Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori...

117
Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6) Séminaire du LJLL, 15 décembre 2006

Transcript of Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori...

Page 1: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

Estimations d’erreur a posteriori pour lesvolumes finis et les éléments finis mixtes

Martin Vohralík

Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie (Paris 6)

Séminaire du LJLL, 15 décembre 2006

Page 2: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Motivation

Problems−∇ · S∇p = f

flow in porous mediaS inhomogeneous andanisotropic

−∇ · S∇p +∇ · (pw) + rp = ftransport in porous mediaconvection-dominated

Mixed finite elements / finitevolumes

accurate for inhomogeneousand anisotropic pbsupwinding forconvection-dominated pbs

need for good a posteriori error control

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 3: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Motivation

Problems−∇ · S∇p = f

flow in porous mediaS inhomogeneous andanisotropic

−∇ · S∇p +∇ · (pw) + rp = ftransport in porous mediaconvection-dominated

Mixed finite elements / finitevolumes

accurate for inhomogeneousand anisotropic pbsupwinding forconvection-dominated pbs

need for good a posteriori error control

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 4: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Motivation

Problems−∇ · S∇p = f

flow in porous mediaS inhomogeneous andanisotropic

−∇ · S∇p +∇ · (pw) + rp = ftransport in porous mediaconvection-dominated

Mixed finite elements / finitevolumes

accurate for inhomogeneousand anisotropic pbsupwinding forconvection-dominated pbs

need for good a posteriori error control

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 5: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 6: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 7: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What is an a posteriori error estimate

A posteriori error estimate

Let p be a weak solution of a PDE.Let ph be its approximate numerical solution.A priori error estimate: ‖p − ph‖Ω ≤ f (p)hq. Dependent onp, not computable. Useful in theory.A posteriori error estimate: ‖p − ph‖Ω . f (ph). Only usesph, computable. Great in practice.

Usual formf (ph)

2 =∑

K∈ThηK (ph)

2, where ηK (ph) is an elementindicator.Can be used to determine mesh elements with large error.We can then refine these elements: mesh adaptivity.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 8: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What is an a posteriori error estimate

A posteriori error estimate

Let p be a weak solution of a PDE.Let ph be its approximate numerical solution.A priori error estimate: ‖p − ph‖Ω ≤ f (p)hq. Dependent onp, not computable. Useful in theory.A posteriori error estimate: ‖p − ph‖Ω . f (ph). Only usesph, computable. Great in practice.

Usual formf (ph)

2 =∑

K∈ThηK (ph)

2, where ηK (ph) is an elementindicator.Can be used to determine mesh elements with large error.We can then refine these elements: mesh adaptivity.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 9: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 10: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 11: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 12: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 13: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 14: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 15: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 16: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 17: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

(Mathematical) reliability (global upper bound)‖p − ph‖2

Ω ≤ C∑

K∈ThηK (ph)

2

Problems:What is C?What does it depend on?How does it depend on data?

Mathematicians often do not care about constants...(Real-life) reliability (global upper bound)

‖p − ph‖2Ω ≤

∑K∈Th

ηK (ph)2

Real life depends on constants very much!Global efficiency (global lower bound)∑

K∈ThηK (ph)

2 ≤ C2eff,Ω‖p − ph‖2

Ω

Local efficiency (local lower bound)ηK (ph)

2 ≤ C2eff,K

∑L close to K ‖p − ph‖2

L

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 18: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

What an a posteriori error estimate should fulfill

Semi-robustnessCeff,K only depends on inhomogeneities and anisotropiesaround K (Bernardi and Verfürth ’00, Galerkin FEMs)Ceff,K affine dependence on the local Péclet numberaround K (energy norm), PeK := hK

|wK ||SK | , (Verfürth ’98,

Galerkin FEMs)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 19: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Previous works on a posteriori error estimates forFVMs and MFEMs

Previous works on FVMs . . .Ohlberger ’01Lazarov and Tomov ’02Achdou, Bernardi, andCoquel ’03Nicaise ’05

Previous works on MFEMs . . .Alonso ’96Braess and Verfürth ’96Carstensen ’97Kirby ’03El Alaoui and Ern ’04Wheeler and Yotov ’05Lovadina and Stenberg ’06

. . . do not cover

evaluation of the constants (with the exception of Nicaise)a proper analysis of inhomogeneous (with the exception ofEl Alaoui and Ern ’04) and anisotropic problemsa proper analysis of the convection–diffusion case

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 20: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Previous works on a posteriori error estimates forFVMs and MFEMs

Previous works on FVMs . . .Ohlberger ’01Lazarov and Tomov ’02Achdou, Bernardi, andCoquel ’03Nicaise ’05

Previous works on MFEMs . . .Alonso ’96Braess and Verfürth ’96Carstensen ’97Kirby ’03El Alaoui and Ern ’04Wheeler and Yotov ’05Lovadina and Stenberg ’06

. . . do not cover

evaluation of the constants (with the exception of Nicaise)a proper analysis of inhomogeneous (with the exception ofEl Alaoui and Ern ’04) and anisotropic problemsa proper analysis of the convection–diffusion case

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 21: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Previous works on a posteriori error estimates forFVMs and MFEMs

Previous works on FVMs . . .Ohlberger ’01Lazarov and Tomov ’02Achdou, Bernardi, andCoquel ’03Nicaise ’05

Previous works on MFEMs . . .Alonso ’96Braess and Verfürth ’96Carstensen ’97Kirby ’03El Alaoui and Ern ’04Wheeler and Yotov ’05Lovadina and Stenberg ’06

. . . do not cover

evaluation of the constants (with the exception of Nicaise)a proper analysis of inhomogeneous (with the exception ofEl Alaoui and Ern ’04) and anisotropic problemsa proper analysis of the convection–diffusion case

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 22: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 23: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 24: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

A convection–diffusion–reaction problem

Problem

−∇ · S∇p +∇ · (pw) + rp = f in Ω ,

p = g on ΓD ,

−S∇p · n = u on ΓN

AssumptionsΩ ⊂ Rd , d = 2, 3, is a polygonal domaindata related to a basic triangulation Th of Ω

S|K is a constant SPD matrix, cS,K its smallest, and CS,K

its largest eigenvalue on each K ∈ Th(12∇ ·w + r

)|K ≥ cw,r ,K ≥ 0 (from pure diffusion to

convection–diffusion–reaction cases)Difficulties

S inhomogeneous and anisotropicw dominates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 25: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Bilinear form, weak solution, energy (semi-)norm

Definition (Bilinear form B)

We define a bilinear form B for p, ϕ ∈ H1(Th) by

B(p, ϕ) :=∑

K∈Th

(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

.

Definition (Weak solution)

Weak solution: p ∈ H1(Ω) with p|ΓD = g such that

B(p, ϕ) = (f , ϕ)Ω − 〈u, ϕ〉ΓN ∀ϕ ∈ H1D(Ω).

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for ϕ ∈ H1(Th) by

|||ϕ|||2Ω :=∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K :=∥∥∥S

12∇ϕ

∥∥∥2

K+∥∥∥(1

2∇·w+r

) 12ϕ∥∥∥2

K.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 26: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Bilinear form, weak solution, energy (semi-)norm

Definition (Bilinear form B)

We define a bilinear form B for p, ϕ ∈ H1(Th) by

B(p, ϕ) :=∑

K∈Th

(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

.

Definition (Weak solution)

Weak solution: p ∈ H1(Ω) with p|ΓD = g such that

B(p, ϕ) = (f , ϕ)Ω − 〈u, ϕ〉ΓN ∀ϕ ∈ H1D(Ω).

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for ϕ ∈ H1(Th) by

|||ϕ|||2Ω :=∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K :=∥∥∥S

12∇ϕ

∥∥∥2

K+∥∥∥(1

2∇·w+r

) 12ϕ∥∥∥2

K.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 27: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Bilinear form, weak solution, energy (semi-)norm

Definition (Bilinear form B)

We define a bilinear form B for p, ϕ ∈ H1(Th) by

B(p, ϕ) :=∑

K∈Th

(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

.

Definition (Weak solution)

Weak solution: p ∈ H1(Ω) with p|ΓD = g such that

B(p, ϕ) = (f , ϕ)Ω − 〈u, ϕ〉ΓN ∀ϕ ∈ H1D(Ω).

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for ϕ ∈ H1(Th) by

|||ϕ|||2Ω :=∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K :=∥∥∥S

12∇ϕ

∥∥∥2

K+∥∥∥(1

2∇·w+r

) 12ϕ∥∥∥2

K.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 28: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 29: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

General finite volume scheme

Definition (FV scheme for −∇ · S∇p +∇ · (pw) + rp = f )

Find pK , K ∈ Th, such that∑σ∈EK

SK ,σ +∑σ∈EK

WK ,σ + rK pK |K | = fK |K | ∀K ∈ Th .

SK ,σ : diffusive fluxWK ,σ : convective flux

no specific form,

just conservativity neededrK := (r , 1)/|K |fK := (f , 1)/|K |

Example

SK ,σ = −sK ,L|σK ,L|dK ,L

(pL − pK )

WK ,σ = pσ〈w · n, 1〉σ: weighted-upwind

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 30: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

General finite volume scheme

Definition (FV scheme for −∇ · S∇p +∇ · (pw) + rp = f )

Find pK , K ∈ Th, such that∑σ∈EK

SK ,σ +∑σ∈EK

WK ,σ + rK pK |K | = fK |K | ∀K ∈ Th .

SK ,σ : diffusive fluxWK ,σ : convective flux

no specific form,

just conservativity neededrK := (r , 1)/|K |fK := (f , 1)/|K |

Example

SK ,σ = −sK ,L|σK ,L|dK ,L

(pL − pK )

WK ,σ = pσ〈w · n, 1〉σ: weighted-upwind

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 31: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

General finite volume scheme

Definition (FV scheme for −∇ · S∇p +∇ · (pw) + rp = f )

Find pK , K ∈ Th, such that∑σ∈EK

SK ,σ +∑σ∈EK

WK ,σ + rK pK |K | = fK |K | ∀K ∈ Th .

SK ,σ : diffusive fluxWK ,σ : convective flux

no specific form,

just conservativity neededrK := (r , 1)/|K |fK := (f , 1)/|K |

Example

SK ,σ = −sK ,L|σK ,L|dK ,L

(pL − pK )

WK ,σ = pσ〈w · n, 1〉σ: weighted-upwind

σK,L K

L

• xK

•xL

·dK,L

nK

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 32: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 33: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

First-order system reformulation

Second-order PDE

−∇ · S∇p +∇ · (pw) + rp = f

⇓First-order system

u = −S∇p ,

∇ · u +∇ · (pw) + rp = f

ΓD = ∂Ω and g = 0 for the sake of simplicity

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 34: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

A centered scheme

Definition (A centered mixed finite element scheme)

Find uh ∈ RT0(Th) and ph ∈ Φ(Th) such that

(S−1uh, vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RT0(Th) ,

(∇ · uh, φh)Ω − (S−1uhw, φh)Ω + ((r +∇ ·w)ph, φh)Ω= (f , φh)Ω ∀φh ∈ Φ(Th) .

Basis of RT0(Th)

σvσ

Basis of Φ(Th)

φK = 1|K

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 35: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Problem FV schemes MFE schemes

An upwind-weighted scheme

Definition (An upwind-weighted mixed finite element scheme)

Find uh ∈ RT0(Th) and ph ∈ Φ(Th) such that

(S−1uh, vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RT0(Th) ,

(∇ · uh, φh)Ω +∑

K∈Th

∑σ∈EK

pσwK ,σφK + (rph, φh)Ω

= (f , φh)Ω ∀φh ∈ Φh .

wK ,σ := 〈w · n, 1〉σ: flux of w through a side σpσ: weighted upwind value,

pσ :=

(1− νσ)pK + νσpL if wK ,σ ≥ 0(1− νσ)pL + νσpK if wK ,σ < 0

νσ: coefficient of the amount of upstream weighting, e.g.

νσ := mincS,σ|σ|/(hσ|wK ,σ|), 1/2

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 36: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 37: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 38: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of ph

ph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)

the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Remarksph is a connection of ph and uh

basis of our a posteriori error estimatesM. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 39: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of ph

ph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)

the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Remarksph is a connection of ph and uh

basis of our a posteriori error estimatesM. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 40: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of ph

ph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)

the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Remarksph is a connection of ph and uh

basis of our a posteriori error estimatesM. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 41: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of phph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Proof: 0 = −(∇ph, vσK ,L)K∪L − (ph,∇ · vσK ,L)K∪L

= −〈vσK ,L · n, ph〉∂K − 〈vσK ,L · n, ph〉∂L

= 〈vσK ,L · nK , ph|L − ph|K 〉σK ,L

Remarksph is a connection of ph and uhbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 42: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of ph

ph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)

the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Remarksph is a connection of ph and uh

basis of our a posteriori error estimatesM. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 43: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,−SK∇ph|K = uh|K (flux of ph is uh),(ph, 1)K /|K | = pK (mean of ph on K is pK ).

Properties of ph

ph exists and is unique (it is a pw second-order polynomial)ph is nonconforming, 6∈ H1

0 (Ω), only ∈ H1(Th) in generalmeans of traces of ph on the sides continuous, ph ∈ W0(Th)

the means are equal to the Lagrange multipliers from thehybridized forms of the schemes

Remarksph is a connection of ph and uh

basis of our a posteriori error estimatesM. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 44: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 45: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Theorem (A posteriori error estimate for the centered scheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IMO(ph)|||KIMO(ph): modified Oswald int. (preserves means of traces)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 1

cw,r,K

convection estimator

ηC,K := min‖∇·(vw)− 1

2 v∇·w‖K√cw,r,K

,(

CP,d h2K‖∇·(vw)‖2

KcS,K

+‖v∇·w‖2

K4cw,r,K

)12

v = ph − IMO(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 46: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Theorem (A posteriori error estimate for the centered scheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IMO(ph)|||KIMO(ph): modified Oswald int. (preserves means of traces)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 1

cw,r,K

convection estimator

ηC,K := min‖∇·(vw)− 1

2 v∇·w‖K√cw,r,K

,(

CP,d h2K‖∇·(vw)‖2

KcS,K

+‖v∇·w‖2

K4cw,r,K

)12

v = ph − IMO(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 47: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Theorem (A posteriori error estimate for the centered scheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IMO(ph)|||KIMO(ph): modified Oswald int. (preserves means of traces)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 1

cw,r,K

convection estimator

ηC,K := min‖∇·(vw)− 1

2 v∇·w‖K√cw,r,K

,(

CP,d h2K‖∇·(vw)‖2

KcS,K

+‖v∇·w‖2

K4cw,r,K

)12

v = ph − IMO(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 48: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Theorem (A posteriori error estimate for the centered scheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IMO(ph)|||KIMO(ph): modified Oswald int. (preserves means of traces)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 1

cw,r,K

convection estimator

ηC,K := min‖∇·(vw)− 1

2 v∇·w‖K√cw,r,K

,(

CP,d h2K‖∇·(vw)‖2

KcS,K

+‖v∇·w‖2

K4cw,r,K

)12

v = ph − IMO(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 49: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof.

s ∈ H10 (Ω) arbitrary: |||p − ph|||Ω ≤ |||p − s|||Ω + |||s − ph|||Ω

(p − s) ∈ H10 (Ω): coercivity of B implies

|||p − s|||Ω ≤ B(p − s, p − s)

|||p − s|||Ω≤ sup

ϕ∈H10 (Ω), |||ϕ|||Ω=1

B(p − s, ϕ)

= supϕ∈H1

0 (Ω), |||ϕ|||Ω=1

B(p − ph, ϕ) + B(ph − s, ϕ)

Green theorem and weak solution definition: B(p − ph, ϕ)

= (f , ϕ)Ω −∑

K∈Th

(S∇ph,∇ϕ)K +

(∇ · (phw), ϕ

)K + (r ph, ϕ)K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K +

∑K∈Th

〈uh · n, ϕ〉∂K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 50: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof.

s ∈ H10 (Ω) arbitrary: |||p − ph|||Ω ≤ |||p − s|||Ω + |||s − ph|||Ω

(p − s) ∈ H10 (Ω): coercivity of B implies

|||p − s|||Ω ≤ B(p − s, p − s)

|||p − s|||Ω≤ sup

ϕ∈H10 (Ω), |||ϕ|||Ω=1

B(p − s, ϕ)

= supϕ∈H1

0 (Ω), |||ϕ|||Ω=1

B(p − ph, ϕ) + B(ph − s, ϕ)

Green theorem and weak solution definition: B(p − ph, ϕ)

= (f , ϕ)Ω −∑

K∈Th

(S∇ph,∇ϕ)K +

(∇ · (phw), ϕ

)K + (r ph, ϕ)K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K +

∑K∈Th

〈uh · n, ϕ〉∂K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 51: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof.

s ∈ H10 (Ω) arbitrary: |||p − ph|||Ω ≤ |||p − s|||Ω + |||s − ph|||Ω

(p − s) ∈ H10 (Ω): coercivity of B implies

|||p − s|||Ω ≤ B(p − s, p − s)

|||p − s|||Ω≤ sup

ϕ∈H10 (Ω), |||ϕ|||Ω=1

B(p − s, ϕ)

= supϕ∈H1

0 (Ω), |||ϕ|||Ω=1

B(p − ph, ϕ) + B(ph − s, ϕ)

Green theorem and weak solution definition: B(p − ph, ϕ)

= (f , ϕ)Ω −∑

K∈Th

(S∇ph,∇ϕ)K +

(∇ · (phw), ϕ

)K + (r ph, ϕ)K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K +

∑K∈Th

〈uh · n, ϕ〉∂K

=∑

K∈Th

(f +∇ · SK∇ph −∇ · (phw)− r ph, ϕ

)K

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 52: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof (cont.)definition of the centered scheme:(

f +∇ · SK∇ph −∇ · (phw)− r ph, ϕK)

K = 0 ∀K ∈ Th

hence:B(p−ph, ϕ) =

∑K∈Th

(f +∇·SK∇ph−∇·(phw)−r ph, ϕ−ϕK

)K

remain the nonconformity and convection terms

Remarks

completely based on the primal abstract frameworkgeneralization of the techniques due to Verfürth ’98 forGalerkin FEMsnonconformity (techniques due to El Alaoui and Ern ’04,Karakashian and Pascal ’03)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 53: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof (cont.)definition of the centered scheme:(

f +∇ · SK∇ph −∇ · (phw)− r ph, ϕK)

K = 0 ∀K ∈ Th

hence:B(p−ph, ϕ) =

∑K∈Th

(f +∇·SK∇ph−∇·(phw)−r ph, ϕ−ϕK

)K

remain the nonconformity and convection terms

Remarks

completely based on the primal abstract frameworkgeneralization of the techniques due to Verfürth ’98 forGalerkin FEMsnonconformity (techniques due to El Alaoui and Ern ’04,Karakashian and Pascal ’03)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 54: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof (cont.)definition of the centered scheme:(

f +∇ · SK∇ph −∇ · (phw)− r ph, ϕK)

K = 0 ∀K ∈ Th

hence:B(p−ph, ϕ) =

∑K∈Th

(f +∇·SK∇ph−∇·(phw)−r ph, ϕ−ϕK

)K

remain the nonconformity and convection terms

Remarks

completely based on the primal abstract frameworkgeneralization of the techniques due to Verfürth ’98 forGalerkin FEMsnonconformity (techniques due to El Alaoui and Ern ’04,Karakashian and Pascal ’03)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 55: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the centered scheme

Sketch of proof (cont.)definition of the centered scheme:(

f +∇ · SK∇ph −∇ · (phw)− r ph, ϕK)

K = 0 ∀K ∈ Th

hence:B(p−ph, ϕ) =

∑K∈Th

(f +∇·SK∇ph−∇·(phw)−r ph, ϕ−ϕK

)K

remain the nonconformity and convection terms

Remarks

completely based on the primal abstract frameworkgeneralization of the techniques due to Verfürth ’98 forGalerkin FEMsnonconformity (techniques due to El Alaoui and Ern ’04,Karakashian and Pascal ’03)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 56: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the upwind-weightedscheme

Theorem (A posteriori error estimate for the upwind-weightedscheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K + ηU,K )2

12

.

upwinding estimatorηU,K :=

∑σ∈EK

mσ‖(pσ − pσ)w · n‖σ

pσ: the weighted upwind valuepσ: the mean of ph over the side σmσ: function of cS,K , cw,r ,K =

( 12∇ ·w + r

)|K , d , hK , |σ|, |K |

all dependencies evaluated explicitly

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 57: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

A posteriori error estimate for the upwind-weightedscheme

Theorem (A posteriori error estimate for the upwind-weightedscheme)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K + ηC,K + ηU,K )2

12

.

upwinding estimatorηU,K :=

∑σ∈EK

mσ‖(pσ − pσ)w · n‖σ

pσ: the weighted upwind valuepσ: the mean of ph over the side σmσ: function of cS,K , cw,r ,K =

( 12∇ ·w + r

)|K , d , hK , |σ|, |K |

all dependencies evaluated explicitly

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 58: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 59: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Local efficiency of the estimates

Theorem (Local efficiency of the residual estimator)There holds

ηR,K ≤ |||p − ph|||K C

max

1,Cw,r ,K

cw,r ,K

+ min

PeK , %K

.

residual estimator is locally efficient (lower bound forerror on K ), robust with respect to S, and semi-robustwith respect to wCeff,K :

C independent of hK , S, w, and rno dependency on inhomogeneities and anisotropiesCw,r,Kcw,r,K

≤ 2 for r nonnegativeCeff,K depends affinely on PeK

%K := |w|K |√cw,r,K

√cS,Kprevents Ceff,K from exploding in

convection-dominated cases on rough grids

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 60: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Local efficiency of the estimates

Theorem (Local efficiency of the residual estimator)There holds

ηR,K ≤ |||p − ph|||K C

max

1,Cw,r ,K

cw,r ,K

+ min

PeK , %K

.

residual estimator is locally efficient (lower bound forerror on K ), robust with respect to S, and semi-robustwith respect to wCeff,K :

C independent of hK , S, w, and rno dependency on inhomogeneities and anisotropiesCw,r,Kcw,r,K

≤ 2 for r nonnegativeCeff,K depends affinely on PeK

%K := |w|K |√cw,r,K

√cS,Kprevents Ceff,K from exploding in

convection-dominated cases on rough grids

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 61: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Local efficiency of the estimates

Theorem (Local efficiency of the nonconformity and convectionestimators)There holds

η2NC,K +η2

C,K ≤ α∑

L;L∩K 6=∅

|||p−ph|||2L+β infsh∈P2(Th)∩H1

0 (Ω)

∑L;L∩K 6=∅

‖p−sh‖2L .

nonconformity and convection estimators are locallyefficient (up to higher-order terms if cw,r ,K 6= 0) andsemi-robustCeff,K :

depends on maximal ratio of inhomogeneities around Kdepends on anisotropy in each L around K by CS,L

cS,L

again min

PeL, %L

in each L around K prevents Ceff,K fromexploding in convection-dominated cases on rough grids

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 62: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates Efficiency

Local efficiency of the estimates

Theorem (Local efficiency of the nonconformity and convectionestimators)There holds

η2NC,K +η2

C,K ≤ α∑

L;L∩K 6=∅

|||p−ph|||2L+β infsh∈P2(Th)∩H1

0 (Ω)

∑L;L∩K 6=∅

‖p−sh‖2L .

nonconformity and convection estimators are locallyefficient (up to higher-order terms if cw,r ,K 6= 0) andsemi-robustCeff,K :

depends on maximal ratio of inhomogeneities around Kdepends on anisotropy in each L around K by CS,L

cS,L

again min

PeL, %L

in each L around K prevents Ceff,K fromexploding in convection-dominated cases on rough grids

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 63: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 64: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 65: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 66: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 67: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 68: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 69: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A locally postprocessed scalar variable ph

Definition (Postprocessed scalar variable ph)

We define ph such that, separately on each K ∈ Th,

−∇ · S∇ph =1|K |

∑σ∈EK

SK ,σ ,

(1− µK )(ph, 1)K /|K |+ µK ph(xK ) = pK ,

−S∇ph|K · n = SK ,σ/|σ| ∀σ ∈ EK .

Properties of ph

ph exists and is uniqueflux of ph is given by SK ,σ, point or mean value by pK

ph is nonconforming, 6∈ H1(Ω), 6∈ W0(Th), only ∈ H1(Th)

for simplices or rectangular parallelepipeds when S isdiagonal: ph is a piecewise second-order polynomialbasis of our a posteriori error estimates

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 70: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A posteriori error estimate

Theorem (A posteriori error estimate)There holds

|||p−ph|||Ω≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K +ηC,K +ηU,K +ηRQ,K +ηΓN,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IOs(ph)|||KIOs(ph): Oswald int. operator (Burman and Ern ’07)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 4

cw,r,K

convection estimator

ηC,K := min

2‖∇·(vw)‖K + 12‖v∇·w‖K√

cw,r,K,(CP,d h2

K‖∇·(vw)‖2K

cS,K+

‖v∇·w‖2K

4cw,r,K

)12

v = ph − IOs(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 71: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A posteriori error estimate

Theorem (A posteriori error estimate)There holds

|||p−ph|||Ω≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K +ηC,K +ηU,K +ηRQ,K +ηΓN,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IOs(ph)|||KIOs(ph): Oswald int. operator (Burman and Ern ’07)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 4

cw,r,K

convection estimator

ηC,K := min

2‖∇·(vw)‖K + 12‖v∇·w‖K√

cw,r,K,(CP,d h2

K‖∇·(vw)‖2K

cS,K+

‖v∇·w‖2K

4cw,r,K

)12

v = ph − IOs(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 72: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A posteriori error estimate

Theorem (A posteriori error estimate)There holds

|||p−ph|||Ω≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K +ηC,K +ηU,K +ηRQ,K +ηΓN,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IOs(ph)|||KIOs(ph): Oswald int. operator (Burman and Ern ’07)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 4

cw,r,K

convection estimator

ηC,K := min

2‖∇·(vw)‖K + 12‖v∇·w‖K√

cw,r,K,(CP,d h2

K‖∇·(vw)‖2K

cS,K+

‖v∇·w‖2K

4cw,r,K

)12

v = ph − IOs(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 73: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A posteriori error estimate

Theorem (A posteriori error estimate)There holds

|||p−ph|||Ω≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

(ηR,K +ηC,K +ηU,K +ηRQ,K +ηΓN,K )2

12

.

nonconformity estimatorηNC,K := |||ph − IOs(ph)|||KIOs(ph): Oswald int. operator (Burman and Ern ’07)

residual estimatorηR,K := mK‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K

m2K := min

CP,d

h2K

cS,K, 4

cw,r,K

convection estimator

ηC,K := min

2‖∇·(vw)‖K + 12‖v∇·w‖K√

cw,r,K,(CP,d h2

K‖∇·(vw)‖2K

cS,K+

‖v∇·w‖2K

4cw,r,K

)12

v = ph − IOs(ph)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 74: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C A postprocessed scalar variable Estimates

A posteriori error estimate

upwinding estimatorηU,K :=

∑σ∈EK\EN

hmσ‖(pσ − IOs(ph)σ)w · n‖σ

pσ: the weighted upwind valueIOs(ph)σ: the mean of IOs(ph) over the side σmσ: function of cS,K , cw,r ,K =

( 12∇ ·w + r

)|K , d , hK , |σ|, |K |

all dependencies evaluated explicitly

reaction quadrature estimatorηRQ,K := 1√

cw,r,K‖rK pK − (r ph, 1)K |K |−1‖K

disappears when r pw constant and ph fixed by mean

Neumann boundary estimatorηΓN,K := 0 + 1√cS,K

∑σ∈EK∩EN

h

√Ct,K ,σ

√hK‖uσ − u‖σ

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 75: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 76: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 77: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Comments on the estimates and their efficiency

no saturation assumptionp ∈ H1(Ω), no additional regularityno convexity of Ω neededno “monotonicity” hypothesis on inhomogeneitiesdistribution as El Alaoui and Ern ’04 or Bernardi andVerfürth ’00the only important tool: optimal discretePoincaré–Friedrichs inequalities (Vohralík, NFAO 2005)holds from diffusion to convection–diffusion–reaction casesno efficiency for the upwinding estimator (since theupwind-weighted scheme does not change to the centeredone; improvement: smooth transition upwind-weighted →centered scheme)no efficiency for the reaction quadrature and Neumannboundary estimators

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 78: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Comparison with Galerkin FEMs

residual estimator (‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K )

very good sense in MFEM/FVM (ph is piecewise quadratic)∇ · SK∇ph|K = 0 in piecewise linear Galerkin FEM

edge mass balance estimator (‖[S∇ph · n]‖σ)not present in MFEM/FVM (mass conservation)typical in Galerkin FEM

nonconformity estimator (|||ph − I(ph)|||K )

essential in MFEM/FVMnot present in conforming Galerkin FEM

upwinding estimator (‖(pσ − pσ)w · n‖σ)

when local Péclet number gets small, disappears in MFEMand gets a higher-order term in FVMSUPG (Verfürth ’98): different form, efficient

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 79: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Comparison with Galerkin FEMs

residual estimator (‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K )

very good sense in MFEM/FVM (ph is piecewise quadratic)∇ · SK∇ph|K = 0 in piecewise linear Galerkin FEM

edge mass balance estimator (‖[S∇ph · n]‖σ)not present in MFEM/FVM (mass conservation)typical in Galerkin FEM

nonconformity estimator (|||ph − I(ph)|||K )

essential in MFEM/FVMnot present in conforming Galerkin FEM

upwinding estimator (‖(pσ − pσ)w · n‖σ)

when local Péclet number gets small, disappears in MFEMand gets a higher-order term in FVMSUPG (Verfürth ’98): different form, efficient

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 80: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Comparison with Galerkin FEMs

residual estimator (‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K )

very good sense in MFEM/FVM (ph is piecewise quadratic)∇ · SK∇ph|K = 0 in piecewise linear Galerkin FEM

edge mass balance estimator (‖[S∇ph · n]‖σ)not present in MFEM/FVM (mass conservation)typical in Galerkin FEM

nonconformity estimator (|||ph − I(ph)|||K )

essential in MFEM/FVMnot present in conforming Galerkin FEM

upwinding estimator (‖(pσ − pσ)w · n‖σ)

when local Péclet number gets small, disappears in MFEMand gets a higher-order term in FVMSUPG (Verfürth ’98): different form, efficient

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 81: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Comparison with Galerkin FEMs

residual estimator (‖f +∇ · SK∇ph −∇ · (phw)− r ph‖K )

very good sense in MFEM/FVM (ph is piecewise quadratic)∇ · SK∇ph|K = 0 in piecewise linear Galerkin FEM

edge mass balance estimator (‖[S∇ph · n]‖σ)not present in MFEM/FVM (mass conservation)typical in Galerkin FEM

nonconformity estimator (|||ph − I(ph)|||K )

essential in MFEM/FVMnot present in conforming Galerkin FEM

upwinding estimator (‖(pσ − pσ)w · n‖σ)

when local Péclet number gets small, disappears in MFEMand gets a higher-order term in FVMSUPG (Verfürth ’98): different form, efficient

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 82: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 83: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

η2R,K

12

.

nonconformity estimator

ηNC,K := |||ph − I(ph)|||K = ‖S 12∇(ph − I(ph))‖K

I(ph): Oswald or modified Oswald interpolate

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K (fK is the mean of f over K )

only dependent on sources f

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 84: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

η2R,K

12

.

nonconformity estimator

ηNC,K := |||ph − I(ph)|||K = ‖S 12∇(ph − I(ph))‖K

I(ph): Oswald or modified Oswald interpolate

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K (fK is the mean of f over K )

only dependent on sources f

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 85: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2NC,K

12

+

∑K∈Th

η2R,K

12

.

nonconformity estimator

ηNC,K := |||ph − I(ph)|||K = ‖S 12∇(ph − I(ph))‖K

I(ph): Oswald or modified Oswald interpolate

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K (fK is the mean of f over K )

only dependent on sources f

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 86: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p− ph|||Ω ≤ infs∈H1

0 (Ω)|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

asymptotically efficient with constant 1 for however largeinhomogeneities and anisotropies

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ 1|||p − ph|||Ω

MFEM: is in fact also an a priori estimate:

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ |||ph − IMO(ph)|||Ω ≤ Ch

using that ph ∈ W0(Th) (cont. means of traces)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 87: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p− ph|||Ω ≤ infs∈H1

0 (Ω)|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

asymptotically efficient with constant 1 for however largeinhomogeneities and anisotropies

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ 1|||p − ph|||Ω

MFEM: is in fact also an a priori estimate:

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ |||ph − IMO(ph)|||Ω ≤ Ch

using that ph ∈ W0(Th) (cont. means of traces)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 88: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Theorem (A posteriori error estimate for the diffusion problem)There holds

|||p− ph|||Ω ≤ infs∈H1

0 (Ω)|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

asymptotically efficient with constant 1 for however largeinhomogeneities and anisotropies

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ 1|||p − ph|||Ω

MFEM: is in fact also an a priori estimate:

infs∈H1

0 (Ω)|||ph − s|||Ω ≤ |||ph − IMO(ph)|||Ω ≤ Ch

using that ph ∈ W0(Th) (cont. means of traces)

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 89: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0Theorem (Mixed FEM for the diffusion problem)There holds|||p− ph|||Ω ≤ inf

s∈H10 (Ω)

|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

Theorem (Galerkin FEM for the diffusion problem)There holds

|||p − ph|||Ω ≤ infsh∈Vh

|||p − sh|||Ω .

Mixed FEM 1D:no nonconformity, ph ∈ H1

0 (Ω)|||p − ph|||Ω ≤ Ch2 when f ∈ H1(Th)ph = p, the exact solution, for pw constant S (arbitraryinhomogeneities) and pw constant f

Galerkin FEM 1D:|||p − ph|||Ω ≤ Ch

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 90: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0Theorem (Mixed FEM for the diffusion problem)There holds|||p− ph|||Ω ≤ inf

s∈H10 (Ω)

|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

Theorem (Galerkin FEM for the diffusion problem)There holds

|||p − ph|||Ω ≤ infsh∈Vh

|||p − sh|||Ω .

Mixed FEM 1D:no nonconformity, ph ∈ H1

0 (Ω)|||p − ph|||Ω ≤ Ch2 when f ∈ H1(Th)ph = p, the exact solution, for pw constant S (arbitraryinhomogeneities) and pw constant f

Galerkin FEM 1D:|||p − ph|||Ω ≤ Ch

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 91: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0Theorem (Mixed FEM for the diffusion problem)There holds|||p− ph|||Ω ≤ inf

s∈H10 (Ω)

|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

Theorem (Galerkin FEM for the diffusion problem)There holds

|||p − ph|||Ω ≤ infsh∈Vh

|||p − sh|||Ω .

Mixed FEM 1D:no nonconformity, ph ∈ H1

0 (Ω)|||p − ph|||Ω ≤ Ch2 when f ∈ H1(Th)ph = p, the exact solution, for pw constant S (arbitraryinhomogeneities) and pw constant f

Galerkin FEM 1D:|||p − ph|||Ω ≤ Ch

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 92: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0Theorem (Mixed FEM for the diffusion problem)There holds|||p− ph|||Ω ≤ inf

s∈H10 (Ω)

|||ph − s|||Ω +

∑K∈Th

CP,dh2

KcS,K

‖f − fK‖2K

12

.

Theorem (Galerkin FEM for the diffusion problem)There holds

|||p − ph|||Ω ≤ infsh∈Vh

|||p − sh|||Ω .

Mixed FEM 1D:no nonconformity, ph ∈ H1

0 (Ω)|||p − ph|||Ω ≤ Ch2 when f ∈ H1(Th)ph = p, the exact solution, for pw constant S (arbitraryinhomogeneities) and pw constant f

Galerkin FEM 1D:|||p − ph|||Ω ≤ Ch

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 93: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Definition (Generalized weak solution)

Generalized weak solution: p ∈ W0(Th) such that

B(p, ϕ) = (f , ϕ)Ω ∀ϕ ∈ W0(Th).

Theorem (A posteriori error estimate for mixed FEM and thegeneralized weak solution of the pure diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2R,K

12

.

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K

only dependent on sources ff ∈ H1(Th) ⇒ |||p − ph|||Ω ≤ Ch2

if f piecewise constant ⇒ ph coincides with p for arbitraryinhomogeneities and anisotropies

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 94: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Definition (Generalized weak solution)

Generalized weak solution: p ∈ W0(Th) such that

B(p, ϕ) = (f , ϕ)Ω ∀ϕ ∈ W0(Th).

Theorem (A posteriori error estimate for mixed FEM and thegeneralized weak solution of the pure diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2R,K

12

.

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K

only dependent on sources ff ∈ H1(Th) ⇒ |||p − ph|||Ω ≤ Ch2

if f piecewise constant ⇒ ph coincides with p for arbitraryinhomogeneities and anisotropies

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 95: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Pure diffusion problem −∇ · S∇p = f , ΓD = ∂Ω, g = 0

Definition (Generalized weak solution)

Generalized weak solution: p ∈ W0(Th) such that

B(p, ϕ) = (f , ϕ)Ω ∀ϕ ∈ W0(Th).

Theorem (A posteriori error estimate for mixed FEM and thegeneralized weak solution of the pure diffusion problem)There holds

|||p − ph|||Ω ≤

∑K∈Th

η2R,K

12

.

residual estimatorη2

R,K := CP,dh2

KcS,K

‖f − fK‖2K

only dependent on sources ff ∈ H1(Th) ⇒ |||p − ph|||Ω ≤ Ch2

if f piecewise constant ⇒ ph coincides with p for arbitraryinhomogeneities and anisotropies

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 96: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 97: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C Comments Diffusion problem Relations MFEs–FVs

Relations of mixed finite elements to finite volumes

MFE matrix problem:

(A CB D

)(UP

)=

(FG

)local flux expression formula Vohralík (M2AN, 2006): locallinear problem MV U int

V = FV − AV PV for each vertex V⇒ the matrix problem can be exactly, without anynumerical integration, rewritten as SP = Hlowest-order RT MFEM is thus equivalent to a particularmulti-point FV schemeS is sparse, in general positive definite but nonsymmetricworks from pure diffusion to convection–diffusion–reactioncases, for upwind schemes, in 2D and 3D, for nonlinearcases

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 98: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 99: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Problem with discontinuous and inhomogeneousdiffusion tensor: finite volumes

consider the pure diffusion equation

−∇ · S∇p = 0 in Ω = (−1, 1)× (−1, 1)

discontinuous and inhomogeneous S, two cases:

−1 0 1−1

0

1

s1=5s

2=1

s3=5 s

4=1

−1 0 1−1

0

1

s1=100s

2=1

s3=100 s

4=1

analytical solution: singularity at the origin

p(r , θ) = rα(ai sin(αθ) + bi cos(αθ))

(r , θ) polar coordinates in Ωai , bi constants depending on Ωiα regularity of the solution

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 100: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Analytical solutions

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 101: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Estimated and actual error distribution on anadaptively refined mesh, case 1

0.005

0.01

0.015

0.02

0.025

0.03

0.035

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.005

0.01

0.015

0.02

0.025

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 102: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Approximate solution and the correspondingadaptively refined mesh, case 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1−0.5

00.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy

p

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 103: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Estimated and actual error against the number ofelements in uniformly/adaptively refined meshes

102

103

104

105

10−2

10−1

100

101

Number of triangles

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

102

103

104

105

100

101

102

Number of triangles

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 104: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Global efficiency of the estimates

102

103

104

105

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Number of triangles

Effi

cien

cy

efficiency uniformefficiency adapt.

102

103

104

105

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Number of triangles

Effi

cien

cy

efficiency uniformefficiency adapt.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 105: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Convection-dominated problem: mixed finite elements

consider the convection–diffusion–reaction equation

−ε4p +∇ · (p(0, 1)) + p = f in Ω = (0, 1)× (0, 1)

analytical solution: layer of width a

p(x , y) = 0.5(

1− tanh(0.5− x

a

))consider

ε = 1, a = 0.5ε = 10−2, a = 0.05ε = 10−4, a = 0.02

unstructured grid of 46 elements given,uniformly/adaptively refined

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 106: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Analytical solutions, ε = 1, a = 0.5 and ε = 10−4,a = 0.02

0.2

0.3

0.4

0.5

0.6

0.7

0.8

00.2

0.40.6

0.81

00.2

0.40.6

0.81

0.2

0.3

0.4

0.5

0.6

0.7

0.8

xy

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.2

0.40.6

0.81

00.2

0.40.6

0.810

0.2

0.4

0.6

0.8

1

xy

p

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 107: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Estimated and actual error distribution, ε = 1, a = 0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5x 10

−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

x 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 108: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Modified Oswald interpolate: estimated and actualerror against the number of elements and globalefficiency of the estimates, ε = 1, a = 0.5

101

102

103

104

105

10−5

10−4

10−3

10−2

10−1

100

Number of triangles

Ene

rgy

erro

r

error uniformest. uniformest. res. uniformest. nonc. uniformest. upw. uniformest. conv. uniform

101

102

103

104

105

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

Number of triangles

Effi

cien

cy

efficiency uniform

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 109: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Oswald interpolate: estimated and actual error againstthe number of elements and global efficiency of theestimates, ε = 1, a = 0.5

101

102

103

104

105

10−5

10−4

10−3

10−2

10−1

100

Number of triangles

Ene

rgy

erro

r

error uniformest. uniformest. res. uniformest. nonc. uniformest. upw. uniformest. conv. uniform

101

102

103

104

105

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of triangles

Effi

cien

cy

efficiency uniform

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 110: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Estimated and actual error distribution, ε = 10−2,a = 0.05

2

4

6

8

10

12

x 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2x 10

−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 111: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Approximate solution and the correspondingadaptively refined mesh, ε = 10−4, a = 0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.2

0.40.6

0.81

00.2

0.40.6

0.810

0.2

0.4

0.6

0.8

1

xy

p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 112: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Estimated and actual error against the number ofelements in uniformly/adaptively refined meshes,ε = 10−2, a = 0.05 and ε = 10−4, a = 0.02

101

102

103

104

105

10−3

10−2

10−1

100

101

Number of triangles

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

101

102

103

104

105

10−2

10−1

100

101

Number of triangles

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 113: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C FVs & inhomogeneous diffusion MFEs & dominating convection

Global efficiency of the estimates, ε = 10−2, a = 0.05and ε = 10−4, a = 0.02

101

102

103

104

105

2

3

4

5

6

7

8

9

10

11

12

Number of triangles

Effi

cien

cy

efficiency uniformefficiency adapt.

101

102

103

104

105

10

20

30

40

50

60

70

80

90

100

Number of triangles

Effi

cien

cy

efficiency uniformefficiency adapt.

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 114: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Outline1 Introduction2 Problem and schemes

A convection–diffusion–reaction problemFinite volume schemesMixed finite element schemes

3 A posteriori error estimates for mixed finite elementsA postprocessed scalar variableEstimatesLocal efficiency

4 A posteriori error estimates for finite volumes5 Remarks

Comments on the estimates and their efficiencyPure diffusion problemRelation of mixed finite elements to finite volumes

6 Numerical experiments7 Conclusions and future work

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 115: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Conclusions and future work

Conclusionsasymptotically exact, fully reliable, and locally efficientestimates for inhomogeneous and anisotropic andconvection-dominated problemsdirectly computable—all constants evaluatedworks for mixed finite elements and finite volumesbased on conformity of the flux variableconnections mixed finite elements – finite volumes

Future worka unified a priori and a posteriori error analysis of mixedfinite element / finite volume methodsnonlinear case

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 116: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Conclusions and future work

Conclusionsasymptotically exact, fully reliable, and locally efficientestimates for inhomogeneous and anisotropic andconvection-dominated problemsdirectly computable—all constants evaluatedworks for mixed finite elements and finite volumesbased on conformity of the flux variableconnections mixed finite elements – finite volumes

Future worka unified a priori and a posteriori error analysis of mixedfinite element / finite volume methodsnonlinear case

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM

Page 117: Estimations d'erreur a posteriori pour les volumes finis ... · Estimations d’erreur a posteriori pour les volumes finis et les éléments finis mixtes Martin Vohralík Laboratoire

I Pb Estimates MFEs Estimates FVs Remarks Exp C

Bibliography

PapersVOHRALÍK M., Asymptotically exact a posteriori errorestimates for mixed finite element discretizations ofconvection–diffusion–reaction equations, to appearin SIAM J. Numer. Anal.VOHRALÍK M., Residual flux-based a posteriori errorestimates for finite volume discretizations ofinhomogeneous, anisotropic, and convection-dominatedproblems, submitted to Numer. Math.

Merci de votre attention !

M. Vohralík Estimations d’erreur a posteriori pour les VF et les EFM