A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

291
A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND INEXPENSIVE IMPLEMENTATIONS for error control and efficiency in numerical simulations Martin Vohralík Habilitation à diriger des recherches Paris, December 13, 2010

Transcript of A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

Page 1: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

A POSTERIORI ERROR ESTIMATES,STOPPING CRITERIA,

AND INEXPENSIVE IMPLEMENTATIONS

for error control and efficiencyin numerical simulations

Martin Vohralík

Habilitation à diriger des recherches

Paris, December 13, 2010

Page 2: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 3: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 4: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Basic CV

Basic CV

joined Université Pierre et Marie Curie, LaboratoireJacques-Louis Lions as a “maître de conférences” inSeptember 2006January 2005–August 2006: post-doc at CNRS, UniversitéParis-SudDecember 2004: Ph.D. at Czech Technical University inPrague & Université Paris-Sud

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 5: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Topics of the habilitationTopics of the habilitationPart 1

a posteriori error estimatesguaranteed and robust error controlunified frameworks

Part 2stopping criteriaequilibration of error componentsadaptive algorithms

Part 3a priori error estimatesinexpensive implementationsdevelopment of scientific calculation codes

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 6: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Topics of the habilitationTopics of the habilitationPart 1

a posteriori error estimatesguaranteed and robust error controlunified frameworks

Part 2stopping criteriaequilibration of error componentsadaptive algorithms

Part 3a priori error estimatesinexpensive implementationsdevelopment of scientific calculation codes

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 7: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Topics of the habilitationTopics of the habilitationPart 1

a posteriori error estimatesguaranteed and robust error controlunified frameworks

Part 2stopping criteriaequilibration of error componentsadaptive algorithms

Part 3a priori error estimatesinexpensive implementationsdevelopment of scientific calculation codes

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 8: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Background

Background

GNR MoMaS project Mathematical Modeling andNumerical Simulation for Nuclear Waste ManagementProblemsERT project with the French Petroleum Institute Enhancedoil recovery and geological sequestration of CO2: meshadaptivity, a posteriori error control, and other advancedtechniquesHydroExpert society, simulations of flow and contaminanttransport in underground porous media (code TALISMAN)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 9: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Co-supervision of Ph.D. candidates

Nancy Chalhoubframework of the GNR MoMaS projectco-supervision with Alexandre Ern (ENPC) and Toni Sayah(Université Saint-Joseph, Beirut, Lebanon)general framework for a posteriori error estimation ininstationary convection–diffusion–reaction problems

Soleiman Yousef, Carole Widmerframework of the ERT project with the French PetroleumInstituteco-supervision with Daniele Di Pietro (French PetroleumInstitute) and Vivette Girault (LJLL)a posteriori estimates, stopping criteria, and adaptivealgorithms for the Stefan problem (S. Yousef) and aposteriori estimates and adaptivity for cell-centered finitevolume discretizations of two-phase flows (C. Widmer)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 10: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Co-supervision of Ph.D. candidates

Nancy Chalhoubframework of the GNR MoMaS projectco-supervision with Alexandre Ern (ENPC) and Toni Sayah(Université Saint-Joseph, Beirut, Lebanon)general framework for a posteriori error estimation ininstationary convection–diffusion–reaction problems

Soleiman Yousef, Carole Widmerframework of the ERT project with the French PetroleumInstituteco-supervision with Daniele Di Pietro (French PetroleumInstitute) and Vivette Girault (LJLL)a posteriori estimates, stopping criteria, and adaptivealgorithms for the Stefan problem (S. Yousef) and aposteriori estimates and adaptivity for cell-centered finitevolume discretizations of two-phase flows (C. Widmer)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 11: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Numerical approximation of a nonlinear, instationaryPDE

Exact and approximate solution

let p be the weak solution of Ap = F , A nonlinear,instationarylet ph be its approximate numerical solution, Ahph = Fh

Solution algorithm

introduce a temporal mesh of (0,T ) given by tn, 0 ≤ n ≤ Nintroduce a spatial mesh T n

h of Ω on each tn

on each tn, solve a nonlinear algebraic problem Anhpn

h = F nh

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 12: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Numerical approximation of a nonlinear, instationaryPDE

Exact and approximate solution

let p be the weak solution of Ap = F , A nonlinear,instationarylet ph be its approximate numerical solution, Ahph = Fh

Solution algorithm

introduce a temporal mesh of (0,T ) given by tn, 0 ≤ n ≤ Nintroduce a spatial mesh T n

h of Ω on each tn

on each tn, solve a nonlinear algebraic problem Anhpn

h = F nh

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 13: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 14: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 15: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 16: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 17: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 18: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 19: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 20: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Iterative linearization and iterative algebraic solvers

Iterative linearization of Anhpn

h = F nh

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h : discrete Newton or fixed-point

linearizationloop in iwhen do we stop?

Iterative algebraic system solution on each tn and foreach i

An,(i−1)L,h pn,(i)

h = F n,(i−1)L,h is a linear algebraic system

we only solve it inexactly by, e.g., some iterative methodwhen do we stop?

Approximate solutionthe approximate solution pa

h that we have as an outcomedoes not solve Ahpa

h = Fh

how big is the overall error ‖p − pah‖Ω×(0,T )?

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 21: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

A posteriori error estimates: 5 optimal properties

Guaranteed upper bound (global error upper bound)‖p − pa

h‖2Ω×(0,T ) ≤∑N

n=1∑

K∈T nhηn

K (pah)2

no undetermined constant: error controlLocal efficiency (local error lower bound)

ηnK (pa

h)2 ≤ C2eff,K ,n

∑L close to K ‖p − pa

h‖2L×(tn−1,tn)

enables to predict the overall error distributionAsymptotic exactness∑N

n=1∑

K∈T nhηn

K (pah)2/‖p − pa

h‖2Ω×(0,T ) → 1overestimation factor goes to one with meshes size

RobustnessCeff,K ,n does not depend on coefficients, their relative sizeand variation, solution regularity, domain Ω, final time Testimators equally good in all situations

Negligible evaluation costestimators can be evaluated locally

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 22: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

A posteriori error estimates: 5 optimal properties

Guaranteed upper bound (global error upper bound)‖p − pa

h‖2Ω×(0,T ) ≤∑N

n=1∑

K∈T nhηn

K (pah)2

no undetermined constant: error controlLocal efficiency (local error lower bound)

ηnK (pa

h)2 ≤ C2eff,K ,n

∑L close to K ‖p − pa

h‖2L×(tn−1,tn)

enables to predict the overall error distributionAsymptotic exactness∑N

n=1∑

K∈T nhηn

K (pah)2/‖p − pa

h‖2Ω×(0,T ) → 1overestimation factor goes to one with meshes size

RobustnessCeff,K ,n does not depend on coefficients, their relative sizeand variation, solution regularity, domain Ω, final time Testimators equally good in all situations

Negligible evaluation costestimators can be evaluated locally

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 23: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

A posteriori error estimates: 5 optimal properties

Guaranteed upper bound (global error upper bound)‖p − pa

h‖2Ω×(0,T ) ≤∑N

n=1∑

K∈T nhηn

K (pah)2

no undetermined constant: error controlLocal efficiency (local error lower bound)

ηnK (pa

h)2 ≤ C2eff,K ,n

∑L close to K ‖p − pa

h‖2L×(tn−1,tn)

enables to predict the overall error distributionAsymptotic exactness∑N

n=1∑

K∈T nhηn

K (pah)2/‖p − pa

h‖2Ω×(0,T ) → 1overestimation factor goes to one with meshes size

RobustnessCeff,K ,n does not depend on coefficients, their relative sizeand variation, solution regularity, domain Ω, final time Testimators equally good in all situations

Negligible evaluation costestimators can be evaluated locally

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 24: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

A posteriori error estimates: 5 optimal properties

Guaranteed upper bound (global error upper bound)‖p − pa

h‖2Ω×(0,T ) ≤∑N

n=1∑

K∈T nhηn

K (pah)2

no undetermined constant: error controlLocal efficiency (local error lower bound)

ηnK (pa

h)2 ≤ C2eff,K ,n

∑L close to K ‖p − pa

h‖2L×(tn−1,tn)

enables to predict the overall error distributionAsymptotic exactness∑N

n=1∑

K∈T nhηn

K (pah)2/‖p − pa

h‖2Ω×(0,T ) → 1overestimation factor goes to one with meshes size

RobustnessCeff,K ,n does not depend on coefficients, their relative sizeand variation, solution regularity, domain Ω, final time Testimators equally good in all situations

Negligible evaluation costestimators can be evaluated locally

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 25: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

A posteriori error estimates: 5 optimal properties

Guaranteed upper bound (global error upper bound)‖p − pa

h‖2Ω×(0,T ) ≤∑N

n=1∑

K∈T nhηn

K (pah)2

no undetermined constant: error controlLocal efficiency (local error lower bound)

ηnK (pa

h)2 ≤ C2eff,K ,n

∑L close to K ‖p − pa

h‖2L×(tn−1,tn)

enables to predict the overall error distributionAsymptotic exactness∑N

n=1∑

K∈T nhηn

K (pah)2/‖p − pa

h‖2Ω×(0,T ) → 1overestimation factor goes to one with meshes size

RobustnessCeff,K ,n does not depend on coefficients, their relative sizeand variation, solution regularity, domain Ω, final time Testimators equally good in all situations

Negligible evaluation costestimators can be evaluated locally

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 26: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 27: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 28: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 29: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 30: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 31: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 32: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 33: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 34: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Aims and benefits of this workAims of this work

give a guaranteed and robust upper bound on the overallerror ‖p − pa

h‖Ω×(0,T ), if possible asymptotically exactensure local efficiency (optimal mesh refinement)develop unified frameworksdistinguish the algebraic/linearization errors, due to inexactsolution of linear/nonlinear problems, and the space andtime discretization errors, due to mesh size, time step, andnumerical schemestop the iterative solvers whenever algebraic/linearizationerrors do not affect the overall error significantlyequilibrate the space and time error components

Benefitsoptimal computable overall error boundimprovement of approximation precisionimportant computational savings

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 35: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results

Continuous finite elements

Babuška and Rheinboldt (1978), introductionLadevèze and Leguillon (1983), equilibrated fluxesestimates (equality of Prager and Synge (1947))Zienkiewicz and Zhu (1987), averaging-based estimatesVerfürth (1996, book), residual-based estimatesRepin (1997), functional a posteriori error estimatesDestuynder and Métivet (1999), equilibrated fluxesestimatesAinsworth and Oden (2000, book), equilibrated residualestimatesLuce and Wohlmuth (2004), equilibrated fluxes estimatesBraess and Schöberl (2008), equilibrated fluxes estimates

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 36: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results

Finite volumesOhlberger (2001), non-energy norm estimatesAchdou, Bernardi, Coquel (2003), links FV–FENicaise (2005, 2006), postprocessing

Discontinuous Galerkin finite elementsBecker, Hansbo, Larson (2003), residual-based estimatesKarakashian and Pascal (2003), residual-based estimatesAinsworth (2007), reconstruction of side fluxesKim (2007), Cochez-Dhondt and Nicaise (2008),reconstruction of equilibrated H(div,Ω)-conforming fluxes

Mixed finite elementsBraess and Verfürth (1996)Carstensen (1997)Hoppe and Wohlmuth (1997)Lovadina and Stenberg (2006)Kim (2007)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 37: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results

Finite volumesOhlberger (2001), non-energy norm estimatesAchdou, Bernardi, Coquel (2003), links FV–FENicaise (2005, 2006), postprocessing

Discontinuous Galerkin finite elementsBecker, Hansbo, Larson (2003), residual-based estimatesKarakashian and Pascal (2003), residual-based estimatesAinsworth (2007), reconstruction of side fluxesKim (2007), Cochez-Dhondt and Nicaise (2008),reconstruction of equilibrated H(div,Ω)-conforming fluxes

Mixed finite elementsBraess and Verfürth (1996)Carstensen (1997)Hoppe and Wohlmuth (1997)Lovadina and Stenberg (2006)Kim (2007)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 38: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results

Finite volumesOhlberger (2001), non-energy norm estimatesAchdou, Bernardi, Coquel (2003), links FV–FENicaise (2005, 2006), postprocessing

Discontinuous Galerkin finite elementsBecker, Hansbo, Larson (2003), residual-based estimatesKarakashian and Pascal (2003), residual-based estimatesAinsworth (2007), reconstruction of side fluxesKim (2007), Cochez-Dhondt and Nicaise (2008),reconstruction of equilibrated H(div,Ω)-conforming fluxes

Mixed finite elementsBraess and Verfürth (1996)Carstensen (1997)Hoppe and Wohlmuth (1997)Lovadina and Stenberg (2006)Kim (2007)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 39: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: inhomogeneous diffusion, reaction

Diffusion with discontinuous coefficients

Dörfler and Wilderotter, conforming finite elementsBernardi and Verfürth (2000), conforming finite elementsPetzoldt (2002), conforming finite elementsAinsworth (2005), nonconforming finite elements

Reaction-dominated problems

Verfürth (1998), residual estimatesAinsworth and Babuška (1999), equilibrated residualestimatesGrosman (2006), equilibrated residual estimates,anisotropic meshes

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 40: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: inhomogeneous diffusion, reaction

Diffusion with discontinuous coefficients

Dörfler and Wilderotter, conforming finite elementsBernardi and Verfürth (2000), conforming finite elementsPetzoldt (2002), conforming finite elementsAinsworth (2005), nonconforming finite elements

Reaction-dominated problems

Verfürth (1998), residual estimatesAinsworth and Babuška (1999), equilibrated residualestimatesGrosman (2006), equilibrated residual estimates,anisotropic meshes

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 41: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: parabolic problemsContinuous finite elements

Bieterman and Babuška (1982), introductionEriksson and Johnson (1991), rigorous analysisPicasso (1998), evolving meshesStrouboulis, Babuška, and Datta (2003), guaranteedestimatesVerfürth (2003), efficiency, robustness with respect to thefinal timeMakridakis and Nochetto (2003), elliptic reconstruction

Finite volumesOhlberger (2001), non energy-norm estimatesAmara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elementsGeorgoulis and Lakkis (2009)

Nonconforming finite elementsNicaise and Soualem (2005)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 42: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: parabolic problemsContinuous finite elements

Bieterman and Babuška (1982), introductionEriksson and Johnson (1991), rigorous analysisPicasso (1998), evolving meshesStrouboulis, Babuška, and Datta (2003), guaranteedestimatesVerfürth (2003), efficiency, robustness with respect to thefinal timeMakridakis and Nochetto (2003), elliptic reconstruction

Finite volumesOhlberger (2001), non energy-norm estimatesAmara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elementsGeorgoulis and Lakkis (2009)

Nonconforming finite elementsNicaise and Soualem (2005)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 43: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: parabolic problemsContinuous finite elements

Bieterman and Babuška (1982), introductionEriksson and Johnson (1991), rigorous analysisPicasso (1998), evolving meshesStrouboulis, Babuška, and Datta (2003), guaranteedestimatesVerfürth (2003), efficiency, robustness with respect to thefinal timeMakridakis and Nochetto (2003), elliptic reconstruction

Finite volumesOhlberger (2001), non energy-norm estimatesAmara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elementsGeorgoulis and Lakkis (2009)

Nonconforming finite elementsNicaise and Soualem (2005)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 44: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: parabolic problemsContinuous finite elements

Bieterman and Babuška (1982), introductionEriksson and Johnson (1991), rigorous analysisPicasso (1998), evolving meshesStrouboulis, Babuška, and Datta (2003), guaranteedestimatesVerfürth (2003), efficiency, robustness with respect to thefinal timeMakridakis and Nochetto (2003), elliptic reconstruction

Finite volumesOhlberger (2001), non energy-norm estimatesAmara, Nadau, and Trujillo (2004), energy-norm estimates

Discontinuous Galerkin finite elementsGeorgoulis and Lakkis (2009)

Nonconforming finite elementsNicaise and Soualem (2005)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 45: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: algebraic error

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

Becker, Johnson, and Rannacher (1995)Maday and Patera (2000)Arioli (2004)Meidner, Rannacher, Vihnarev (2009)

Algebraic energy error estimation in the conjugategradient method

Meurant (1997)Strakoš and Tichý (2002)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 46: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: algebraic error

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

Becker, Johnson, and Rannacher (1995)Maday and Patera (2000)Arioli (2004)Meidner, Rannacher, Vihnarev (2009)

Algebraic energy error estimation in the conjugategradient method

Meurant (1997)Strakoš and Tichý (2002)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 47: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: algebraic error

A posteriori estimates accounting for algebraic error

Repin (1997)

Stopping criteria for iterative solvers

Becker, Johnson, and Rannacher (1995)Maday and Patera (2000)Arioli (2004)Meidner, Rannacher, Vihnarev (2009)

Algebraic energy error estimation in the conjugategradient method

Meurant (1997)Strakoš and Tichý (2002)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 48: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: nonlinear problemsContinuous finite elements

Han (1994), general frameworkVerfürth (1994), residual estimatesBarrett and Liu (1994), quasi-norm estimatesLiu and Yan (2001), quasi-norm estimatesVeeser (2002), convergence p-LaplacianCarstensen and Klose (2003), guaranteed estimatesChaillou and Suri (2006, 2007), distinguishingdiscretization and linearization errors (only fixed-point, onelinearized problem (not an iterative loop))Diening and Kreuzer (2008), linear cvg p-Laplacian

Other methodsLiu and Yan (2001), quasi-norm estimates for thenonconforming finite element methodKim (2007), guaranteed estimates for locally conservativemethods

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 49: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: nonlinear problemsContinuous finite elements

Han (1994), general frameworkVerfürth (1994), residual estimatesBarrett and Liu (1994), quasi-norm estimatesLiu and Yan (2001), quasi-norm estimatesVeeser (2002), convergence p-LaplacianCarstensen and Klose (2003), guaranteed estimatesChaillou and Suri (2006, 2007), distinguishingdiscretization and linearization errors (only fixed-point, onelinearized problem (not an iterative loop))Diening and Kreuzer (2008), linear cvg p-Laplacian

Other methodsLiu and Yan (2001), quasi-norm estimates for thenonconforming finite element methodKim (2007), guaranteed estimates for locally conservativemethods

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 50: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: various

Variational inequalities

Hlavácek, Haslinger, Necas, and Lovíšek (1982)Ainsworth, Oden, and Lee (1993)Chen and Nochetto (2000)Wohlmuth (2007)

Stokes problem

Verfürth (1989)Dörfler and Ainsworth (2005)

Unified frameworks

Ainsworth (2005)Carstensen (2005–2009)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 51: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: various

Variational inequalities

Hlavácek, Haslinger, Necas, and Lovíšek (1982)Ainsworth, Oden, and Lee (1993)Chen and Nochetto (2000)Wohlmuth (2007)

Stokes problem

Verfürth (1989)Dörfler and Ainsworth (2005)

Unified frameworks

Ainsworth (2005)Carstensen (2005–2009)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 52: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: various

Variational inequalities

Hlavácek, Haslinger, Necas, and Lovíšek (1982)Ainsworth, Oden, and Lee (1993)Chen and Nochetto (2000)Wohlmuth (2007)

Stokes problem

Verfürth (1989)Dörfler and Ainsworth (2005)

Unified frameworks

Ainsworth (2005)Carstensen (2005–2009)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 53: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: error components equilibration

Error components equilibration

engineering literature, since 1950’sLadevèze (since 1980’s)Verfürth (2003), space and time error equilibrationBraack and Ern (2003), estimation of model errorsBabuška, Oden (2004), verification and validation. . .

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 54: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: implementations, relations

Implementations, mixed methods

Arnold and Brezzi (1985)Arbogast and Chen (1995)Cockburn and Gopalakrishnan (2004, 2005)

Relations between different methods

Russell and Wheeler (1983)Younès, Ackerer, Chavent (1999–2004)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 55: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Previous results: implementations, relations

Implementations, mixed methods

Arnold and Brezzi (1985)Arbogast and Chen (1995)Cockburn and Gopalakrishnan (2004, 2005)

Relations between different methods

Russell and Wheeler (1983)Younès, Ackerer, Chavent (1999–2004)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 56: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Papers of this habilitation (a posteriori estimates)

Co-authors No. Year Journal Problem Num. meth. Main results

— [A13] 2010 JSC D FE, VCFV, CCFV, FD guar. & rob. estimates w.r.t.the jumps in dif. coef.

Cheddadi, Fucík, Prieto [A4] 2009 M2AN RD FE, VCFV guar. & rob. estimates w.r.t.the reaction

Ern, Stephansen [A6] 2010 JCAM CRD DG guar. & rob. estimates w.r.t.the convection and reaction

— [A11] 2007 SINUM CRD MFE guar. estimates— [A12] 2008 NM CRD FV guar. estimatesErn [A7] 2010 SINUM heat DG, MFE, VCFV, CCFV unified framework

FCFV, FE, NCFEHilhorst [A9] 2010 CMAME CRD instat. VCFV guar. (& rob.) estimatesHannukainen, Stenberg [B2] 2010 submt. Stokes DG, MFE, FV unified framework

FE, FES, NCFEPencheva, Wheeler, Wildey [B3] 2010 submt. D DG, MFE, FV extension to multiscale,

multinumerics, and mortarsBen Belgacem, Bernardi, Blouza [B1] 2010 submt. syst. var. ineq. FE optimal a posteriori estimates

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 57: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Papers of this habilitation (stopping criteria)

Co-authors No. Year Journal Problem Num. meth. Main results

Jiránek, Strakoš [A10] 2010 SISC D CCFV, MFE algebraic error, stopping criteriaEl Alaoui, Ern [A5] 2010 CMAME monot. nonlin. FE guar. & rob. estimates w.r.t.

the nonlinearity;linealization error, stoping criteria

— [B4] 2010 prep. two-phase DG, MFE, VCFV a posteriori estimates, stoping criteriaCCFV, FCFV

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 58: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Papers of this habilitation (implementations, relationsbetween methods, postprocessing, a priori estimates)

Co-authors No. Year Journal Problem Num. meth. Main results

Eymard, Hilhorst [A8] 2010 NMPDE CRD par. deg. VCFV convergence proofBen Belgacem, Bernardi, Blouza [A1] 2009 M2AN syst. var. ineq. FE well-posedness, a priori estimates,

residual a posteriori estimatesBen Belgacem, Bernardi, Blouza [A2] 2009 MMNP syst. var. ineq. FE inexpensive implementation— [A14] 2010 MC D MFE unified a priori and a posteriori analysisWohlmuth [B5] 2010 submt. D MFE inexpensive implementation,

relation to FV methods

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 59: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 60: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 61: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainS is a piecewise constant scalar, inhomogeneous

Energy norm

|||ϕ|||2 := ‖S 12∇ϕ‖2, ϕ ∈ H1

0 (Ω)

VOHRALÍK

Guaranteed and fully robust a posteriori error estimates forconforming discretizations of diffusion problems withdiscontinuous coefficientsJ. Sci. Comput. 2010 [A13]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 62: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainS is a piecewise constant scalar, inhomogeneous

Energy norm

|||ϕ|||2 := ‖S 12∇ϕ‖2, ϕ ∈ H1

0 (Ω)

VOHRALÍK

Guaranteed and fully robust a posteriori error estimates forconforming discretizations of diffusion problems withdiscontinuous coefficientsJ. Sci. Comput. 2010 [A13]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 63: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainS is a piecewise constant scalar, inhomogeneous

Energy norm

|||ϕ|||2 := ‖S 12∇ϕ‖2, ϕ ∈ H1

0 (Ω)

VOHRALÍK

Guaranteed and fully robust a posteriori error estimates forconforming discretizations of diffusion problems withdiscontinuous coefficientsJ. Sci. Comput. 2010 [A13]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 64: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainS is a piecewise constant scalar, inhomogeneous

Energy norm

|||ϕ|||2 := ‖S 12∇ϕ‖2, ϕ ∈ H1

0 (Ω)

VOHRALÍK

Guaranteed and fully robust a posteriori error estimates forconforming discretizations of diffusion problems withdiscontinuous coefficientsJ. Sci. Comput. 2010 [A13]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 65: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Properties of the weak solution

0.90.80.70.60.50.40.30.20.10.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.21.0

exact solution

Solution p is in H10 (Ω)

0.90.80.70.60.50.40.30.20.10.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.51.0

-exact flux

Flux −S∇p is in H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 66: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Approximate solution and approximate flux

0.90.80.70.60.50.40.30.20.10.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.21.0

exact solutionapproximate solution

Approximate solution ph is inH1

0 (Ω)

0.90.80.70.60.50.40.30.20.10.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.51.0

-exact flux-approximate flux

Approximate flux −S∇ph is notin H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 67: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Approximate solution and postprocessed flux

0.90.80.70.60.50.40.30.20.10.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.21.0

exact solutionapproximate solution

Approximate solution ph is inH1

0 (Ω)

0.90.80.70.60.50.40.30.20.10.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.51.0

-postprocessed flux-approximate flux-exact flux

Construct a postprocessed fluxth in H(div,Ω) (Prager–Synge

(1947))

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 68: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −∇·(S∇p) = f

Theorem (A posteriori error estimate)Let

p be the weak solution,ph ∈ H1

0 (Ω) be arbitrary,Dh = Dint

h ∪ Dexth be a partition of Ω,

th ∈ H(div,Ω) be arbitrary but such that

(∇·th,1)D = (f ,1)D for all D ∈ Dinth .

Then

|||p − ph||| ≤∑

D∈Dh

(ηR,D + ηDF,D)2

1/2

.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 69: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −∇·(S∇p) = f

Estimators

diffusive flux estimator

ηDF,D := ‖S 12∇ph + S−

12 th‖D

penalizes the fact that −S∇ph 6∈ H(div,Ω)

residual estimator

ηR,D := mD,S‖f −∇·th‖Dresidue evaluated for thm2

D,S := CP,DhD2/cS,D for D ∈ Dint

h , CP,D = 1/π2 if D convexm2

D,S := CF,DhD2/cS,D for D ∈ Dext

h , CF,D = 1 in generalcS,D is the smallest value of S on DCP,D and CF,D can be replaced by 1/π2 for appropriateconstruction of th (always done in practice)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 70: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −∇·(S∇p) = f

Estimators

diffusive flux estimator

ηDF,D := ‖S 12∇ph + S−

12 th‖D

penalizes the fact that −S∇ph 6∈ H(div,Ω)

residual estimator

ηR,D := mD,S‖f −∇·th‖Dresidue evaluated for thm2

D,S := CP,DhD2/cS,D for D ∈ Dint

h , CP,D = 1/π2 if D convexm2

D,S := CF,DhD2/cS,D for D ∈ Dext

h , CF,D = 1 in generalcS,D is the smallest value of S on DCP,D and CF,D can be replaced by 1/π2 for appropriateconstruction of th (always done in practice)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 71: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −∇·(S∇p) = f

Estimators

diffusive flux estimator

ηDF,D := ‖S 12∇ph + S−

12 th‖D

penalizes the fact that −S∇ph 6∈ H(div,Ω)

residual estimator

ηR,D := mD,S‖f −∇·th‖Dresidue evaluated for thm2

D,S := CP,DhD2/cS,D for D ∈ Dint

h , CP,D = 1/π2 if D convexm2

D,S := CF,DhD2/cS,D for D ∈ Dext

h , CF,D = 1 in generalcS,D is the smallest value of S on DCP,D and CF,D can be replaced by 1/π2 for appropriateconstruction of th (always done in practice)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 72: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −∇·(S∇p) = f

Estimators

diffusive flux estimator

ηDF,D := ‖S 12∇ph + S−

12 th‖D

penalizes the fact that −S∇ph 6∈ H(div,Ω)

residual estimator

ηR,D := mD,S‖f −∇·th‖Dresidue evaluated for thm2

D,S := CP,DhD2/cS,D for D ∈ Dint

h , CP,D = 1/π2 if D convexm2

D,S := CF,DhD2/cS,D for D ∈ Dext

h , CF,D = 1 in generalcS,D is the smallest value of S on DCP,D and CF,D can be replaced by 1/π2 for appropriateconstruction of th (always done in practice)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 73: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof, cf. Prager–Synge equality (1947).energy norm characterization:

|||p − ph||| = supϕ∈H1

0 (Ω), |||ϕ|||=1(S∇(p − ph),∇ϕ)

adding and subtracting th ∈ H(div,Ω), Green theorem:

|||p−ph||| = infth∈H(div,Ω)

supϕ∈H1

0 (Ω), |||ϕ|||=1|(f−∇·th,ϕ)|+|(S∇ph+th,∇ϕ)|

Cauchy–Schwarz inequality:

|(S∇ph + th,∇ϕ)| ≤∥∥S

12∇ph + S−

12 th∥∥ =

D∈Dh

η2DF,D

1/2

local conservation property (∇·th,1)D = (f ,1)D ∀D ∈ Dinth ,

Poincaré and Friedrichs inequalities:

|(f −∇·th, ϕ)| ≤∑

D∈Dh

η2R,D

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 74: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof, cf. Prager–Synge equality (1947).energy norm characterization:

|||p − ph||| = supϕ∈H1

0 (Ω), |||ϕ|||=1(S∇(p − ph),∇ϕ)

adding and subtracting th ∈ H(div,Ω), Green theorem:

|||p−ph||| = infth∈H(div,Ω)

supϕ∈H1

0 (Ω), |||ϕ|||=1|(f−∇·th,ϕ)|+|(S∇ph+th,∇ϕ)|

Cauchy–Schwarz inequality:

|(S∇ph + th,∇ϕ)| ≤∥∥S

12∇ph + S−

12 th∥∥ =

D∈Dh

η2DF,D

1/2

local conservation property (∇·th,1)D = (f ,1)D ∀D ∈ Dinth ,

Poincaré and Friedrichs inequalities:

|(f −∇·th, ϕ)| ≤∑

D∈Dh

η2R,D

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 75: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof, cf. Prager–Synge equality (1947).energy norm characterization:

|||p − ph||| = supϕ∈H1

0 (Ω), |||ϕ|||=1(S∇(p − ph),∇ϕ)

adding and subtracting th ∈ H(div,Ω), Green theorem:

|||p−ph||| = infth∈H(div,Ω)

supϕ∈H1

0 (Ω), |||ϕ|||=1|(f−∇·th,ϕ)|+|(S∇ph+th,∇ϕ)|

Cauchy–Schwarz inequality:

|(S∇ph + th,∇ϕ)| ≤∥∥S

12∇ph + S−

12 th∥∥ =

D∈Dh

η2DF,D

1/2

local conservation property (∇·th,1)D = (f ,1)D ∀D ∈ Dinth ,

Poincaré and Friedrichs inequalities:

|(f −∇·th, ϕ)| ≤∑

D∈Dh

η2R,D

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 76: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof, cf. Prager–Synge equality (1947).energy norm characterization:

|||p − ph||| = supϕ∈H1

0 (Ω), |||ϕ|||=1(S∇(p − ph),∇ϕ)

adding and subtracting th ∈ H(div,Ω), Green theorem:

|||p−ph||| = infth∈H(div,Ω)

supϕ∈H1

0 (Ω), |||ϕ|||=1|(f−∇·th,ϕ)|+|(S∇ph+th,∇ϕ)|

Cauchy–Schwarz inequality:

|(S∇ph + th,∇ϕ)| ≤∥∥S

12∇ph + S−

12 th∥∥ =

D∈Dh

η2DF,D

1/2

local conservation property (∇·th,1)D = (f ,1)D ∀D ∈ Dinth ,

Poincaré and Friedrichs inequalities:

|(f −∇·th, ϕ)| ≤∑

D∈Dh

η2R,D

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 77: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Construction of th

Practical construction of th

relies on the local conservation property of the givennumerical methoduses Raviart–Thomas–Nédélec spaces, two types

direct prescription of the degrees of freedom by averagingthe normal fluxes ∇ph·nsolution of local Neumann problems by mixed finiteelements (Bank and Weiser (1985), Ern and Vohralík(2009))

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 78: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Local efficiency of the estimates for −∇·(S∇p) = f

Theorem (Local efficiency)Suppose that

th is constructed from ph by direct prescription or solutionof local Neumann MFE problemsthe discontinuities are aligned with the dual mesh Dh;harmonic averaging was used in the scheme;harmonic averaging was used in the construction of th.

ThenηR,D + ηDF,D ≤ C|||p − ph|||TVD

,

where C depends only on the space dimension d, on the shaperegularity parameter κT , and on the polynomial degree m of f .

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 79: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Local efficiency of the estimates for −∇·(S∇p) = f

Theorem (Local efficiency)Suppose that

th is constructed from ph by direct prescription or solutionof local Neumann MFE problemsthe discontinuities are aligned with the dual mesh Dh;harmonic averaging was used in the scheme;harmonic averaging was used in the construction of th.

ThenηR,D + ηDF,D ≤ C|||p − ph|||TVD

,

where C depends only on the space dimension d, on the shaperegularity parameter κT , and on the polynomial degree m of f .

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 80: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Local efficiency of the estimates for −∇·(S∇p) = f

Theorem (Local efficiency)Suppose that

th is constructed from ph by direct prescription or solutionof local Neumann MFE problemsthe discontinuities are aligned with the dual mesh Dh;harmonic averaging was used in the scheme;harmonic averaging was used in the construction of th.

ThenηR,D + ηDF,D ≤ C|||p − ph|||TVD

,

where C depends only on the space dimension d, on the shaperegularity parameter κT , and on the polynomial degree m of f .

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 81: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof.

ηDF,D ≤ C

σ∈ED

‖[[S∇ph·n]]‖2σ

12

ηR,D ≤ C(|||p − ph|||D + ηDF,D)

Philosophy

our estimates are, up to a generic constant, a lower boundfor the residual oneswe then can use the results for the residual estimates (R.Verfürth)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 82: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof.

ηDF,D ≤ C

σ∈ED

‖[[S∇ph·n]]‖2σ

12

ηR,D ≤ C(|||p − ph|||D + ηDF,D)

Philosophy

our estimates are, up to a generic constant, a lower boundfor the residual oneswe then can use the results for the residual estimates (R.Verfürth)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 83: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Main steps of the proof

Main steps of the proof.

ηDF,D ≤ C

σ∈ED

‖[[S∇ph·n]]‖2σ

12

ηR,D ≤ C(|||p − ph|||D + ηDF,D)

Philosophy

our estimates are, up to a generic constant, a lower boundfor the residual oneswe then can use the results for the residual estimates (R.Verfürth)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 84: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Estimates for −∇·(S∇p) = f , FE, VCFV, CCFV, FD

Properties

guaranteed upper boundlocal efficiencyfull robustness, singular cases included (nomonotonicity-like assumption as in Dörfler and Wilderotter(2000), Bernardi and Verfürth (2000), Petzoldt (2002),Ainsworth (2005), Chen and Dai (2002), or Cai and Zhang(2009))almost asymptotically exactnegligible evaluation cost

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 85: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Vertex-centered finite volumes in 1D

Model problem

−p′′ = π2sin(πx) in ]0,1[,

p = 0 in 0,1

Exact solutionp(x) = sin(πx)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 86: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Vertex-centered finite volumes in 1D

Model problem

−p′′ = π2sin(πx) in ]0,1[,

p = 0 in 0,1

Exact solutionp(x) = sin(πx)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 87: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Estimated and actual errors

100

101

102

103

104

10−6

10−4

10−2

100

102

Number of vertices

Ene

rgy

erro

r

error uniformestimate uniformres. est. uniformdif. flux est. uniform

Actual error and estimator andits components

100

101

102

103

104

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Number of verticesE

nerg

y er

ror

effe

ctiv

ity in

dex

effectivity ind. uniform

Effectivity index

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 88: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Discontinuous diffusion tensor and vertex-centeredfinite volumes

consider the pure diffusion equation

−∇·(S∇p) = 0 in Ω = (−1,1)× (−1,1)

discontinuous and inhomogeneous S, two cases:

−1 0 1−1

0

1

s1=5s

2=1

s3=5 s

4=1

−1 0 1−1

0

1

s1=100s

2=1

s3=100 s

4=1

analytical solution: singularity at the origin

p(r , θ)|Ωi = rα(ai sin(αθ) + bi cos(αθ))

(r , θ) polar coordinates in Ωai , bi constants depending on Ωiα regularity of the solution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 89: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Analytical solutions

Case 1 Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 90: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Error distribution on a uniformly ref. mesh, case 1

Estimated error distribution Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 91: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Error distribution on an adaptively ref. mesh, case 2

Estimated error distribution Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 92: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Approximate solutions on adaptively refined meshes

−0.50

0.5−0.5

00.5

−1

−0.5

0

0.5

1

xy

p

−1

−0.5

0

0.5

1

Case 1

−0.50

0.5

−0.50

0.5

−1

−0.5

0

0.5

1

xy

p

−1

−0.5

0

0.5

1

Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 93: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Estimated and actual errors in uniformly/adaptivelyrefined meshes

102

103

104

105

10−1

100

Number of dual volumes

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

Case 1

102

103

104

105

101

Number of dual volumes

Ene

rgy

erro

r

error uniformestimate uniformerror adapt.estimate adapt.

Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 94: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Effectivity indices in uniformly/adaptively refinedmeshes

102

103

104

105

1.25

1.3

1.35

1.4

1.45

1.5

Number of dual volumes

Ene

rgy

erro

r ef

fect

ivity

inde

x

effectivity ind. uniformeffectivity ind. adapt.

Case 1

102

103

104

105

1.25

1.3

1.35

1.4

1.45

Number of dual volumes

Ene

rgy

erro

r ef

fect

ivity

inde

x

effectivity ind. uniformeffectivity ind. adapt.

Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 95: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 96: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A reaction–diffusion problem

Problem

−4p + rp = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainr ∈ L∞(Ω) such that for each D ∈ Dh, 0 ≤ cr ,D ≤ r ≤ Cr ,D,a.e. in D

Energy norm

|||ϕ|||2Ω := ‖∇ϕ‖2 + ‖r1/2ϕ‖2, ϕ ∈ H10 (Ω)

CHEDDADI, FUCÍK, PRIETO, VOHRALÍK

Guaranteed and robust a posteriori error estimates forsingularly perturbed reaction–diffusion problemsM2AN Math. Model. Numer. Anal. 2009 [A4]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 97: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A reaction–diffusion problem

Problem

−4p + rp = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainr ∈ L∞(Ω) such that for each D ∈ Dh, 0 ≤ cr ,D ≤ r ≤ Cr ,D,a.e. in D

Energy norm

|||ϕ|||2Ω := ‖∇ϕ‖2 + ‖r1/2ϕ‖2, ϕ ∈ H10 (Ω)

CHEDDADI, FUCÍK, PRIETO, VOHRALÍK

Guaranteed and robust a posteriori error estimates forsingularly perturbed reaction–diffusion problemsM2AN Math. Model. Numer. Anal. 2009 [A4]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 98: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A reaction–diffusion problem

Problem

−4p + rp = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainr ∈ L∞(Ω) such that for each D ∈ Dh, 0 ≤ cr ,D ≤ r ≤ Cr ,D,a.e. in D

Energy norm

|||ϕ|||2Ω := ‖∇ϕ‖2 + ‖r1/2ϕ‖2, ϕ ∈ H10 (Ω)

CHEDDADI, FUCÍK, PRIETO, VOHRALÍK

Guaranteed and robust a posteriori error estimates forsingularly perturbed reaction–diffusion problemsM2AN Math. Model. Numer. Anal. 2009 [A4]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 99: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A reaction–diffusion problem

Problem

−4p + rp = f in Ω,

p = 0 on ∂Ω

AssumptionsΩ ⊂ Rd , d = 2,3, is a polygonal domainr ∈ L∞(Ω) such that for each D ∈ Dh, 0 ≤ cr ,D ≤ r ≤ Cr ,D,a.e. in D

Energy norm

|||ϕ|||2Ω := ‖∇ϕ‖2 + ‖r1/2ϕ‖2, ϕ ∈ H10 (Ω)

CHEDDADI, FUCÍK, PRIETO, VOHRALÍK

Guaranteed and robust a posteriori error estimates forsingularly perturbed reaction–diffusion problemsM2AN Math. Model. Numer. Anal. 2009 [A4]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 100: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate for −4p + rp = f

Theorem (A posteriori error estimate)Let

p be the weak solution,ph ∈ H1

0 (Ω) be arbitrary,Dh = Dint

h ∪ Dexth be a partition of Ω,

th ∈ H(div,Ω) be arbitrary but such that

(∇·th + rph,1)D = (f ,1)D for all D ∈ Dinth .

Then

|||p − ph||| ≤∑

D∈Dh

(ηR,D + ηDF,D)2

1/2

.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 101: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Residual and diffusive flux estimators

Estimatorsresidual estimator

ηR,D := mD‖f −∇·th − rph‖Ddiffusive flux estimator

ηDF,D := minη(1)

DF,D, η(2)DF,D

η(1)DF,D :=‖∇ph + th‖D

η(2)DF,D :=

K∈SD

(mK‖4ph +∇·th − (4ph +∇·th)K‖K

+ m12K

σ∈EK∩Ginth

C12t,K ,σ‖(∇ph + th)·n‖σ

)2 12

mD, mK , mK : cutoff factors as in Verfürth (1998)M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 102: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Residual and diffusive flux estimators

Estimatorsresidual estimator

ηR,D := mD‖f −∇·th − rph‖Ddiffusive flux estimator

ηDF,D := minη(1)

DF,D, η(2)DF,D

η(1)DF,D :=‖∇ph + th‖D

η(2)DF,D :=

K∈SD

(mK‖4ph +∇·th − (4ph +∇·th)K‖K

+ m12K

σ∈EK∩Ginth

C12t,K ,σ‖(∇ph + th)·n‖σ

)2 12

mD, mK , mK : cutoff factors as in Verfürth (1998)M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 103: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Local efficiency of the estimates for −4p + rp = f

Theorem (Local efficiency)Suppose that th was constructed from ph by direct prescription.Then there holds

ηR,D + ηDF,D ≤ C|||p − ph|||D,

where C depends only on d, κT , m, and Cr ,D/cr ,D.

Properties

guaranteed upper boundlocal efficiencyrobustnessalmost asymptotically exactnegligible evaluation cost

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 104: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Local efficiency of the estimates for −4p + rp = f

Theorem (Local efficiency)Suppose that th was constructed from ph by direct prescription.Then there holds

ηR,D + ηDF,D ≤ C|||p − ph|||D,

where C depends only on d, κT , m, and Cr ,D/cr ,D.

Properties

guaranteed upper boundlocal efficiencyrobustnessalmost asymptotically exactnegligible evaluation cost

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 105: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Problem and exact solution

Problem

−4p + rp = 0 in Ω,

p = p0 on ∂Ω

Solution

p0(x , y) = e−√

rx + e−√

ry

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 106: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Effectivity indices in dependence on r

10−6

10−4

10−2

100

102

104

106

0

1

2

3

4

5

6

7

reaction term r

effe

ctiv

ity in

dex

uniform grid, 32 triangles

jump. est.min. est.

Mesh with 32 triangles

10−6

10−4

10−2

100

102

104

106

0

1

2

3

4

5

6

7

reaction term ref

fect

ivity

inde

x

uniform grid, 131072 triangles

jump. est.min. est.

Mesh with 131072 triangles

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 107: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Estimated and actual errors in uniformly/adaptivelyrefined meshes and effectivity indices

101

102

103

104

105

106

100

101

102

103

number of triangles

ener

gy n

orm

min. est., uniformmin. est., adaptiveexact error, uniformexact error, adaptive

Est. and act. errors, r = 106

101

102

103

104

105

106

1.8

2

2.2

2.4

2.6

2.8

number of triangles

effe

ctiv

ity in

dex

min. est., uniformmin. est., adaptive

Effectivity indices, r = 106

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 108: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Error distribution on an adaptively refined mesh,r = 106

IsoValue1.145493.436475.727458.0184310.309412.600414.891417.182319.473321.764324.055326.346328.637230.928233.219235.510237.801240.092142.383144.6741

Estimated Error Distribution

Estimated error distribution

IsoValue0.05938840.1781650.2969420.4157180.5344950.6532720.7720480.8908251.00961.128381.247151.365931.484711.603481.722261.841041.959812.078592.197372.31614

Exact Error Distribution

Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 109: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 110: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A convection–diffusion–reaction problem

A model convection–diffusion–reaction problem

−∇·(S∇p) + w·∇p + rp = f in Ω,

p = 0 on ∂Ω

Energy normSet B = BS + BA, where

BS(p, ϕ) := (S∇p,∇ϕ) +((

r − 12∇·w

)p, ϕ

),

BA(p, ϕ) :=(w·∇p + 1

2(∇·w)p, ϕ)

BS is symmetric on H1(Th); put |||ϕ|||2 := BS(ϕ,ϕ)BA is skew-symmetric on H1

0 (Ω)

ERN, STEPHANSEN, VOHRALÍK

Guaranteed and robust discontinuous Galerkin a posteriorierror estimates for convection–diffusion–reaction problemsJ. Comput. Appl. Math. 2010 [A6]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 111: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A convection–diffusion–reaction problem

A model convection–diffusion–reaction problem

−∇·(S∇p) + w·∇p + rp = f in Ω,

p = 0 on ∂Ω

Energy normSet B = BS + BA, where

BS(p, ϕ) := (S∇p,∇ϕ) +((

r − 12∇·w

)p, ϕ

),

BA(p, ϕ) :=(w·∇p + 1

2(∇·w)p, ϕ)

BS is symmetric on H1(Th); put |||ϕ|||2 := BS(ϕ,ϕ)BA is skew-symmetric on H1

0 (Ω)

ERN, STEPHANSEN, VOHRALÍK

Guaranteed and robust discontinuous Galerkin a posteriorierror estimates for convection–diffusion–reaction problemsJ. Comput. Appl. Math. 2010 [A6]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 112: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A convection–diffusion–reaction problem

A model convection–diffusion–reaction problem

−∇·(S∇p) + w·∇p + rp = f in Ω,

p = 0 on ∂Ω

Energy normSet B = BS + BA, where

BS(p, ϕ) := (S∇p,∇ϕ) +((

r − 12∇·w

)p, ϕ

),

BA(p, ϕ) :=(w·∇p + 1

2(∇·w)p, ϕ)

BS is symmetric on H1(Th); put |||ϕ|||2 := BS(ϕ,ϕ)BA is skew-symmetric on H1

0 (Ω)

ERN, STEPHANSEN, VOHRALÍK

Guaranteed and robust discontinuous Galerkin a posteriorierror estimates for convection–diffusion–reaction problemsJ. Comput. Appl. Math. 2010 [A6]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 113: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A dual norm augmented by the convective derivative

for p, ϕ ∈ H1(Th) define

BD(p, ϕ) := −∑

σ∈Eh

〈w·n[[p]], Π0ϕ〉σ

introduce the augmented norm

|||p|||⊕ := |||p|||+ supϕ∈H1

0 (Ω), |||ϕ|||=1BA(p, ϕ) + BD(p, ϕ)

when p ∈ H10 (Ω) and ∇·w = 0, recover the augmented

norm introduced by Verfürth ’05BD contribution is new and specific to the nonconformingcase

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 114: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A dual norm augmented by the convective derivative

for p, ϕ ∈ H1(Th) define

BD(p, ϕ) := −∑

σ∈Eh

〈w·n[[p]], Π0ϕ〉σ

introduce the augmented norm

|||p|||⊕ := |||p|||+ supϕ∈H1

0 (Ω), |||ϕ|||=1BA(p, ϕ) + BD(p, ϕ)

when p ∈ H10 (Ω) and ∇·w = 0, recover the augmented

norm introduced by Verfürth ’05BD contribution is new and specific to the nonconformingcase

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 115: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A dual norm augmented by the convective derivative

for p, ϕ ∈ H1(Th) define

BD(p, ϕ) := −∑

σ∈Eh

〈w·n[[p]], Π0ϕ〉σ

introduce the augmented norm

|||p|||⊕ := |||p|||+ supϕ∈H1

0 (Ω), |||ϕ|||=1BA(p, ϕ) + BD(p, ϕ)

when p ∈ H10 (Ω) and ∇·w = 0, recover the augmented

norm introduced by Verfürth ’05BD contribution is new and specific to the nonconformingcase

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 116: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A dual norm augmented by the convective derivative

for p, ϕ ∈ H1(Th) define

BD(p, ϕ) := −∑

σ∈Eh

〈w·n[[p]], Π0ϕ〉σ

introduce the augmented norm

|||p|||⊕ := |||p|||+ supϕ∈H1

0 (Ω), |||ϕ|||=1BA(p, ϕ) + BD(p, ϕ)

when p ∈ H10 (Ω) and ∇·w = 0, recover the augmented

norm introduced by Verfürth ’05BD contribution is new and specific to the nonconformingcase

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 117: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 118: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 119: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 120: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 121: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 122: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 123: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Augmented norm estimate and its efficiency

Theorem (Fully robust a posteriori estimate)Let p be the weak solution and ph its DG approximation. Thenthere holds

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η + |||ph|||#,Eh

≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh ).

η: fully computable estimate||| · |||#,Eh : jump seminormfully robust with respect to convection or reactiondominancenonconforming settingonly global efficiencyrather theoretical importance, since the estimators for boththe energy and the augmented norm are (almost) thesame and hence the adaptive strategies are the same

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 124: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Optimal abstract estimate in the augmented normTheorem (Optimal abstract estimate, augmented norm)

Let p be the weak sol. and let ph ∈ H1(Th) be arbitrary. Then

|||p − ph|||⊕

≤ 2 infsh∈H1

0 (Ω)

|||ph − sh|||+ inf

th∈H(div,Ω)sup

ϕ∈H10 (Ω), |||ϕ|||=1

(f−∇·th−w·∇sh−rsh, ϕ)

− (S∇ph + th,∇ϕ) +((

r − 12∇·w

)(sh − ph), ϕ

)+ supϕ∈H1

0 (Ω), |||ϕ|||=1

infth∈H(div,Ω)

(f−∇·th−w·∇ph−rph, ϕ)−(S∇ph + th,∇ϕ)−BD(ph, ϕ)

≤ 5|||p − ph|||⊕.

Commentscharacterization of the error

distance of potentials to H10 (Ω)

distance of fluxes to H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 125: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Optimal abstract estimate in the augmented normTheorem (Optimal abstract estimate, augmented norm)

Let p be the weak sol. and let ph ∈ H1(Th) be arbitrary. Then

|||p − ph|||⊕

≤ 2 infsh∈H1

0 (Ω)

|||ph − sh|||+ inf

th∈H(div,Ω)sup

ϕ∈H10 (Ω), |||ϕ|||=1

(f−∇·th−w·∇sh−rsh, ϕ)

− (S∇ph + th,∇ϕ) +((

r − 12∇·w

)(sh − ph), ϕ

)+ supϕ∈H1

0 (Ω), |||ϕ|||=1

infth∈H(div,Ω)

(f−∇·th−w·∇ph−rph, ϕ)−(S∇ph + th,∇ϕ)−BD(ph, ϕ)

≤ 5|||p − ph|||⊕.

Commentscharacterization of the error

distance of potentials to H10 (Ω)

distance of fluxes to H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 126: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Optimal abstract estimate in the augmented normTheorem (Optimal abstract estimate, augmented norm)

Let p be the weak sol. and let ph ∈ H1(Th) be arbitrary. Then

|||p − ph|||⊕

≤ 2 infsh∈H1

0 (Ω)

|||ph − sh|||+ inf

th∈H(div,Ω)sup

ϕ∈H10 (Ω), |||ϕ|||=1

(f−∇·th−w·∇sh−rsh, ϕ)

− (S∇ph + th,∇ϕ) +((

r − 12∇·w

)(sh − ph), ϕ

)+ supϕ∈H1

0 (Ω), |||ϕ|||=1

infth∈H(div,Ω)

(f−∇·th−w·∇ph−rph, ϕ)−(S∇ph + th,∇ϕ)−BD(ph, ϕ)

≤ 5|||p − ph|||⊕.

Commentscharacterization of the error

distance of potentials to H10 (Ω)

distance of fluxes to H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 127: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Optimal abstract estimate in the augmented normTheorem (Optimal abstract estimate, augmented norm)

Let p be the weak sol. and let ph ∈ H1(Th) be arbitrary. Then

|||p − ph|||⊕

≤ 2 infsh∈H1

0 (Ω)

|||ph − sh|||+ inf

th∈H(div,Ω)sup

ϕ∈H10 (Ω), |||ϕ|||=1

(f−∇·th−w·∇sh−rsh, ϕ)

− (S∇ph + th,∇ϕ) +((

r − 12∇·w

)(sh − ph), ϕ

)+ supϕ∈H1

0 (Ω), |||ϕ|||=1

infth∈H(div,Ω)

(f−∇·th−w·∇ph−rph, ϕ)−(S∇ph + th,∇ϕ)−BD(ph, ϕ)

≤ 5|||p − ph|||⊕.

Commentscharacterization of the error

distance of potentials to H10 (Ω)

distance of fluxes to H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 128: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Potential and flux reconstructions

0.90.80.70.60.50.40.30.20.10.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.21.0

postprocessed solutionapproximate solutionexact solution

A postprocessed potential sh isin H1

0 (Ω)

0.90.80.70.60.50.40.30.20.10.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.51.0

-postprocessed flux-approximate flux-exact flux

A postprocessed flux th is inH(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 129: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 130: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The heat equation

The heat equation

∂tp −∆p = f a.e. in Q := Ω× (0,T ),

p = 0 a.e. on ∂Ω× (0,T ),

p(·,0) = p0 a.e. in Ω

Assumptions

Ω ⊂ Rd , d ≥ 2, is a polygonal domainT > 0 is the final simulation time

ERN, VOHRALÍK

A posteriori error estimation based on potential and fluxreconstruction for the heat equationSIAM J. Numer. Anal. 2010 [A7]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 131: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The heat equation

The heat equation

∂tp −∆p = f a.e. in Q := Ω× (0,T ),

p = 0 a.e. on ∂Ω× (0,T ),

p(·,0) = p0 a.e. in Ω

Assumptions

Ω ⊂ Rd , d ≥ 2, is a polygonal domainT > 0 is the final simulation time

ERN, VOHRALÍK

A posteriori error estimation based on potential and fluxreconstruction for the heat equationSIAM J. Numer. Anal. 2010 [A7]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 132: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The heat equation

The heat equation

∂tp −∆p = f a.e. in Q := Ω× (0,T ),

p = 0 a.e. on ∂Ω× (0,T ),

p(·,0) = p0 a.e. in Ω

Assumptions

Ω ⊂ Rd , d ≥ 2, is a polygonal domainT > 0 is the final simulation time

ERN, VOHRALÍK

A posteriori error estimation based on potential and fluxreconstruction for the heat equationSIAM J. Numer. Anal. 2010 [A7]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 133: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The heat equation: the setting

Spaces

X := L2(0,T ; H10 (Ω))

X ′ = L2(0,T ,H−1(Ω))

Y := y ∈ X ; ∂ty ∈ X ′Norms

energy norm ‖y‖2X :=

∫ T

0‖∇y‖2(t) dt

dual norm ‖y‖Y := ‖y‖X + ‖∂ty‖X ′ , following Verfürth(2003)

‖∂ty‖X ′ =

∫ T

0‖∂ty‖2H−1(t) dt

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 134: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The heat equation: the setting

Spaces

X := L2(0,T ; H10 (Ω))

X ′ = L2(0,T ,H−1(Ω))

Y := y ∈ X ; ∂ty ∈ X ′Norms

energy norm ‖y‖2X :=

∫ T

0‖∇y‖2(t) dt

dual norm ‖y‖Y := ‖y‖X + ‖∂ty‖X ′ , following Verfürth(2003)

‖∂ty‖X ′ =

∫ T

0‖∂ty‖2H−1(t) dt

1/2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 135: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Time-dependent meshes and discrete solutions

t

t0

t1

t2

t3

τ1

τ2

τ3

T 0h

T 1h

T 2h

T 3h

p0hτ

p1hτ

p2hτ

p3hτ

Fig. 2.1. Time-dependent meshes and discrete solutions

2.2.2. The discrete solution. For all 0 ≤ n ≤ N , the (yet unspecified) ap-proximate solution at time tn, say unhτ , is such that unhτ ∈ V n

h where V nh := Vh(T n) is

a discrete space built on the mesh T n. The spaces V nh consist of piecewise polynomial

functions whose degree is fixed. In the sequel, Πn0 denotes the L2-orthogonal projec-

tion onto piecewise constant functions on T n, while ΠV nh

denotes the L2-orthogonalprojection onto V n

h .We introduce the space-time function uhτ : Q → R which is continuous and

piecewise affine in time and such that for all 1 ≤ n ≤ N and t ∈ In,

uhτ (·, t) := (1 − (t))un−1hτ + (t)unhτ , (t) =

1

τn(t− tn−1).

More generally, for any function v : Q → R that is continuous in time, we set vn :=v(·, tn) : Ω → R for all 0 ≤ n ≤ N .

2.2.3. Broken gradients and broken X-norm. Because of possible noncon-formities in space approximation, the discrete solution uhτ may not be in the energyspace X . We thus need to extend the definition (2.2) of the X-norm. We intro-duce for all 0 ≤ n ≤ N the broken gradient operator ∇n such that for a functionv that is smooth within each mesh element in T n, ∇nv ∈ [L2(Ω)]d is defined as(∇nv)|T := ∇(v|T ) for all T ∈ T n. The broken gradient operator ∇n−1,n on the meshT n−1,n is defined similarly. Then, for all y in the affine space −uhτ +X ,

‖y‖2X :=

N∑

n=1

In

‖∇n−1,ny‖2(t) dt =

N∑

n=1

In

T∈T n−1,n

‖∇y‖2T (t) dt.

Since ‖∂ty‖X′ is always well-defined, the quantity ‖y‖Y is now well-defined for all y ∈−uhτ +X . In the sequel, y is either the exact solution or the potential reconstructionminus the discrete solution. By abuse of notation, we will speak about the ‖u−uhτ‖Ynorm, even if it can be a semi-norm only.

2.2.4. Mesh faces. For all 0 ≤ n ≤ N , the mesh faces in T n are collected intothe set Fn. More specifically, F ∈ Fn if F has positive (d− 1)-dimensional measureand if either there are distinct mesh elements T± ∈ T n (arbitrary but fixed once andfor all) such that F = ∂T− ∩ ∂T+ (F is then called an interior face and we writeF ∈ F i,n) or if there is a mesh element T ∈ T n such that F = ∂T ∩ ∂Ω (F is then

4

Time-dependent meshes and discrete solutionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 136: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Potential and flux reconstructions

General form

potential reconstruction shτ is continuous and piecewiseaffine in time with sn

hτ ∈ H10 (Ω) for all 0 ≤ n ≤ N

flux reconstruction thτ is piecewise constant in time with(thτ )|In ∈ H(div,Ω) for all 1 ≤ n ≤ N

Two additional assumptions

tnhτ satisfies a local conservation property

(f n − ∂tpnhτ −∇·tn

hτ ,1)K = 0 ∀K ∈ T nh

snhτ preserves the mean values of pn

(snhτ ,1)K = (pn

hτ ,1)K ∀K ∈ T n,n+1h

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 137: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Potential and flux reconstructions

General form

potential reconstruction shτ is continuous and piecewiseaffine in time with sn

hτ ∈ H10 (Ω) for all 0 ≤ n ≤ N

flux reconstruction thτ is piecewise constant in time with(thτ )|In ∈ H(div,Ω) for all 1 ≤ n ≤ N

Two additional assumptions

tnhτ satisfies a local conservation property

(f n − ∂tpnhτ −∇·tn

hτ ,1)K = 0 ∀K ∈ T nh

snhτ preserves the mean values of pn

(snhτ ,1)K = (pn

hτ ,1)K ∀K ∈ T n,n+1h

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 138: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Potential and flux reconstructions

General form

potential reconstruction shτ is continuous and piecewiseaffine in time with sn

hτ ∈ H10 (Ω) for all 0 ≤ n ≤ N

flux reconstruction thτ is piecewise constant in time with(thτ )|In ∈ H(div,Ω) for all 1 ≤ n ≤ N

Two additional assumptions

tnhτ satisfies a local conservation property

(f n − ∂tpnhτ −∇·tn

hτ ,1)K = 0 ∀K ∈ T nh

snhτ preserves the mean values of pn

(snhτ ,1)K = (pn

hτ ,1)K ∀K ∈ T n,n+1h

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 139: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Potential and flux reconstructions

General form

potential reconstruction shτ is continuous and piecewiseaffine in time with sn

hτ ∈ H10 (Ω) for all 0 ≤ n ≤ N

flux reconstruction thτ is piecewise constant in time with(thτ )|In ∈ H(div,Ω) for all 1 ≤ n ≤ N

Two additional assumptions

tnhτ satisfies a local conservation property

(f n − ∂tpnhτ −∇·tn

hτ ,1)K = 0 ∀K ∈ T nh

snhτ preserves the mean values of pn

(snhτ ,1)K = (pn

hτ ,1)K ∀K ∈ T n,n+1h

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 140: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A posteriori error estimate

Theorem (A posteriori error estimate)Let

p be the weak solutionpn

hτ ∈ H1(T nh ) be arbitrary

shτ be the mean values-preserving potential reconstructionand thτ locally conservative flux reconstruction.

Then‖p − phτ‖Y ≤ 3

N∑

n=1

In

K∈T nh

(ηR,K + ηDF,K (t))2 dt

1/2

+

N∑

n=1

In

K∈T nh

(ηnNC1,K )2(t) dt

1/2

+

N∑

n=1

τn∑

K∈T nh

(ηnNC2,K )2

1/2

+ ηIC + 3‖f − f‖X ′ .

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 141: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

EstimatorsEstimators

diffusive flux estimatorηDF,K (t) := ‖∇shτ (t) + tn

hτ‖K , t ∈ In

residual estimatorηR,K := 1/πhK‖f n − ∂tsn

hτ −∇·tnhτ‖K

nonconformity estimatorsηn

NC1,K (t) := ‖∇(shτ − phτ )(t)‖K , t ∈ Inηn

NC2,K := 1/πhK‖∂t (shτ − phτ )n‖K

penalize the fact that pnhτ 6∈ H1

0 (Ω)

initial condition estimatorηIC := 21/2‖s0 − p0‖

data oscillation estimator‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 142: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

EstimatorsEstimators

diffusive flux estimatorηDF,K (t) := ‖∇shτ (t) + tn

hτ‖K , t ∈ In

residual estimatorηR,K := 1/πhK‖f n − ∂tsn

hτ −∇·tnhτ‖K

nonconformity estimatorsηn

NC1,K (t) := ‖∇(shτ − phτ )(t)‖K , t ∈ Inηn

NC2,K := 1/πhK‖∂t (shτ − phτ )n‖K

penalize the fact that pnhτ 6∈ H1

0 (Ω)

initial condition estimatorηIC := 21/2‖s0 − p0‖

data oscillation estimator‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 143: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

EstimatorsEstimators

diffusive flux estimatorηDF,K (t) := ‖∇shτ (t) + tn

hτ‖K , t ∈ In

residual estimatorηR,K := 1/πhK‖f n − ∂tsn

hτ −∇·tnhτ‖K

nonconformity estimatorsηn

NC1,K (t) := ‖∇(shτ − phτ )(t)‖K , t ∈ Inηn

NC2,K := 1/πhK‖∂t (shτ − phτ )n‖K

penalize the fact that pnhτ 6∈ H1

0 (Ω)

initial condition estimatorηIC := 21/2‖s0 − p0‖

data oscillation estimator‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 144: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

EstimatorsEstimators

diffusive flux estimatorηDF,K (t) := ‖∇shτ (t) + tn

hτ‖K , t ∈ In

residual estimatorηR,K := 1/πhK‖f n − ∂tsn

hτ −∇·tnhτ‖K

nonconformity estimatorsηn

NC1,K (t) := ‖∇(shτ − phτ )(t)‖K , t ∈ Inηn

NC2,K := 1/πhK‖∂t (shτ − phτ )n‖K

penalize the fact that pnhτ 6∈ H1

0 (Ω)

initial condition estimatorηIC := 21/2‖s0 − p0‖

data oscillation estimator‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 145: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

EstimatorsEstimators

diffusive flux estimatorηDF,K (t) := ‖∇shτ (t) + tn

hτ‖K , t ∈ In

residual estimatorηR,K := 1/πhK‖f n − ∂tsn

hτ −∇·tnhτ‖K

nonconformity estimatorsηn

NC1,K (t) := ‖∇(shτ − phτ )(t)‖K , t ∈ Inηn

NC2,K := 1/πhK‖∂t (shτ − phτ )n‖K

penalize the fact that pnhτ 6∈ H1

0 (Ω)

initial condition estimatorηIC := 21/2‖s0 − p0‖

data oscillation estimator‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 146: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Separating the space and time errors

Separating the space and time errors

triangle inequality: time-dependent × time-independentterms (similarly to Picasso (1998), Verfürth (2003),Bergam, Bernardi, Mghazli (2005), but no unknownconstant)

Corollary (Estimate separating the space and time errors)

‖p − phτ‖Y ≤

N∑

n=1

(ηnsp)2

1/2

+

N∑

n=1

(ηntm)2

1/2

+ηIC+3‖f − f‖X ′

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 147: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Efficiency

Approximation property

‖∇pnhτ + tn

hτ‖K ≤ C

L∈TK

h2L‖f n − ∂tpn

hτ + ∆pnhτ‖2L

1/2

+ |[[∇pnhτ ·n]]|

+ 12 ,E

int,nK

+ |[[pnhτ ]]|− 1

2 ,EnK

Theorem (Efficiency)Under the approximation property, there holds, for all n,

ηnsp + ηn

tm . ‖p − phτ‖Y (In) + J n(phτ ) + Enf

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 148: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Efficiency

Approximation property

‖∇pnhτ + tn

hτ‖K ≤ C

L∈TK

h2L‖f n − ∂tpn

hτ + ∆pnhτ‖2L

1/2

+ |[[∇pnhτ ·n]]|

+ 12 ,E

int,nK

+ |[[pnhτ ]]|− 1

2 ,EnK

Theorem (Efficiency)Under the approximation property, there holds, for all n,

ηnsp + ηn

tm . ‖p − phτ‖Y (In) + J n(phτ ) + Enf

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 149: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A space-time adaptive time-marching algorithmAchieving a given relative precision ε

we want to satisfy ‖p − phτ‖Y‖phτ‖Z

≤ ε

we achieve it by∑N

n=1

(ηnsp)2 + (ηn

tm)2∑N

n=1 ‖phτ‖2Z (In)

≤ ε2

Algorithm1 Initialization

1 choose an initial mesh T 0h ;

2 select an initial time step τ0;2 Loop in time: while

∑i τ

i < T ,1 set T n∗

h := T n−1h and τn∗ := τn−1;

2 solve pn∗hτ := Sol(pn−1

hτ , τn∗, T n∗h );

3 estimate the space and time errors by ηnsp and ηn

tm;4 equilibrate ηn

sp and ηntm to ε‖phτ‖Z (In)/

√2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 150: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A space-time adaptive time-marching algorithmAchieving a given relative precision ε

we want to satisfy ‖p − phτ‖Y‖phτ‖Z

≤ ε

we achieve it by∑N

n=1

(ηnsp)2 + (ηn

tm)2∑N

n=1 ‖phτ‖2Z (In)

≤ ε2

Algorithm1 Initialization

1 choose an initial mesh T 0h ;

2 select an initial time step τ0;2 Loop in time: while

∑i τ

i < T ,1 set T n∗

h := T n−1h and τn∗ := τn−1;

2 solve pn∗hτ := Sol(pn−1

hτ , τn∗, T n∗h );

3 estimate the space and time errors by ηnsp and ηn

tm;4 equilibrate ηn

sp and ηntm to ε‖phτ‖Z (In)/

√2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 151: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A space-time adaptive time-marching algorithmAchieving a given relative precision ε

we want to satisfy ‖p − phτ‖Y‖phτ‖Z

≤ ε

we achieve it by∑N

n=1

(ηnsp)2 + (ηn

tm)2∑N

n=1 ‖phτ‖2Z (In)

≤ ε2

Algorithm1 Initialization

1 choose an initial mesh T 0h ;

2 select an initial time step τ0;2 Loop in time: while

∑i τ

i < T ,1 set T n∗

h := T n−1h and τn∗ := τn−1;

2 solve pn∗hτ := Sol(pn−1

hτ , τn∗, T n∗h );

3 estimate the space and time errors by ηnsp and ηn

tm;4 equilibrate ηn

sp and ηntm to ε‖phτ‖Z (In)/

√2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 152: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A space-time adaptive time-marching algorithmAchieving a given relative precision ε

we want to satisfy ‖p − phτ‖Y‖phτ‖Z

≤ ε

we achieve it by∑N

n=1

(ηnsp)2 + (ηn

tm)2∑N

n=1 ‖phτ‖2Z (In)

≤ ε2

Algorithm1 Initialization

1 choose an initial mesh T 0h ;

2 select an initial time step τ0;2 Loop in time: while

∑i τ

i < T ,1 set T n∗

h := T n−1h and τn∗ := τn−1;

2 solve pn∗hτ := Sol(pn−1

hτ , τn∗, T n∗h );

3 estimate the space and time errors by ηnsp and ηn

tm;4 equilibrate ηn

sp and ηntm to ε‖phτ‖Z (In)/

√2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 153: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Discontinuous Galerkin method

Definition (DG method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := Pk (T n

h ), k ≥ 1, such that

(∂tpnhτ , vh)−

σ∈Enh

〈n·∇pnhτ, [[vh]]〉σ+θ〈n·∇vh, [[pn

hτ ]]〉σ

+(∇pnhτ ,∇vh)+

σ∈Enh

〈ασh−1σ [[pn

hτ ]], [[vh]]〉σ=(f n, vh) ∀vh ∈ V nh .

jump operator [[vh]] = v−h − v+h

average operator vh = 12(v−h + v+

h )

θ: different scheme types (SIPG/NIPG/IIPG)pn

hτ 6∈ H10 (Ω), −∇pn

hτ 6∈ H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 154: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Discontinuous Galerkin method

Definition (DG method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := Pk (T n

h ), k ≥ 1, such that

(∂tpnhτ , vh)−

σ∈Enh

〈n·∇pnhτ, [[vh]]〉σ+θ〈n·∇vh, [[pn

hτ ]]〉σ

+(∇pnhτ ,∇vh)+

σ∈Enh

〈ασh−1σ [[pn

hτ ]], [[vh]]〉σ=(f n, vh) ∀vh ∈ V nh .

jump operator [[vh]] = v−h − v+h

average operator vh = 12(v−h + v+

h )

θ: different scheme types (SIPG/NIPG/IIPG)pn

hτ 6∈ H10 (Ω), −∇pn

hτ 6∈ H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 155: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Discontinuous Galerkin method

Definition (DG method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := Pk (T n

h ), k ≥ 1, such that

(∂tpnhτ , vh)−

σ∈Enh

〈n·∇pnhτ, [[vh]]〉σ+θ〈n·∇vh, [[pn

hτ ]]〉σ

+(∇pnhτ ,∇vh)+

σ∈Enh

〈ασh−1σ [[pn

hτ ]], [[vh]]〉σ=(f n, vh) ∀vh ∈ V nh .

jump operator [[vh]] = v−h − v+h

average operator vh = 12(v−h + v+

h )

θ: different scheme types (SIPG/NIPG/IIPG)pn

hτ 6∈ H10 (Ω), −∇pn

hτ 6∈ H(div,Ω)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 156: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

DG flux reconstructionRTNl(T n

h ): Raviart–Thomas–Nédélec spaces of degree l

Introdu tionLa méthode GDEstimations d'erreur a posteriori Pure diusionADR: semi-robust estimatesADR: robust estimatesNumeri al resultsLo ally omputable estimate IIIRaviartThomas FE spa es of degree l : RTlhl = 0 l = 1Constru tion of th ∈ RTlh (l = p or p − 1)dof's for normal omponent on ea h fa e: ∀qh ∈ Pl (F ),

(th·nF , qh)F = (−ntFK∇huhω + γF [[uh]], qh)Fdof's in ea h element: ∀rh ∈ Pdl−1(T ),(th, rh)T = −(K∇uh, rh)T +

XF⊂∂T ωT ,F (ntFKrh, [[uh]])FAlexandre Ern Estimations d'erreur a posteriori pour les méthodes GDFlux reconstruction tn

hτ ∈ RTNl(T nh ), l = k or l = k − 1

normal components on each side: ∀qh ∈ Pl(σ),

〈tnhτ ·n,qh〉σ = 〈−n·∇pn

hτ+ ασh−1σ [[pn

hτ ]],qh〉σon each element (only for l ≥ 1): ∀rh ∈ Pd

l−1(K ),(tn

hτ , rh)K = −(∇pnhτ , rh)K + θ

∑σ∈En

Kωσ〈n·rh, [[pn

hτ ]]〉σReconstructed flux propertyFor l = k and when T n−1

h = T nh

∂tpnhτ +∇·tn

hτ = ΠV nhf n

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 157: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

DG flux reconstructionRTNl(T n

h ): Raviart–Thomas–Nédélec spaces of degree l

Introdu tionLa méthode GDEstimations d'erreur a posteriori Pure diusionADR: semi-robust estimatesADR: robust estimatesNumeri al resultsLo ally omputable estimate IIIRaviartThomas FE spa es of degree l : RTlhl = 0 l = 1Constru tion of th ∈ RTlh (l = p or p − 1)dof's for normal omponent on ea h fa e: ∀qh ∈ Pl (F ),

(th·nF , qh)F = (−ntFK∇huhω + γF [[uh]], qh)Fdof's in ea h element: ∀rh ∈ Pdl−1(T ),(th, rh)T = −(K∇uh, rh)T +

XF⊂∂T ωT ,F (ntFKrh, [[uh]])FAlexandre Ern Estimations d'erreur a posteriori pour les méthodes GDFlux reconstruction tn

hτ ∈ RTNl(T nh ), l = k or l = k − 1

normal components on each side: ∀qh ∈ Pl(σ),

〈tnhτ ·n,qh〉σ = 〈−n·∇pn

hτ+ ασh−1σ [[pn

hτ ]],qh〉σon each element (only for l ≥ 1): ∀rh ∈ Pd

l−1(K ),(tn

hτ , rh)K = −(∇pnhτ , rh)K + θ

∑σ∈En

Kωσ〈n·rh, [[pn

hτ ]]〉σReconstructed flux propertyFor l = k and when T n−1

h = T nh

∂tpnhτ +∇·tn

hτ = ΠV nhf n

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 158: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

DG flux reconstructionRTNl(T n

h ): Raviart–Thomas–Nédélec spaces of degree l

Introdu tionLa méthode GDEstimations d'erreur a posteriori Pure diusionADR: semi-robust estimatesADR: robust estimatesNumeri al resultsLo ally omputable estimate IIIRaviartThomas FE spa es of degree l : RTlhl = 0 l = 1Constru tion of th ∈ RTlh (l = p or p − 1)dof's for normal omponent on ea h fa e: ∀qh ∈ Pl (F ),

(th·nF , qh)F = (−ntFK∇huhω + γF [[uh]], qh)Fdof's in ea h element: ∀rh ∈ Pdl−1(T ),(th, rh)T = −(K∇uh, rh)T +

XF⊂∂T ωT ,F (ntFKrh, [[uh]])FAlexandre Ern Estimations d'erreur a posteriori pour les méthodes GDFlux reconstruction tn

hτ ∈ RTNl(T nh ), l = k or l = k − 1

normal components on each side: ∀qh ∈ Pl(σ),

〈tnhτ ·n,qh〉σ = 〈−n·∇pn

hτ+ ασh−1σ [[pn

hτ ]],qh〉σon each element (only for l ≥ 1): ∀rh ∈ Pd

l−1(K ),(tn

hτ , rh)K = −(∇pnhτ , rh)K + θ

∑σ∈En

Kωσ〈n·rh, [[pn

hτ ]]〉σReconstructed flux propertyFor l = k and when T n−1

h = T nh

∂tpnhτ +∇·tn

hτ = ΠV nhf n

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 159: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Cell-centered finite volume method

Definition (CCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P0(T n

h ) such that

1τn (pn

hτ − pn−1hτ ,1)K +

σ∈EnK

SnK ,σ = (f n,1)K ∀K ∈ T n

h .

Flux tnhτ ∈ RTN0(T n

h )

〈tnhτ ·n,1〉σ := Sn

K ,σ

Postprocessing of the potentialpn

hτ ∈ V nh not suitable for energy error estimates (∇pn

hτ = 0)pn

hτ ∈ V nh , V n

h is P1(T nh ) enriched elementwise by parabolas−∇pn

hτ = tnhτ ,

(pnhτ ,1)K = (pn

hτ ,1)K

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 160: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Cell-centered finite volume method

Definition (CCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P0(T n

h ) such that

1τn (pn

hτ − pn−1hτ ,1)K +

σ∈EnK

SnK ,σ = (f n,1)K ∀K ∈ T n

h .

Flux tnhτ ∈ RTN0(T n

h )

〈tnhτ ·n,1〉σ := Sn

K ,σ

Postprocessing of the potentialpn

hτ ∈ V nh not suitable for energy error estimates (∇pn

hτ = 0)pn

hτ ∈ V nh , V n

h is P1(T nh ) enriched elementwise by parabolas−∇pn

hτ = tnhτ ,

(pnhτ ,1)K = (pn

hτ ,1)K

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 161: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Cell-centered finite volume method

Definition (CCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P0(T n

h ) such that

1τn (pn

hτ − pn−1hτ ,1)K +

σ∈EnK

SnK ,σ = (f n,1)K ∀K ∈ T n

h .

Flux tnhτ ∈ RTN0(T n

h )

〈tnhτ ·n,1〉σ := Sn

K ,σ

Postprocessing of the potentialpn

hτ ∈ V nh not suitable for energy error estimates (∇pn

hτ = 0)pn

hτ ∈ V nh , V n

h is P1(T nh ) enriched elementwise by parabolas−∇pn

hτ = tnhτ ,

(pnhτ ,1)K = (pn

hτ ,1)K

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 162: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Mixed finite element method

Definition (MFE method)

On In, T nh , 1 ≤ n ≤ N, find σn

hτ ∈Wnh and pn

hτ ∈ V nh such that

(σnhτ ,wh)− (pn

hτ ,∇·wh) = 0 ∀wh ∈Wnh,

(∇·σnhτ , vh) +

1τn (pn

hτ − pn−1hτ , vh) = (f n, vh) ∀vh ∈ V n

h .

Flux tnhτ ∈Wn

htnhτ := σn

hτ directlyPostprocessing of the potential

pnhτ ∈ V n

h , V nh is Pl+1(T n

h ) enriched by bubbles (Arbogastand Chen, 1995)

ΠWnh(−∇pn

hτ ) = σnhτ ,

ΠV nh

(pnhτ ) = pn

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 163: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Mixed finite element method

Definition (MFE method)

On In, T nh , 1 ≤ n ≤ N, find σn

hτ ∈Wnh and pn

hτ ∈ V nh such that

(σnhτ ,wh)− (pn

hτ ,∇·wh) = 0 ∀wh ∈Wnh,

(∇·σnhτ , vh) +

1τn (pn

hτ − pn−1hτ , vh) = (f n, vh) ∀vh ∈ V n

h .

Flux tnhτ ∈Wn

htnhτ := σn

hτ directlyPostprocessing of the potential

pnhτ ∈ V n

h , V nh is Pl+1(T n

h ) enriched by bubbles (Arbogastand Chen, 1995)

ΠWnh(−∇pn

hτ ) = σnhτ ,

ΠV nh

(pnhτ ) = pn

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 164: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Mixed finite element method

Definition (MFE method)

On In, T nh , 1 ≤ n ≤ N, find σn

hτ ∈Wnh and pn

hτ ∈ V nh such that

(σnhτ ,wh)− (pn

hτ ,∇·wh) = 0 ∀wh ∈Wnh,

(∇·σnhτ , vh) +

1τn (pn

hτ − pn−1hτ , vh) = (f n, vh) ∀vh ∈ V n

h .

Flux tnhτ ∈Wn

htnhτ := σn

hτ directlyPostprocessing of the potential

pnhτ ∈ V n

h , V nh is Pl+1(T n

h ) enriched by bubbles (Arbogastand Chen, 1995)

ΠWnh(−∇pn

hτ ) = σnhτ ,

ΠV nh

(pnhτ ) = pn

diffusive flux estimator ηnDF,K ,1 vanishes (flux-conf. method)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 165: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Vertex-centered finite volume method

Definition (VCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P1(T n

h ) ∩ H10 (Ω) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

SettingT nh

Dnh

D

SD

s = phτ , ηnNC1,K , ηn

NC2,K vanish (conforming method)Flux tn

hτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Shby MFE sol. of local Neumann problems on patches SD:(tn

hτ +∇unhτ ,vh)D − (qh,∇·vh)D = 0 ∀vh ∈ RTNN,0

0 (SD),

(∇·tnhτ , φh)D − (f n − ∂tun

hτ , φh)D = 0 ∀φh ∈ P∗0(SD).

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 166: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Vertex-centered finite volume method

Definition (VCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P1(T n

h ) ∩ H10 (Ω) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

SettingT nh

Dnh

D

SD

s = phτ , ηnNC1,K , ηn

NC2,K vanish (conforming method)Flux tn

hτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Shby MFE sol. of local Neumann problems on patches SD:(tn

hτ +∇unhτ ,vh)D − (qh,∇·vh)D = 0 ∀vh ∈ RTNN,0

0 (SD),

(∇·tnhτ , φh)D − (f n − ∂tun

hτ , φh)D = 0 ∀φh ∈ P∗0(SD).

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 167: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Vertex-centered finite volume method

Definition (VCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh := P1(T n

h ) ∩ H10 (Ω) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

SettingT nh

Dnh

D

SD

s = phτ , ηnNC1,K , ηn

NC2,K vanish (conforming method)Flux tn

hτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Shby MFE sol. of local Neumann problems on patches SD:(tn

hτ +∇unhτ ,vh)D − (qh,∇·vh)D = 0 ∀vh ∈ RTNN,0

0 (SD),

(∇·tnhτ , φh)D − (f n − ∂tun

hτ , φh)D = 0 ∀φh ∈ P∗0(SD).

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 168: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Face-centered finite volume method

Definition (FCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh (Crouzeix–Raviart sp.) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

Setting

T n

Dn

pnhτ 6∈ H1

0 (Ω), −∇pnhτ 6∈ H(div,Ω)

Flux tnhτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Sh

by solution of local Neumann problems on patches SD

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 169: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Face-centered finite volume method

Definition (FCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh (Crouzeix–Raviart sp.) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

Setting

T n

Dn

pnhτ 6∈ H1

0 (Ω), −∇pnhτ 6∈ H(div,Ω)

Flux tnhτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Sh

by solution of local Neumann problems on patches SD

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 170: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Face-centered finite volume method

Definition (FCFV method)

On In, T nh , 1 ≤ n ≤ N, find pn

hτ ∈ V nh (Crouzeix–Raviart sp.) s.t.

(∂tpnhτ ,1)D − 〈∇pn

hτ ·nD,1〉∂D = (f n,1)D ∀D ∈ Dinth .

Setting

T n

Dn

pnhτ 6∈ H1

0 (Ω), −∇pnhτ 6∈ H(div,Ω)

Flux tnhτ ∈ RTN0(Sh)

by prescription: tnhτ ·nσ|σ :=−∇pn

hτ ·nσ on faces σ of Sh

by solution of local Neumann problems on patches SD

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 171: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Spatial and temporal estimators equilibrated

103

104

105

106

10−2

10−1

Total number of space−time unknowns

Ene

rgy

erro

r

spatial estimatortemporal estimator

Spatial estimators ηnsp and

temporal estimators ηntm

102

103

104

105

106

10-1

Energ

yerr

or

error equil. sp.-tm.

Equilibrated case

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 172: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Overrefinement in time

102

103

104

105

106

10−3

10−2

10−1

100

Total number of space−time unknowns

Ene

rgy

erro

r

spatial estimatortemporal estimator

Spatial estimators ηnsp and

temporal estimators ηntm

102

103

104

105

106

10−1

Total number of space−time unknowns

Ene

rgy

erro

r

error equil. sp.−tm.error overref. tm.

Comparison with theequilibrated case

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 173: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Overrefinement in space

104

105

106

10−2

10−1

100

Total number of space−time unknowns

Ene

rgy

erro

r

spatial estimatortemporal estimator

Spatial estimators ηnsp and

temporal estimators ηntm

102

103

104

105

106

10−1

Total number of space−time unknowns

Ene

rgy

erro

r

error equil. sp.−tm.error overref. sp.

Comparison with theequilibrated case

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 174: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Error distributions

Estimated error distribution,convection dominance

Exact error distribution,convection dominance

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 175: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Adaptive refinement approximate solutions

2.52

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Approximate solutions,convection dominance, two

levels of refinement

22

.5 0

0.1

0.2

0.3

0.4

0.5

0.6

Approximate solutions,convection dominance, four

levels of refinement

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 176: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 177: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problemStokes problem

−∆u +∇p = f in Ω,∇·u = 0 in Ω,

u = 0 on ∂ΩSetting|||(v,q)|||2 := ‖∇v‖2 + β2‖q‖2β–the constant from the inf–sup condition

infq∈L2

0(Ω)sup

v∈(H10 (Ω))d

(q,∇·v)

|||v||| ‖q‖ ≥ β

CS–the constant from the stability estimate

inf(v,q)∈(H1

0 (Ω))d×L20(Ω)

sup(z,r)∈(H1

0 (Ω))d×L20(Ω)

(∇v,∇z)− (q,∇·z)− (r ,∇·v)

|||(z, r)||| |||(v,q)||| ≥ CS

HANNUKAINEN, STENBERG, VOHRALÍK

A unified framework for a posteriori error estimation for theStokes problemsubmitted [B2]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 178: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problemStokes problem

−∆u +∇p = f in Ω,∇·u = 0 in Ω,

u = 0 on ∂ΩSetting|||(v,q)|||2 := ‖∇v‖2 + β2‖q‖2β–the constant from the inf–sup condition

infq∈L2

0(Ω)sup

v∈(H10 (Ω))d

(q,∇·v)

|||v||| ‖q‖ ≥ β

CS–the constant from the stability estimate

inf(v,q)∈(H1

0 (Ω))d×L20(Ω)

sup(z,r)∈(H1

0 (Ω))d×L20(Ω)

(∇v,∇z)− (q,∇·z)− (r ,∇·v)

|||(z, r)||| |||(v,q)||| ≥ CS

HANNUKAINEN, STENBERG, VOHRALÍK

A unified framework for a posteriori error estimation for theStokes problemsubmitted [B2]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 179: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problemStokes problem

−∆u +∇p = f in Ω,∇·u = 0 in Ω,

u = 0 on ∂ΩSetting|||(v,q)|||2 := ‖∇v‖2 + β2‖q‖2β–the constant from the inf–sup condition

infq∈L2

0(Ω)sup

v∈(H10 (Ω))d

(q,∇·v)

|||v||| ‖q‖ ≥ β

CS–the constant from the stability estimate

inf(v,q)∈(H1

0 (Ω))d×L20(Ω)

sup(z,r)∈(H1

0 (Ω))d×L20(Ω)

(∇v,∇z)− (q,∇·z)− (r ,∇·v)

|||(z, r)||| |||(v,q)||| ≥ CS

HANNUKAINEN, STENBERG, VOHRALÍK

A unified framework for a posteriori error estimation for theStokes problemsubmitted [B2]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 180: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problemStokes problem

−∆u +∇p = f in Ω,∇·u = 0 in Ω,

u = 0 on ∂ΩSetting|||(v,q)|||2 := ‖∇v‖2 + β2‖q‖2β–the constant from the inf–sup condition

infq∈L2

0(Ω)sup

v∈(H10 (Ω))d

(q,∇·v)

|||v||| ‖q‖ ≥ β

CS–the constant from the stability estimate

inf(v,q)∈(H1

0 (Ω))d×L20(Ω)

sup(z,r)∈(H1

0 (Ω))d×L20(Ω)

(∇v,∇z)− (q,∇·z)− (r ,∇·v)

|||(z, r)||| |||(v,q)||| ≥ CS

HANNUKAINEN, STENBERG, VOHRALÍK

A unified framework for a posteriori error estimation for theStokes problemsubmitted [B2]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 181: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problemStokes problem

−∆u +∇p = f in Ω,∇·u = 0 in Ω,

u = 0 on ∂ΩSetting|||(v,q)|||2 := ‖∇v‖2 + β2‖q‖2β–the constant from the inf–sup condition

infq∈L2

0(Ω)sup

v∈(H10 (Ω))d

(q,∇·v)

|||v||| ‖q‖ ≥ β

CS–the constant from the stability estimate

inf(v,q)∈(H1

0 (Ω))d×L20(Ω)

sup(z,r)∈(H1

0 (Ω))d×L20(Ω)

(∇v,∇z)− (q,∇·z)− (r ,∇·v)

|||(z, r)||| |||(v,q)||| ≥ CS

HANNUKAINEN, STENBERG, VOHRALÍK

A unified framework for a posteriori error estimation for theStokes problemsubmitted [B2]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 182: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problem

Theorem (A posteriori error estimate for the Stokes problem)There holds|||(u−uh,p−ph)|||≤

K∈Th

η2NC,K

12

+1

CS

K∈Th

(ηR,K +ηDF,K )2+η2D,K

12

.

Estimatorsnonconformity estimator

ηNC,K := ‖∇(uh − sh)‖Kresidual estimator

ηR,K := 1/πhK‖∇·th + f‖Kdiffusive flux estimator

ηDF,K := ‖∇sh − phI− th‖Kdivergence estimator

ηD,K :=‖∇·sh‖K

βPropertiesloc. eff., unified framework (DG, MFE, FV, FE/S, NCFE)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 183: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problem

Theorem (A posteriori error estimate for the Stokes problem)There holds|||(u−uh,p−ph)|||≤

K∈Th

η2NC,K

12

+1

CS

K∈Th

(ηR,K +ηDF,K )2+η2D,K

12

.

Estimatorsnonconformity estimator

ηNC,K := ‖∇(uh − sh)‖Kresidual estimator

ηR,K := 1/πhK‖∇·th + f‖Kdiffusive flux estimator

ηDF,K := ‖∇sh − phI− th‖Kdivergence estimator

ηD,K :=‖∇·sh‖K

βPropertiesloc. eff., unified framework (DG, MFE, FV, FE/S, NCFE)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 184: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

The Stokes problem

Theorem (A posteriori error estimate for the Stokes problem)There holds|||(u−uh,p−ph)|||≤

K∈Th

η2NC,K

12

+1

CS

K∈Th

(ηR,K +ηDF,K )2+η2D,K

12

.

Estimatorsnonconformity estimator

ηNC,K := ‖∇(uh − sh)‖Kresidual estimator

ηR,K := 1/πhK‖∇·th + f‖Kdiffusive flux estimator

ηDF,K := ‖∇sh − phI− th‖Kdivergence estimator

ηD,K :=‖∇·sh‖K

βPropertiesloc. eff., unified framework (DG, MFE, FV, FE/S, NCFE)

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 185: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 186: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortarsModel problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Multiscaledecomposition of the problem into h-scale subdomainproblems and H-scale interface problems

Multinumericsdifferent numerical methods in different parts of the domain

Mortar techniqueflux normal components conservativity imposed weaklyfollowing Bernardi, Maday, Patera (1994)

PENCHEVA, VOHRALÍK, WHEELER, WILDEY

Robust a posteriori error control and adaptivity for multiscale,multinumerics, and mortar couplingsubmitted [B3]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 187: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortarsModel problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Multiscaledecomposition of the problem into h-scale subdomainproblems and H-scale interface problems

Multinumericsdifferent numerical methods in different parts of the domain

Mortar techniqueflux normal components conservativity imposed weaklyfollowing Bernardi, Maday, Patera (1994)

PENCHEVA, VOHRALÍK, WHEELER, WILDEY

Robust a posteriori error control and adaptivity for multiscale,multinumerics, and mortar couplingsubmitted [B3]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 188: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortarsModel problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Multiscaledecomposition of the problem into h-scale subdomainproblems and H-scale interface problems

Multinumericsdifferent numerical methods in different parts of the domain

Mortar techniqueflux normal components conservativity imposed weaklyfollowing Bernardi, Maday, Patera (1994)

PENCHEVA, VOHRALÍK, WHEELER, WILDEY

Robust a posteriori error control and adaptivity for multiscale,multinumerics, and mortar couplingsubmitted [B3]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 189: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortarsModel problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Multiscaledecomposition of the problem into h-scale subdomainproblems and H-scale interface problems

Multinumericsdifferent numerical methods in different parts of the domain

Mortar techniqueflux normal components conservativity imposed weaklyfollowing Bernardi, Maday, Patera (1994)

PENCHEVA, VOHRALÍK, WHEELER, WILDEY

Robust a posteriori error control and adaptivity for multiscale,multinumerics, and mortar couplingsubmitted [B3]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 190: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortarsModel problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Multiscaledecomposition of the problem into h-scale subdomainproblems and H-scale interface problems

Multinumericsdifferent numerical methods in different parts of the domain

Mortar techniqueflux normal components conservativity imposed weaklyfollowing Bernardi, Maday, Patera (1994)

PENCHEVA, VOHRALÍK, WHEELER, WILDEY

Robust a posteriori error control and adaptivity for multiscale,multinumerics, and mortar couplingsubmitted [B3]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 191: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortars

A posteriori error estimates

potential reconstructionflux reconstruction

direct prescriptionh-grid-size low order local Neumann MFE problemsH-grid-size high order local Neumann MFE problems

guaranteed, locally efficient, robust with respect to theratio H/h for sufficiently regular p

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 192: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortars—num. exp.

2

4

6

8

10

12

14

16

18

x 10−4

Estimated error distributioninside the subdomains and

along mortar interfaces

2

4

6

8

10

12

14

16x 10

−4

Exact error distributioninside the subdomains and

along mortar interfaces

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 193: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Multiscale, multinumerics, and mortars—num. exp.

Adapted mesh inmultinumerics DG–MFE

discretization

Corresponding adaptedmortar mesh

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 194: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 195: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A system of variational inequalities

Contact between two membranes

−µ1∆p1 − λ = f1 in Ω

−µ2∆p2 + λ = f2 in Ω

p1 − p2 ≥ 0, λ ≥ 0, (p1 − p2)λ = 0 in Ω

p1 = 0 on ∂Ω,p2 = 0 on ∂Ω

BEN BELGACEM, BERNARDI, BLOUZA, VOHRALÍK

On the unilateral contact between membranes. Part 2: Aposteriori analysis and numerical experimentssubmitted [B1]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 196: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A system of variational inequalities

Contact between two membranes

−µ1∆p1 − λ = f1 in Ω

−µ2∆p2 + λ = f2 in Ω

p1 − p2 ≥ 0, λ ≥ 0, (p1 − p2)λ = 0 in Ω

p1 = 0 on ∂Ω,p2 = 0 on ∂Ω

BEN BELGACEM, BERNARDI, BLOUZA, VOHRALÍK

On the unilateral contact between membranes. Part 2: Aposteriori analysis and numerical experimentssubmitted [B1]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 197: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A system of variational inequalities

Theorem (A posteriori error estimate for the contact betweentwo membranes)Let pi be the weak solutions, ph,i the finite elementapproximations, and fi pw. constant. Then

2∑

i=1

µi‖∇(pi−ph,i)‖2 1

2

≤∑

D∈Dh

(2∑

i=1

(ηDF,D,i+ηR,D,i

)2+ηC,D

) 12

.

Estimatorsresidual estimator

ηR,D,i := mD,i‖fi −∇·th,i − (−1)iλh‖Ddiffusive flux estimator

ηDF,D,i := ‖µ12i ∇ph,i + µ

− 12

i th,i‖Dcontact estimator

ηC,D := 2(p1,h − p2,h, λh)DProperties

guaranteed, locally efficient, optimal (up to ηC,D)M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 198: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A system of variational inequalities

Theorem (A posteriori error estimate for the contact betweentwo membranes)Let pi be the weak solutions, ph,i the finite elementapproximations, and fi pw. constant. Then

2∑

i=1

µi‖∇(pi−ph,i)‖2 1

2

≤∑

D∈Dh

(2∑

i=1

(ηDF,D,i+ηR,D,i

)2+ηC,D

) 12

.

Estimatorsresidual estimator

ηR,D,i := mD,i‖fi −∇·th,i − (−1)iλh‖Ddiffusive flux estimator

ηDF,D,i := ‖µ12i ∇ph,i + µ

− 12

i th,i‖Dcontact estimator

ηC,D := 2(p1,h − p2,h, λh)DProperties

guaranteed, locally efficient, optimal (up to ηC,D)M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 199: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Dif. React. Conv. Heat Stokes MsMnM Syst. var. ineq.

A system of variational inequalities

Theorem (A posteriori error estimate for the contact betweentwo membranes)Let pi be the weak solutions, ph,i the finite elementapproximations, and fi pw. constant. Then

2∑

i=1

µi‖∇(pi−ph,i)‖2 1

2

≤∑

D∈Dh

(2∑

i=1

(ηDF,D,i+ηR,D,i

)2+ηC,D

) 12

.

Estimatorsresidual estimator

ηR,D,i := mD,i‖fi −∇·th,i − (−1)iλh‖Ddiffusive flux estimator

ηDF,D,i := ‖µ12i ∇ph,i + µ

− 12

i th,i‖Dcontact estimator

ηC,D := 2(p1,h − p2,h, λh)DProperties

guaranteed, locally efficient, optimal (up to ηC,D)M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 200: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 201: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 202: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Nonlinear diffusion problem

Nonlinear diffusion problem

−∇·σ(∇p) = f in Ω,

p = 0 on ∂Ω,

where ∀ξ ∈ Rd , σ(ξ) = a(|ξ|)ξFixed-point linearization

σL(ξ) := a(|∇p0|)ξNewton linearization

σL(ξ) := a(|∇p0|)ξ + a′(|∇p0|)1|∇p0|

(∇p0 ⊗∇p0)(ξ −∇p0)

EL ALAOUI, ERN, VOHRALÍK

Guaranteed and robust a posteriori error estimates andbalancing discretization and linearization errors for monotonenonlinear problemsComput. Methods Appl. Mech. Engrg. 2010 [A5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 203: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Nonlinear diffusion problem

Nonlinear diffusion problem

−∇·σ(∇p) = f in Ω,

p = 0 on ∂Ω,

where ∀ξ ∈ Rd , σ(ξ) = a(|ξ|)ξFixed-point linearization

σL(ξ) := a(|∇p0|)ξNewton linearization

σL(ξ) := a(|∇p0|)ξ + a′(|∇p0|)1|∇p0|

(∇p0 ⊗∇p0)(ξ −∇p0)

EL ALAOUI, ERN, VOHRALÍK

Guaranteed and robust a posteriori error estimates andbalancing discretization and linearization errors for monotonenonlinear problemsComput. Methods Appl. Mech. Engrg. 2010 [A5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 204: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Nonlinear diffusion problem

Nonlinear diffusion problem

−∇·σ(∇p) = f in Ω,

p = 0 on ∂Ω,

where ∀ξ ∈ Rd , σ(ξ) = a(|ξ|)ξFixed-point linearization

σL(ξ) := a(|∇p0|)ξNewton linearization

σL(ξ) := a(|∇p0|)ξ + a′(|∇p0|)1|∇p0|

(∇p0 ⊗∇p0)(ξ −∇p0)

EL ALAOUI, ERN, VOHRALÍK

Guaranteed and robust a posteriori error estimates andbalancing discretization and linearization errors for monotonenonlinear problemsComput. Methods Appl. Mech. Engrg. 2010 [A5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 205: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Nonlinear diffusion problem

Nonlinear diffusion problem

−∇·σ(∇p) = f in Ω,

p = 0 on ∂Ω,

where ∀ξ ∈ Rd , σ(ξ) = a(|ξ|)ξFixed-point linearization

σL(ξ) := a(|∇p0|)ξNewton linearization

σL(ξ) := a(|∇p0|)ξ + a′(|∇p0|)1|∇p0|

(∇p0 ⊗∇p0)(ξ −∇p0)

EL ALAOUI, ERN, VOHRALÍK

Guaranteed and robust a posteriori error estimates andbalancing discretization and linearization errors for monotonenonlinear problemsComput. Methods Appl. Mech. Engrg. 2010 [A5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 206: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 207: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 208: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 209: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 210: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 211: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error measure

Nonlinear operator A : V := W 1,q0 (Ω)→ V ′

〈Ap, ϕ〉V ′,V := (σ(∇p),∇ϕ)

Error measure

Jp(pL,h) := ‖Ap − ApL,h‖V ′ = supϕ∈V\0

(σ(∇p)− σ(∇pL,h),∇ϕ)

‖∇ϕ‖q

based on the difference of the fluxesdual norm of the residualinspired from Angermann (1995), Verfürth (2005), Chaillouand Suri (2006, 2007)avoids any appearance of the ratio continuity constant /monotonicity constant

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 212: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori error estimate

Theorem (A posteriori error estimate)Let

p ∈ V be the weak solution,pL,h ∈ V be arbitrary,Dh = Dint

h ∪ Dexth be a partition of Ω,

th ∈ Hr (div,Ω) be arbitrary but such that(∇ · th,1)D = (f ,1)D for all D ∈ Dint

h .

Then there holds

Jp(pL,h) ≤η :=

D∈Dh

(ηR,D + ηDF,D)r

1/r

+

D∈Dh

ηrL,D

1/r

.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 213: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori error estimate

Theorem (A posteriori error estimate)Let

p ∈ V be the weak solution,pL,h ∈ V be arbitrary,Dh = Dint

h ∪ Dexth be a partition of Ω,

th ∈ Hr (div,Ω) be arbitrary but such that(∇ · th,1)D = (f ,1)D for all D ∈ Dint

h .

Then there holds

Jp(pL,h) ≤η :=

D∈Dh

(ηR,D + ηDF,D)r

1/r

+

D∈Dh

ηrL,D

1/r

.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 214: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimators

Estimators

residual estimator

ηR,D := CP/F,q,DhD‖f −∇·th‖r ,D

diffusive flux estimator

ηDF,D := ‖σL(∇pL,h) + th‖r ,D

linearization estimator

ηL,D :=‖σ(∇pL,h)− σL(∇pL,h)‖r ,D

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 215: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimators

Estimators

residual estimator

ηR,D := CP/F,q,DhD‖f −∇·th‖r ,D

diffusive flux estimator

ηDF,D := ‖σL(∇pL,h) + th‖r ,D

linearization estimator

ηL,D :=‖σ(∇pL,h)− σL(∇pL,h)‖r ,D

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 216: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimators

Estimators

residual estimator

ηR,D := CP/F,q,DhD‖f −∇·th‖r ,D

diffusive flux estimator

ηDF,D := ‖σL(∇pL,h) + th‖r ,D

linearization estimator

ηL,D :=‖σ(∇pL,h)− σL(∇pL,h)‖r ,D

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 217: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Proof

Proof.take ϕ ∈ V with ‖∇ϕ‖q = 1note that, for an arbitrary th ∈ Hr (div,Ω) by the Green thm(f , ϕ)−(σ(∇pL,h),∇ϕ) = (f −∇·th, ϕ)−(th +σ(∇pL,h),∇ϕ)

(th + σ(∇pL,h),∇ϕ) ≤ ‖th + σ(∇pL,h)‖r by the Hölder in.‖th + σ(∇pL,h)‖r ≤ ‖σL(∇pL,h) + th‖r+‖σ(∇pL,h)− σL(∇pL,h)‖r by the triangle inequalityfor a locally conservative th, (∇·th,1)D = (f ,1D) ∀D ∈ Dint

h ,

(f −∇·th, ϕ)=∑

D∈Dinth

(f −∇·th, ϕ− ϕD)D +∑

D∈Dexth

(f −∇·th, ϕ)D

≤∑

D∈Dh

CP/F,q,DhD‖f −∇·th‖r ,D‖∇ϕ‖q,D,

using the Hölder inequality and the generalized Poincaréand Friedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 218: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Proof

Proof.take ϕ ∈ V with ‖∇ϕ‖q = 1note that, for an arbitrary th ∈ Hr (div,Ω) by the Green thm(f , ϕ)−(σ(∇pL,h),∇ϕ) = (f −∇·th, ϕ)−(th +σ(∇pL,h),∇ϕ)

(th + σ(∇pL,h),∇ϕ) ≤ ‖th + σ(∇pL,h)‖r by the Hölder in.‖th + σ(∇pL,h)‖r ≤ ‖σL(∇pL,h) + th‖r+‖σ(∇pL,h)− σL(∇pL,h)‖r by the triangle inequalityfor a locally conservative th, (∇·th,1)D = (f ,1D) ∀D ∈ Dint

h ,

(f −∇·th, ϕ)=∑

D∈Dinth

(f −∇·th, ϕ− ϕD)D +∑

D∈Dexth

(f −∇·th, ϕ)D

≤∑

D∈Dh

CP/F,q,DhD‖f −∇·th‖r ,D‖∇ϕ‖q,D,

using the Hölder inequality and the generalized Poincaréand Friedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 219: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Proof

Proof.take ϕ ∈ V with ‖∇ϕ‖q = 1note that, for an arbitrary th ∈ Hr (div,Ω) by the Green thm(f , ϕ)−(σ(∇pL,h),∇ϕ) = (f −∇·th, ϕ)−(th +σ(∇pL,h),∇ϕ)

(th + σ(∇pL,h),∇ϕ) ≤ ‖th + σ(∇pL,h)‖r by the Hölder in.‖th + σ(∇pL,h)‖r ≤ ‖σL(∇pL,h) + th‖r+‖σ(∇pL,h)− σL(∇pL,h)‖r by the triangle inequalityfor a locally conservative th, (∇·th,1)D = (f ,1D) ∀D ∈ Dint

h ,

(f −∇·th, ϕ)=∑

D∈Dinth

(f −∇·th, ϕ− ϕD)D +∑

D∈Dexth

(f −∇·th, ϕ)D

≤∑

D∈Dh

CP/F,q,DhD‖f −∇·th‖r ,D‖∇ϕ‖q,D,

using the Hölder inequality and the generalized Poincaréand Friedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 220: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Proof

Proof.take ϕ ∈ V with ‖∇ϕ‖q = 1note that, for an arbitrary th ∈ Hr (div,Ω) by the Green thm(f , ϕ)−(σ(∇pL,h),∇ϕ) = (f −∇·th, ϕ)−(th +σ(∇pL,h),∇ϕ)

(th + σ(∇pL,h),∇ϕ) ≤ ‖th + σ(∇pL,h)‖r by the Hölder in.‖th + σ(∇pL,h)‖r ≤ ‖σL(∇pL,h) + th‖r+‖σ(∇pL,h)− σL(∇pL,h)‖r by the triangle inequalityfor a locally conservative th, (∇·th,1)D = (f ,1D) ∀D ∈ Dint

h ,

(f −∇·th, ϕ)=∑

D∈Dinth

(f −∇·th, ϕ− ϕD)D +∑

D∈Dexth

(f −∇·th, ϕ)D

≤∑

D∈Dh

CP/F,q,DhD‖f −∇·th‖r ,D‖∇ϕ‖q,D,

using the Hölder inequality and the generalized Poincaréand Friedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 221: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Proof

Proof.take ϕ ∈ V with ‖∇ϕ‖q = 1note that, for an arbitrary th ∈ Hr (div,Ω) by the Green thm(f , ϕ)−(σ(∇pL,h),∇ϕ) = (f −∇·th, ϕ)−(th +σ(∇pL,h),∇ϕ)

(th + σ(∇pL,h),∇ϕ) ≤ ‖th + σ(∇pL,h)‖r by the Hölder in.‖th + σ(∇pL,h)‖r ≤ ‖σL(∇pL,h) + th‖r+‖σ(∇pL,h)− σL(∇pL,h)‖r by the triangle inequalityfor a locally conservative th, (∇·th,1)D = (f ,1D) ∀D ∈ Dint

h ,

(f −∇·th, ϕ)=∑

D∈Dinth

(f −∇·th, ϕ− ϕD)D +∑

D∈Dexth

(f −∇·th, ϕ)D

≤∑

D∈Dh

CP/F,q,DhD‖f −∇·th‖r ,D‖∇ϕ‖q,D,

using the Hölder inequality and the generalized Poincaréand Friedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 222: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Balancing the discretization and linearization errors

Global linearization stopping criterionstop the Newton (or fixed-point) linearization whenever

ηL ≤ γ ηD,

where

ηL :=

D∈Dh

ηrL,D

1/r

linearization error,

ηD :=

D∈Dh

(ηR,D + ηDF,D)r

1/r

discretization error

Local linearization stopping criterionstop the Newton (or fixed-point) linearization whenever

ηL,D ≤ γD (ηR,D + ηDF,D) ∀D ∈ Dh

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 223: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Balancing the discretization and linearization errors

Global linearization stopping criterionstop the Newton (or fixed-point) linearization whenever

ηL ≤ γ ηD,

where

ηL :=

D∈Dh

ηrL,D

1/r

linearization error,

ηD :=

D∈Dh

(ηR,D + ηDF,D)r

1/r

discretization error

Local linearization stopping criterionstop the Newton (or fixed-point) linearization whenever

ηL,D ≤ γD (ηR,D + ηDF,D) ∀D ∈ Dh

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 224: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Local efficiency

Theorem (Local efficiency)Let the mesh Th be shape-regular and let the local stoppingcriterion, with γD small enough, hold. Then

ηL,D + ηR,D + ηDF,D ≤ C‖σ(∇p)− σ(∇pL,h)‖r ,D,

where the constant C is independent of a and q.

local efficiency, but in a different norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 225: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Local efficiency

Theorem (Local efficiency)Let the mesh Th be shape-regular and let the local stoppingcriterion, with γD small enough, hold. Then

ηL,D + ηR,D + ηDF,D ≤ C‖σ(∇p)− σ(∇pL,h)‖r ,D,

where the constant C is independent of a and q.

local efficiency, but in a different norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 226: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Local efficiency

Theorem (Local efficiency)Let the mesh Th be shape-regular and let the local stoppingcriterion, with γD small enough, hold. Then

ηL,D + ηR,D + ηDF,D ≤ C‖σ(∇p)− σ(∇pL,h)‖r ,D,

where the constant C is independent of a and q.

local efficiency, but in a different norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 227: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Global efficiency

Theorem (Global efficiency)Let the mesh Th be shape-regular and let the global stoppingcriterion, with γ small enough, hold. Recall that Jp(pL,h) ≤ η.Then

η ≤ CJp(pL,h),

where the constant C is independent of a and q.

robustness with respect to the nonlinearity thanks to thechoice of the dual norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 228: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Global efficiency

Theorem (Global efficiency)Let the mesh Th be shape-regular and let the global stoppingcriterion, with γ small enough, hold. Recall that Jp(pL,h) ≤ η.Then

η ≤ CJp(pL,h),

where the constant C is independent of a and q.

robustness with respect to the nonlinearity thanks to thechoice of the dual norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 229: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Global efficiency

Theorem (Global efficiency)Let the mesh Th be shape-regular and let the global stoppingcriterion, with γ small enough, hold. Recall that Jp(pL,h) ≤ η.Then

η ≤ CJp(pL,h),

where the constant C is independent of a and q.

robustness with respect to the nonlinearity thanks to thechoice of the dual norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 230: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Global efficiency

Theorem (Global efficiency)Let the mesh Th be shape-regular and let the global stoppingcriterion, with γ small enough, hold. Recall that Jp(pL,h) ≤ η.Then

η ≤ CJp(pL,h),

where the constant C is independent of a and q.

robustness with respect to the nonlinearity thanks to thechoice of the dual norm

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 231: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Main elements of the proof

Lemma (Approximation property of the reconstructed flux)There holds

ηDF,D . ηres,D

:=

K∈SD

hrK‖f +∇·σL(∇pL,h)‖rr ,K +

F∈GTD

hF‖[[σL(∇pL,h)·n]]‖rr ,F

1r

uses the construction of th from pL,hproperties of Raviart–Thomas–Nédélec spaces, scalingarguments, equivalence of norms on finite-dimensionsspacesq-independent inverse inequalitieslocal postprocessing of potentials from MFEHölder inequality, generalized discrete Poincaré andFriedrichs inequalities

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 232: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Main elements of the proof

Lemma (Local efficiency of residual estimators)There holds

ηres,D . ‖σ(∇p)− σ(∇pL,h)‖r ,D + ηL,D.

element and face bubble functions, extension operatorsq-independent estimatesGreen theorem, Hölder inequality, duality

Lemma (Global efficiency of residual estimators)There holds

ηres . ‖Ap − ApL,h‖V ′ + ηL.

extension operatorsdual norms

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 233: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Main elements of the proof

Lemma (Local efficiency of residual estimators)There holds

ηres,D . ‖σ(∇p)− σ(∇pL,h)‖r ,D + ηL,D.

element and face bubble functions, extension operatorsq-independent estimatesGreen theorem, Hölder inequality, duality

Lemma (Global efficiency of residual estimators)There holds

ηres . ‖Ap − ApL,h‖V ′ + ηL.

extension operatorsdual norms

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 234: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Adaptive strategy

Adaptive strategy

choose an initial mesh T 0h and an initial guess

p0L,h ∈ Vh(T 0

h )

on the mesh T jh , j ≥ 0, for i ≥ 1, do the iterative loop:

1) linearize the flux function at pi−1L,h

2) solve the discrete linearized problem for piL,h

3) if the linearization stopping criterion is reached, then stopthe linearization, else set i ← (i + 1) and go to step 1)

evaluate the overall a posteriori error estimate ηif the desired overall precision is reached, then stop, elserefine the mesh adaptively, interpolate to it the currentsolution, j ← (j + 1), and go to the second step

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 235: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Adaptive strategy

Adaptive strategy

choose an initial mesh T 0h and an initial guess

p0L,h ∈ Vh(T 0

h )

on the mesh T jh , j ≥ 0, for i ≥ 1, do the iterative loop:

1) linearize the flux function at pi−1L,h

2) solve the discrete linearized problem for piL,h

3) if the linearization stopping criterion is reached, then stopthe linearization, else set i ← (i + 1) and go to step 1)

evaluate the overall a posteriori error estimate ηif the desired overall precision is reached, then stop, elserefine the mesh adaptively, interpolate to it the currentsolution, j ← (j + 1), and go to the second step

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 236: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Adaptive strategy

Adaptive strategy

choose an initial mesh T 0h and an initial guess

p0L,h ∈ Vh(T 0

h )

on the mesh T jh , j ≥ 0, for i ≥ 1, do the iterative loop:

1) linearize the flux function at pi−1L,h

2) solve the discrete linearized problem for piL,h

3) if the linearization stopping criterion is reached, then stopthe linearization, else set i ← (i + 1) and go to step 1)

evaluate the overall a posteriori error estimate ηif the desired overall precision is reached, then stop, elserefine the mesh adaptively, interpolate to it the currentsolution, j ← (j + 1), and go to the second step

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 237: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Adaptive strategy

Adaptive strategy

choose an initial mesh T 0h and an initial guess

p0L,h ∈ Vh(T 0

h )

on the mesh T jh , j ≥ 0, for i ≥ 1, do the iterative loop:

1) linearize the flux function at pi−1L,h

2) solve the discrete linearized problem for piL,h

3) if the linearization stopping criterion is reached, then stopthe linearization, else set i ← (i + 1) and go to step 1)

evaluate the overall a posteriori error estimate ηif the desired overall precision is reached, then stop, elserefine the mesh adaptively, interpolate to it the currentsolution, j ← (j + 1), and go to the second step

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 238: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Numerical experiment I

Model problem

q-Laplacian

∇·(|∇p|q−2∇p) = f in Ω,

p = p0 on ∂Ω

weak solution (used to impose a Dirichlet BC)

p(x , y) = −q−1q

((x − 1

2)2 + (y − 12)2) q

2(q−1)+ q−1

q

(12

) qq−1

tested values q = 1.4,3,10,50

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 239: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error distribution on a uniformly refined mesh, q = 3

2

3

4

5

6

7

8

9

x 10−3

Estimated error distribution

2

3

4

5

6

7

8

9

x 10−3

Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 240: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimated and actual errors and the eff. index, q = 1.4

101

102

103

104

105

10−3

10−2

10−1

100

Number of vertices

Dua

l err

or

error up uniformerror low uniformestimate uniform

Estimated and actual errors

101

102

103

104

105

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Number of vertices

Upp

er a

nd lo

wer

dua

l err

or e

ffect

ivity

indi

ces

effectivity ind. up uniformeffectivity ind. low uniform

Effectivity index

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 241: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimated and actual errors and the eff. index, q = 3

101

102

103

104

105

10−3

10−2

10−1

100

Number of vertices

Dua

l err

or

error up uniformerror low uniformestimate uniform

Estimated and actual errors

101

102

103

104

105

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Number of vertices

Upp

er a

nd lo

wer

dua

l err

or e

ffect

ivity

indi

ces

effectivity ind. up uniformeffectivity ind. low uniform

Effectivity index

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 242: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Estimated and actual errors and the eff. index, q = 10

101

102

103

104

105

10−4

10−3

10−2

10−1

100

Number of vertices

Dua

l err

or

error up uniformerror low uniformestimate uniform

Estimated and actual errors

101

102

103

104

105

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

Number of vertices

Upp

er d

ual e

rror

effe

ctiv

ity in

dice

s

effectivity ind. up uniform

Effectivity index

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 243: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Discretization and linearization components

0 2 4 6 8 10 1210

−10

10−8

10−6

10−4

10−2

100

Number of Newton iterations

Dua

l err

or

errorestimatedisc. est.lin. est.

Case q = 10

0 2 4 6 8 10 1210

−10

10−8

10−6

10−4

10−2

100

Number of Newton iterations

Dua

l err

or

errorestimatedisc. est.lin. est.

Case q = 50

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 244: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Evolution of Newton iterations

1 2 3 4 5 62

4

6

8

10

12

14

Refinement level

Num

ber

of N

ewto

n ite

ratio

ns

clas. un.bal. glob. un.

Classical versus balancedNewton, uniform refinement

0 2 4 6 8 101

2

3

4

5

6

7

8

9

10

Refinement levelN

umbe

r of

New

ton

itera

tions

clas. adapt.bal. glob. adapt.

Classical versus balancedNewton, adaptive ref.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 245: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Numerical experiment II

Model problem

q-Laplacian

∇·(|∇p|q−2∇p) = f in Ω,

p = p0 on ∂Ω

weak solution (used to impose a Dirichlet BC)

p0(r , θ) = r78 sin(θ 7

8)

q = 4, L-shape domain, singularity in the origin(Carstensen and Klose (2003))

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 246: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error distribution on a uniformly refined mesh

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Estimated error distribution

0.01

0.02

0.03

0.04

0.05

0.06

Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 247: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Error distribution on an adaptively refined mesh

1

2

3

4

5

6

7

8

x 10−3

Estimated error distribution

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6x 10

−3

Exact error distribution

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 248: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 249: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A model diffusion problem

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Algebraic problem

at some point, we shall solve AX = Bwe only solve it inexactly, AX ∗ ≈ Bwe know the algebraic residual, R := B − AX ∗

JIRÁNEK, STRAKOŠ, VOHRALÍK

A posteriori error estimates including algebraic error andstopping criteria for iterative solversSIAM J. Sci. Comput. 2010 [A10]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 250: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A model diffusion problem

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Algebraic problem

at some point, we shall solve AX = Bwe only solve it inexactly, AX ∗ ≈ Bwe know the algebraic residual, R := B − AX ∗

JIRÁNEK, STRAKOŠ, VOHRALÍK

A posteriori error estimates including algebraic error andstopping criteria for iterative solversSIAM J. Sci. Comput. 2010 [A10]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 251: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A model diffusion problem

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Algebraic problem

at some point, we shall solve AX = Bwe only solve it inexactly, AX ∗ ≈ Bwe know the algebraic residual, R := B − AX ∗

JIRÁNEK, STRAKOŠ, VOHRALÍK

A posteriori error estimates including algebraic error andstopping criteria for iterative solversSIAM J. Sci. Comput. 2010 [A10]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 252: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A model diffusion problem

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Algebraic problem

at some point, we shall solve AX = Bwe only solve it inexactly, AX ∗ ≈ Bwe know the algebraic residual, R := B − AX ∗

JIRÁNEK, STRAKOŠ, VOHRALÍK

A posteriori error estimates including algebraic error andstopping criteria for iterative solversSIAM J. Sci. Comput. 2010 [A10]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 253: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A model diffusion problem

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Algebraic problem

at some point, we shall solve AX = Bwe only solve it inexactly, AX ∗ ≈ Bwe know the algebraic residual, R := B − AX ∗

JIRÁNEK, STRAKOŠ, VOHRALÍK

A posteriori error estimates including algebraic error andstopping criteria for iterative solversSIAM J. Sci. Comput. 2010 [A10]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 254: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori estimate including the algebraic errorTheorem (Estimate including the algebraic error, FV/MFE)There holds

|||p − pah||| ≤

K∈Th

η2NC,K

12

+

K∈Th

η2R,K

12

+

K∈Th

η2AE,K

12

.

nonconformity estimatorηNC,K := |||pa

h − IOs(pah)|||K

reflects the departure of pah from H1

0 (Ω)

residual estimatorηR,K :=

C1/2P

c1/2S,K

hK‖f − fK‖K

reflects data oscillation

algebraic error estimatorηAE,K :=

∥∥S−12 qh∥∥

K

qh = arg inf rh∈RTN(Th)∇·rh|K =RK/|K |

∥∥S−12 rh∥∥

measures the algebraic errorM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 255: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori estimate including the algebraic errorTheorem (Estimate including the algebraic error, FV/MFE)There holds

|||p − pah||| ≤

K∈Th

η2NC,K

12

+

K∈Th

η2R,K

12

+

K∈Th

η2AE,K

12

.

nonconformity estimatorηNC,K := |||pa

h − IOs(pah)|||K

reflects the departure of pah from H1

0 (Ω)

residual estimatorηR,K :=

C1/2P

c1/2S,K

hK‖f − fK‖K

reflects data oscillation

algebraic error estimatorηAE,K :=

∥∥S−12 qh∥∥

K

qh = arg inf rh∈RTN(Th)∇·rh|K =RK/|K |

∥∥S−12 rh∥∥

measures the algebraic errorM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 256: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori estimate including the algebraic errorTheorem (Estimate including the algebraic error, FV/MFE)There holds

|||p − pah||| ≤

K∈Th

η2NC,K

12

+

K∈Th

η2R,K

12

+

K∈Th

η2AE,K

12

.

nonconformity estimatorηNC,K := |||pa

h − IOs(pah)|||K

reflects the departure of pah from H1

0 (Ω)

residual estimatorηR,K :=

C1/2P

c1/2S,K

hK‖f − fK‖K

reflects data oscillation

algebraic error estimatorηAE,K :=

∥∥S−12 qh∥∥

K

qh = arg inf rh∈RTN(Th)∇·rh|K =RK/|K |

∥∥S−12 rh∥∥

measures the algebraic errorM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 257: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

A posteriori estimate including the algebraic errorTheorem (Estimate including the algebraic error, FV/MFE)There holds

|||p − pah||| ≤

K∈Th

η2NC,K

12

+

K∈Th

η2R,K

12

+

K∈Th

η2AE,K

12

.

nonconformity estimatorηNC,K := |||pa

h − IOs(pah)|||K

reflects the departure of pah from H1

0 (Ω)

residual estimatorηR,K :=

C1/2P

c1/2S,K

hK‖f − fK‖K

reflects data oscillation

algebraic error estimatorηAE,K :=

∥∥S−12 qh∥∥

K

qh = arg inf rh∈RTN(Th)∇·rh|K =RK/|K |

∥∥S−12 rh∥∥

measures the algebraic errorM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 258: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Stopping criteria for iterative solvers

Global stopping criterion (global efficiency)

stop the iterative solver whenever

ηAE ≤ γ ηNC,

where

ηAE =

K∈Th

η2AE,K

12

, ηNC =

K∈Th

η2NC,K

12

Local stopping criterion (local efficiency)

stop the iterative solver whenever

ηAE,K ≤ γK ηNC,K ∀K ∈ Th

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 259: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Stopping criteria for iterative solvers

Global stopping criterion (global efficiency)

stop the iterative solver whenever

ηAE ≤ γ ηNC,

where

ηAE =

K∈Th

η2AE,K

12

, ηNC =

K∈Th

η2NC,K

12

Local stopping criterion (local efficiency)

stop the iterative solver whenever

ηAE,K ≤ γK ηNC,K ∀K ∈ Th

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 260: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Local efficiency

Theorem (Local efficiency of the a posteriori error estimate)Let the mesh Th be shape-regular and let the local stoppingcriterion hold. Then

ηNC,K + ηAE,K ≤ (1 + γK )(CC12S,K c

− 12

S,TK|||p − pa

h|||TK + h.o.t.),

where the constant C depends only on the space dimensionand on the shape regularity parameter.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 261: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Global efficiency

Theorem (Global efficiency of the a posteriori error estimate)Let the mesh Th be shape-regular and let the global stoppingcriterion hold. Then

ηNC + ηAE ≤ C(1 + γ)(|||p − pah|||+ h.o.t.).

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 262: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Overall error and overall error estimators

5 10 15 20 25 30 35 40 4510

−2

10−1

100

101

102

iteration number

over

all e

rror

actual errorerror est. ηNC + η

(3)AE

error est. ηNC + η(2)AE

nonconformity est. ηNC

algebraic error est. η(3)AE

Case 1

10 20 30 40 50 60 70 8010

−1

100

101

102

iteration number

over

all e

rror

actual errorerror est. ηNC + η

(3)AE

error est. ηNC + η(2)AE

nonconformity est. ηNC

algebraic error est. η(3)AE

Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 263: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Effectivity indices of the overall error estimators

5 10 15 20 25 30 35 40 451

2

3

4

5

6

7

8

9

10

iteration number

effe

ctiv

ity in

dex

eff. index of ηNC + η(1)AE

eff. index of ηNC + η(2)AE

eff. index of ηNC + η(3)AE

Case 1

10 20 30 40 50 60 70 801

2

3

4

5

6

7

8

9

10

iteration number

effe

ctiv

ity in

dex

eff. index of ηNC + η(1)AE

eff. index of ηNC + η(2)AE

eff. index of ηNC + η(3)AE

Case 2

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 264: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 265: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Two-phase flowsTwo-phase flow problem

∂t (φsα) +∇·uα = qα in Ω× (0,T ), α ∈ o,w,

−kr,α(sw)

µαK(∇pα + ραg∇z) = uα in Ω× (0,T ), α ∈ o,w,

so + sw = 1 in Ω× (0,T ),

po − pw = pc(sw) in Ω× (0,T )

VOHRALÍK

A posteriori error estimates, stopping criteria, and adaptivity fortwo-phase flowsCRAS note in preparation [B4]

CANCÈS, POP, VOHRALÍK

Rigorous a posteriori error estimates for two-phase flowsin preparation

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 266: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Two-phase flowsTwo-phase flow problem

∂t (φsα) +∇·uα = qα in Ω× (0,T ), α ∈ o,w,

−kr,α(sw)

µαK(∇pα + ραg∇z) = uα in Ω× (0,T ), α ∈ o,w,

so + sw = 1 in Ω× (0,T ),

po − pw = pc(sw) in Ω× (0,T )

VOHRALÍK

A posteriori error estimates, stopping criteria, and adaptivity fortwo-phase flowsCRAS note in preparation [B4]

CANCÈS, POP, VOHRALÍK

Rigorous a posteriori error estimates for two-phase flowsin preparation

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 267: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Two-phase flows

Theorem (A posteriori error estimate for two-phase flows)

|||(sα−sα,hτ ,pα−pα,hτ )||| ≤

N∑

n=1

In

K∈T nh

(ηnR,K ,α+ηn

DF,K ,α(t))2dt

12

+

N∑

n=1

In

K∈T nh

(ηnNC,K ,α(t))2 dt

12

.

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 268: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Two-phase flows

Theorem (A posteriori error estimate distinguishing the differenterror components)Consider

time step nlinearization step kiterative algebraic solver step i

and the corresponding approximations (sk ,iα,hτ ,p

k ,iα,hτ ). Then

|||(sα − sk ,iα,hτ ,pα − pk ,i

α,hτ )|||In ≤ ηn,k ,isp,α + ηn,k ,i

tm,α + ηn,k ,ilin,α + ηn,k ,i

alg,α.

Estimatorsηn,k ,i

sp,α : spatial estimator,ηn,k ,i

tm,α : temporal estimatorηn,k ,i

lin,α : linearization estimator

ηn,k ,ialg,α: algebraic estimator

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 269: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C Linearization error Algebraic error Two-phase flows

Two-phase flows

Theorem (A posteriori error estimate distinguishing the differenterror components)Consider

time step nlinearization step kiterative algebraic solver step i

and the corresponding approximations (sk ,iα,hτ ,p

k ,iα,hτ ). Then

|||(sα − sk ,iα,hτ ,pα − pk ,i

α,hτ )|||In ≤ ηn,k ,isp,α + ηn,k ,i

tm,α + ηn,k ,ilin,α + ηn,k ,i

alg,α.

Estimatorsηn,k ,i

sp,α : spatial estimator,ηn,k ,i

tm,α : temporal estimatorηn,k ,i

lin,α : linearization estimator

ηn,k ,ialg,α: algebraic estimator

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 270: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 271: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 272: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element methodFind uh ∈ Vh and ph ∈ Φh such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ Vh,

(∇·uh, φh) = (f , φh) ∀φh ∈ Φh

VOHRALÍK

Unified primal formulation-based a priori and a posteriori erroranalysis of mixed finite element methodsMath. Comp. 2010 [A14]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 273: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element methodFind uh ∈ Vh and ph ∈ Φh such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ Vh,

(∇·uh, φh) = (f , φh) ∀φh ∈ Φh

VOHRALÍK

Unified primal formulation-based a priori and a posteriori erroranalysis of mixed finite element methodsMath. Comp. 2010 [A14]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 274: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

A model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element methodFind uh ∈ Vh and ph ∈ Φh such that

(S−1uh,vh)− (ph,∇·vh) = 0 ∀vh ∈ Vh,

(∇·uh, φh) = (f , φh) ∀φh ∈ Φh

VOHRALÍK

Unified primal formulation-based a priori and a posteriori erroranalysis of mixed finite element methodsMath. Comp. 2010 [A14]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 275: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 276: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 277: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 278: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 279: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 280: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Traditional a priori analysis

get (with |||v|||∗ := ‖S− 12 v‖)

|||u− uh|||∗ ≤ |||u− IVh (u)|||∗prove uniform-in-h discrete inf–sup conditionget

‖p − ph‖ ≤ C‖p − I(p)‖Present a priori analysis

get|||u− uh|||∗ ≤ |||u− IVh (u)|||∗

use local postprocessing ph: PVh (ph) = uh, PΦh (ph) = ph(Arnold and Brezzi (1985), Arbogast and Chen (1995))get optimal estimate for |||p − ph||| from that on |||u− uh|||∗get optimal estimate for ‖p − ph‖ by the discrete Friedrichsinequalityrecover estimates for ‖p − ph‖

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 281: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Primal formulation-based a priori analysis of MFE

Extensions

unified a priori and a posteriori analysisoptimal a posteriori error estimatesthe weak solution is the orthogonal projection of thepostprocessed mixed finite element approximation ontoH1

0 (Ω)

links between mixed finite element approximations andsome generalized weak solutions

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 282: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 283: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Inexpensive implementations of MFE, their link to FVA model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element method(

A Bt

B 0

)(UP

)=

(FG

)

matrix indefinite, of saddle-point-typeFinite volume methods

SP = H

VOHRALÍK, WOHLMUTH

Mixed finite element methods: implementation with oneunknown per element, local flux expressions, positivity,polygonal meshes, and relations to other methodssubmitted [B5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 284: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Inexpensive implementations of MFE, their link to FVA model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element method(

A Bt

B 0

)(UP

)=

(FG

)

matrix indefinite, of saddle-point-typeFinite volume methods

SP = H

VOHRALÍK, WOHLMUTH

Mixed finite element methods: implementation with oneunknown per element, local flux expressions, positivity,polygonal meshes, and relations to other methodssubmitted [B5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 285: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Inexpensive implementations of MFE, their link to FVA model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element method(

A Bt

B 0

)(UP

)=

(FG

)

matrix indefinite, of saddle-point-typeFinite volume methods

SP = H

VOHRALÍK, WOHLMUTH

Mixed finite element methods: implementation with oneunknown per element, local flux expressions, positivity,polygonal meshes, and relations to other methodssubmitted [B5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 286: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Inexpensive implementations of MFE, their link to FVA model diffusion problem

−∇·(S∇p) = f in Ω,

p = 0 on ∂Ω

Mixed finite element method(

A Bt

B 0

)(UP

)=

(FG

)

matrix indefinite, of saddle-point-typeFinite volume methods

SP = H

VOHRALÍK, WOHLMUTH

Mixed finite element methods: implementation with oneunknown per element, local flux expressions, positivity,polygonal meshes, and relations to other methodssubmitted [B5]

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 287: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C MFE a priori analysis MFE implementations, links to FV

Inexpensive implementations of MFE, their link to FV

Goals

reduce equivalently MFE to FVget local flux expressions for MFEestablish links between MFEs and FVsachieve, if possible, symmetric and positive definitematrix Sgive a unified framework for such approachesachieve inexpensive implementations

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 288: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Outline1 Introduction2 Guaranteed and robust estimates for model problems

Inhomogeneous diffusionDominant reactionDominant convectionHeat equationStokes equationMultiscale, multinumerics, and mortarsSystem of variational inequalities

3 Stopping criteria for iterative solvers and linearizationsLinearization errorAlgebraic errorTwo-phase flows

4 Implementations, relations, and local postprocessingPrimal formulation-based a priori analysis of MFEInexpensive implementations of MFE, their link to FV

5 Conclusions and future directionsM. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 289: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Conclusions

A posteriori error estimates of this habilitation

satisfy as much as possible the five optimal propertiesare typically simultaneously guaranteed and robustare derived in unified frameworks for various numericalmethodslead to adaptive algorithms yielding efficientcalculations through stopping criteria and errorcomponents equilibration

Other contributions

inexpensive implementationsrelations between different numerical methodsimprovement of approximate solutions by localpostprocessing

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 290: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Conclusions

A posteriori error estimates of this habilitation

satisfy as much as possible the five optimal propertiesare typically simultaneously guaranteed and robustare derived in unified frameworks for various numericalmethodslead to adaptive algorithms yielding efficientcalculations through stopping criteria and errorcomponents equilibration

Other contributions

inexpensive implementationsrelations between different numerical methodsimprovement of approximate solutions by localpostprocessing

M. Vohralík A posteriori estimates, stopping criteria, and implementations

Page 291: A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA, AND ...

I Guar. & rob. est. Stop. crit. Impl., rel., & loc. postpr. C

Future directions

Future directions

nonlinear evolutive problems (Stefan problem, two-phaseflows, . . . )coupled systemserror control and efficiency for real-life problems

M. Vohralík A posteriori estimates, stopping criteria, and implementations