2

From the last problem,๐ผ ๐‘š12 4๐‘Ž ๐‘๐ผ ๐ผ ๐‘‘๐‘š๐‘š12 ๐‘Ž ๐‘ ๐‘š ๐‘Ž2 ๐‘Ž ๐‘2๐ผ ๐‘š12 20๐‘Ž 12๐‘Ž๐‘ 5๐‘a

b

O X

Y

COG2

COG1r1

r2

a/4

(3a+b)/4

S

mSx mirx

mSy miry

m1 m2 S m1r1 m2r2

S Sx, Sy ,r1 0, a2

,r2 a

2, a b

2

X

Y

0 m1 a2

m2 Sx m1 m2

Sx a4

a2

m1 a b2

m2 Sy m1 m2

Sy 3a b

4

m1 m2 m

M2

XY

mi

COG

riS

(2) Definition of COG้‡ๅฟƒ

โ€ centroidโ€ center of gravity

mS miri

S, r1, r2 ใ‚’ใใ‚Œใžใ‚ŒๅŽŸ็‚นOใ‹ใ‚‰๏ผŒๅˆๆฟใฎ้‡ๅฟƒ๏ผŒๆฟ1ใฎ้‡ๅฟƒ๏ผŒๆฟ2ใฎ้‡ๅฟƒใธใฎไฝ็ฝฎใƒ™ใ‚ฏใƒˆใƒซใจใ™ใ‚‹

Page 20: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

1๐ผ 12 ๐‘š๐‘…๐‘š ๐ผ๐‘… ๐‘ฅ ๐‘˜๐‘ฅ 0(2) ๐‘(3)๐‘‡ 12 ๐‘š๐›ฟ ,๐‘‡ 12 ๐ผ๐œƒ 12 ๐ผ ๐›ฟ๐‘…๐‘ˆ 12 ๐‘˜๐›ฟ

Q10:

Rk

ฯ†

x

ฮธ

(4) ๐‘ฅ ๐‘ก ๐ด๐‘๐‘œ๐‘  ๐‘๐‘ก๐‘ฅ ๐‘ก ๐ด๐‘๐‘ ๐‘–๐‘› ๐‘๐‘ก๐‘‡ 12 ๐‘š๐ด ๐‘ ,๐‘‡ 12 ๐ผ ๐ด ๐‘๐‘…๐‘ˆ 12 ๐‘˜๐ด

๐ด ๐‘…

๐‘ˆ 0(5) 12 ๐‘š๐‘… ๐‘ 12 ๐ผ๐‘ 12 ๐‘˜๐‘… 0

๐‘ ๐‘˜๐‘š ๐ผ๐‘…

Q13: ๅŽšใฟใฎ็„ก่ฆ–ใงใใ‚‹ๅ††็›คใฎYๅ›žใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใ‚’ๆฑ‚ใ‚ใ‚ˆใ€‚ๅ††็›คใฎ่ณช้‡ใฏ m

X

Yd๐œƒ

drrdrd๐œƒ

a

ๆฅตๅบงๆจ™ ๐‘Ÿ, ๐œƒ ใฎๅพฎๅฐ่ณช้‡d๐‘šd๐‘š ๐‘š๐œ‹๐‘Ž ๐‘Ÿd๐œƒd๐‘ŸY่ปธใ‹ใ‚‰d๐‘šใพใงใฎ่ท้›ข๐‘Ÿ cos ๐œƒๆฑ‚ใ‚ใ‚‹Y่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ๐‘Ÿ cos ๐œƒ d๐‘š

๐‘Ÿ cos ๐œƒ ๐‘š๐œ‹๐‘Ž ๐‘Ÿd๐œƒd๐‘Ÿ 14 ๐‘š๐‘Ž

Y

Z

a

Q14: ่งฃ่ชฌ

ๅบงๆจ™ ๐‘Ÿ, ๐œƒ, ๐‘ง ใฎๅพฎๅฐ่ณช้‡d๐‘šd๐‘š ๐‘š๐œ‹๐‘Ž ๐‘™ ๐‘Ÿd๐œƒd๐‘Ÿd๐‘งY่ปธใ‹ใ‚‰d๐‘šใพใงใฎ่ท้›ข๐‘Ÿ cos ๐œƒ ๐‘งๆฑ‚ใ‚ใ‚‹Y่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ๐‘Ÿ cos ๐œƒ ๐‘ง d๐‘š

๐‘Ÿ cos ๐œƒ ๐‘š๐œ‹๐‘Ž ๐‘™ ๐‘Ÿd๐œƒd๐‘Ÿd๐‘ง 14 ๐‘š๐‘Ž 112 ๐‘š๐‘™Z

Y๐‘Ÿ cos ๐œƒ ๐‘ง

Q21ใฎๅ††ๆฟใซใคใ„ใฆz่ปธใ‚’ๅŠ ใˆ๏ผŒๅŒๆง˜ใซ่€ƒใˆใ‚‹๏ผŽ

Page 21: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

R1:  Solution

๐‘™sin๐œƒ

ๅนณ่กŒ่ปธใฎๅฎš็†ใ‹ใ‚‰๐ผ 2๐‘š๐‘Ž 2๐‘š๐‘™ 2๐‘š ๐‘Ž ๐‘™๐ผ๐œƒ๐‘š๐‘” ๐‘Žcos๐œƒ ๐‘™sin๐œƒ ๐‘š๐‘” ๐‘Žcos๐œƒ๐‘™sin๐œƒ๐œƒ โ‰ช 1, โˆด cos๐œƒ 1, sin๐œƒ ๐œƒ2๐‘š ๐‘Ž ๐‘™๐‘š๐‘” ๐‘Ž ๐‘™๐œƒ ๐‘š๐‘” ๐‘Ž ๐‘™๐œƒโˆด ๐œƒ ๐‘”๐‘™๐‘Ž ๐‘™ ๐œƒ 0๐‘ ๐‘”๐‘™๐‘Ž ๐‘™

mm

l

a a

O

mg mg

R2:

Q4ใจๅŒใ˜่ง’ๆŒฏๅ‹•ๆ•ฐใซใชใ‚‹ใŸใ‚ใ€๐‘Ž ๐‘™ใจใ—ใฆใ€๐‘ ๐‘”2๐‘™ๆŒฏๅ‹•ๆ•ฐ๐‘“ ใงใ‚ใ‚‹ใฎใงใ€

๐‘“ ๐‘”2๐‘™2๐œ‹1 ๐‘”2๐‘™2๐œ‹๐‘™ ๐‘”8๐œ‹

R3: 1๐ผ 12 ๐‘š๐‘Ÿ๐‘š ๐ผ๐‘Ÿ ๐‘ฅ ๐‘˜๐‘ฅ 0(2)๐‘‡ 12 ๐‘š๐‘ฅ ,๐‘‡ 12 ๐ผ๐œƒ 12 ๐ผ ๐‘ฅ๐‘Ÿ(3)๐‘ˆ 12 ๐‘˜๐‘ฅ(4)๐‘‡ 12 ๐‘š ๐ผ๐‘Ÿ ๐‘ฅ 12 ๐‘š ๐ผ๐‘Ÿ ๐ด ๐‘ , ๐‘ˆ 12 ๐‘˜๐ด๐‘‡ ๐‘ˆ ใ‚ˆใ‚Šใ€ ๐‘

๐‘“ ๐‘˜๐‘ฅ๐‘“ ๐‘“ ๐‘“๐‘“ ๐‘š๐‘ฅ๐‘Ÿ๐‘“ ๐ผ๐œƒใฐใญใฎๅพฉๅ…ƒๅŠ› f ใŒ๏ผŒไฝต้€ฒใฎใŸใ‚ใฎๅŠ› f1 ใจๅ›ž่ปขใฎใŸใ‚ใฎๅŠ› f2 ใซๅˆ†ใ‹ใ‚Œใ‚‹๏ผŽ f2 ใฏ๏ผŒๅœฐ้ขใจใƒ‡ใ‚ฃใ‚นใ‚ฏใฎๆ‘ฉๆ“ฆใใฎใ‚‚ใฎใงใ‚ใ‚Š๏ผŒf2ใซใƒ‡ใ‚ฃ

ใ‚นใ‚ฏใฎๅ›ž่ปขไธญๅฟƒใพใงใฎใƒขใƒผใƒกใƒณใƒˆใ‚ขใƒผใƒ rใ‚’ใ‹ใ‘ใŸ rf2 ใŒใƒขใƒผใƒกใƒณใƒˆใซใชใ‚‹๏ผŽ

f1

f2

๐‘ฅ ๐‘Ÿ๐œƒ

R5:(1)ๅนณ่กŒ็ทšใฎๅฎš็†ใ‹ใ‚‰,I = M (2l)2/12+Md2 = M (l2 /3+d2)๏ผŽๅพฉๅ…ƒใƒขใƒผใƒกใƒณใƒˆใฏMgdsin ๐œƒ๏ผŽ๐œƒM (l2 /3+d2)๐œƒ๏ผ‹Mgd๐œƒ =0๐‘ ๐‘”๐‘‘๐‘™3 ๐‘‘ ๏ผŽ

(2)I = M (2l)2/12+Md2 +2ml2+ 2md2 =M (l2 /3+d2) +2m(d2+l2)ๅพฉๅ…ƒใƒขใƒผใƒกใƒณใƒˆใฏ (M+2m)gdsin ๐œƒ๐‘€ ๐‘‘ 2๐‘š(d2+l2) ๐œƒ๏ผ‹(M+2m)gd๐œƒ =0

๐‘ ๐‘€ 2๐‘š ๐‘”๐‘‘๐‘€ ๐‘™3 ๐‘‘ 2๐‘š(d2+l2)

Page 22: Exercise of mechanical vibration (1-dof vibration ...ย ยท (2) Find the natural angular frequency of the pendulum, when ๐œƒis small enough that small angle assumptions are available.

๐‘š๐‘˜ ๐‘˜๐‘™๐‘™ ๐‘™

๐œƒ

๐œƒ๐‘”

R6:(1) ๐ผ๐œƒ ๐‘˜๐‘™ sin ๐œƒ ๐‘˜๐‘™ sin ๐œƒ ๐‘š๐‘”๐‘™ sin ๐œƒ

๐‘š๐‘™ ๐œƒ 2๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ 0(2)       ฮป๐‘š๐‘”๐‘™ 2๐‘˜๐‘™ 0

(3) The pendulum is unstable, falling down.

R8:

1)

๐‘š๐‘…๐œƒ ๐‘š๐‘”๐‘ ๐‘–๐‘›๐œƒ ๐น2) ๐ผ ๐œ‘ ๐œƒ ๐‘Ÿ๐น

๐‘š๐‘…๐œƒ ๐‘š๐‘”๐œƒ ๐ผ๐‘Ÿ ๐œ‘ ๐œƒ 0๐œƒ ๐‘… ๐‘Ÿ ๐œ‘๐‘Ÿ

๐œ‘ ๐‘… ๐‘Ÿ๐‘Ÿ ๐œƒ๐‘š๐‘… 25 ๐‘š๐‘… ๐œƒ ๐‘š๐‘”๐œƒ 0

3) ๐‘ 5๐‘”7๐‘…

mg

ฮธ

Riceball ฯ†

ฯ†

F