Estimating Workplace Air and Worker Blood Lead ... · PDF file3 Estimating Workplace Air and...

119
3 Estimating Workplace Air and Worker Blood Lead Concentration using an Updated Physiologically-based Pharmacokinetic (PBPK) Model October 2013 Air, Community and Environmental Research Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency

Transcript of Estimating Workplace Air and Worker Blood Lead ... · PDF file3 Estimating Workplace Air and...

  • 3

    Estimating Workplace Air and Worker Blood Lead Concentration using an Updated Physiologically-based Pharmacokinetic (PBPK) Model

    October 2013

    Air, Community and Environmental Research Branch

    Office of Environmental Health Hazard Assessment

    California Environmental Protection Agency

  • ___________________________________________________________________

    Estimating Workplace Air and Worker Blood Lead Concentration using an Updated

    Physiologically-based Pharmacokinetic (PBPK)

    Model

    October 2013 Office of Environmental Health Hazard Assessment (OEHHA)

    California Environmental Protection Agency

    Authors Kathleen Vork, Ph.D., Research Scientist

    Jim Carlisle, D.V.M., M.Sc., Staff Toxicologist Joseph P. Brown, Ph.D., Staff Toxicologist

    Air, Community and Environmental Research Branch

    OEHHA Scientific Reviewers Robert Blaisdell, Ph.D., Chief (Retired), Exposure Modeling Section,

    Air Toxicology and Epidemiology Branch

    Melanie Marty, Ph.D. Assistant Deputy Director for Scientific Affairs

    Andrew G. Salmon, M.A., D.Phil., Chief, Air Toxicology and Risk Assessment Section, Air, Community and Environmental Research Branch

    David Siegel, Ph.D., Chief, Air, Community and Environmental Research Branch

    Lauren Zeise, Ph.D. Deputy Director for Scientific Affairs

    George Alexeeff, Ph.D., Director

    Allan Hirsch, Chief Deputy Director

    i

  • External Scientific Reviewers

    Earlier versions of this document were reviewed by five independent peer reviewers

    selected for their expertise in the fields of toxicology, occupational medicine, industrial

    hygiene, mathematics, pharmacokinetics, and physiologically-based pharmacokinetic

    (PBPK) modeling. Their invaluable expertise contributed to the development of the final

    document. The peer reviewers are listed below.

    John R. Froines, Ph.D., University of California, Los Angeles, Department of

    Environmental Health Sciences, Los Angeles, CA

    Gary L. Ginsberg, Ph.D., University of Connecticut, School of Community Medicine,

    Farmington, CT

    Dale B. Hattis, Ph.D., Clark University, The George Perkins Marsh Institute,

    Worcester, MA

    Michael J. Kosnett, M.D., M.P.H., University of Colorado, Department of Medicine and

    Department of Environmental and Occupational Health, Denver, CO

    Richard W. Leggett, Ph.D., Oak Ridge National Laboratory, Environmental Sciences

    Division, Oak Ridge, TN

    ii

  • Table of Contents

    Summary.................................................................................................................. 1

    1 Introduction............................................................................................................... 5

    2 Methods and Results ................................................................................................ 6

    2.1 Selection and modification of lead model........................................................... 6

    2.2 Predicting blood lead from workplace air and vice versa (Task 1) ..................... 7

    2.2.1 Model adjustments and assumptions .......................................................... 7

    2.2.2 Inhalation transfer coefficient....................................................................... 8

    2.2.3 Validation of the Leggett+ Model ................................................................. 9

    2.2.4 Simulating Workers Blood Lead using Leggett+ ....................................... 10

    2.3 Time to decline to target BLL following removal from workplace exposure

    (Task 2) .............................................................................................................. 13

    2.3.1 Scenario one: Constant PbA resulting in identified blood lead levels ........ 14

    2.3.2 Scenario two: Declining workplace air concentrations sustaining over

    40 years a BLL reached in one year .......................................................... 18

    3 Discussion .............................................................................................................. 19

    3.1 Updates to approach taken by Center for Policy Alternatives to predict air

    lead/blood lead relationships .............................................................................. 20

    3.2 Limitations and uncertainty............................................................................... 21

    3.2.1 Population BLL variability .......................................................................... 21

    3.2.2 Breathing rate ............................................................................................ 22

    3.2.3 Erythrocyte saturation................................................................................ 22

    3.2.4 Leads toxic effects could alter the kinetics of lead in the body.................. 23

    3.2.5 Particle size distribution............................................................................. 23

    iii

  • 4

    3.2.6 Gastrointestinal absorption ........................................................................ 25

    3.2.7 Lead in bone.............................................................................................. 25

    Summary and Conclusions..................................................................................... 25

    A Appendix: Review, Selection, Modification, and Testing of Lead Models ............... 27

    A.1 Lead biokinetics ............................................................................................... 27

    A.1.1 Pulmonary deposition and clearance......................................................... 27

    A.1.2 Gastrointestinal absorption ........................................................................ 28

    A.1.3 Erythrocyte uptake and saturation ............................................................. 29

    A.1.4 Uptake and elimination from blood and soft tissue .................................... 29

    A.1.5 Uptake and elimination from bone ............................................................. 29

    A.2 Model screening............................................................................................... 30

    A.2.1 Bert model ................................................................................................. 32

    A.2.2 Leggett model............................................................................................ 33

    A.2.3 OFlaherty model ....................................................................................... 37

    A.3 Model selection ................................................................................................ 40

    A.4 Further evaluation and adjustment of the nonlinear Leggett model.................. 42

    A.4.1 Coding integrity.......................................................................................... 42

    A.4.2 Assessing model performance .................................................................. 44

    A.5 Conclusion ....................................................................................................... 65

    B Appendix: OEHHA Modifications to the Adjusted core Model to Accommodate

    Workplace Exposure in Leggett+ Model ................................................................. 67

    B.1 Description of exposure features added to the nonlinear Leggett model ......... 67

    B.1.1 Breathing rate ............................................................................................ 67

    B.1.2 Inhalation transfer coefficient..................................................................... 68

    iv

  • B.2 Methods for deriving a coefficient for the transfer of inhaled lead to blood in

    workers............................................................................................................... 71

    B.2.1 Studies selected for analysis ..................................................................... 71

    B.2.2 Lead particle dosimetry using the MPPD2 model ...................................... 72

    B.3 Results ............................................................................................................. 74

    B.3.1 Dosimetry results from MPPD2 ................................................................. 74

    B.3.2 Dosimetry results from ICRP Human Lung Model publication 66 lookup

    tables ......................................................................................................... 80

    B.3.3 Default inhalation transfer coefficient (ITC)................................................ 82

    B.4 Methods for assessing the performance of the Leggett+ model....................... 85

    B.4.1 Study and subject selection criteria ........................................................... 86

    B.4.2 Data extraction .......................................................................................... 87

    B.5 Results ............................................................................................................. 90

    B.5.1 Test 1: Goodness of fit .............................................................................. 92

    B.5.2 Test 2: Model performance versus exposure duration............................... 94

    B.6 Conclusion ....................................................................................................... 95

    C Appendix: Acronyms, symbols and special terms................................................... 97

    D References .................................