Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and...

90
Dissertation Defense January 7, 2010 Environmental Applications of Environmental Applications of FT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware University of Delaware Department of Chemistry & Biochemistry Advisor: Douglas Ridge, Ph.D.

Transcript of Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and...

Page 1: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Dissertation DefenseJanuary 7, 2010

Environmental Applications of Environmental Applications of FT-ICR Mass Spectrometry

Oxidized Peptide and Metal Sulfide Clusters

Jeffrey M. SpragginsUniversity of DelawareUniversity of DelawareDepartment of Chemistry & BiochemistryAdvisor: Douglas Ridge, Ph.D.

Page 2: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

OverviewESI FT-ICR Mass Spectrometry

Overview

Metal Sulfide ClustersOxidized Peptides

• Johnston Group• Dr. Laskin: PNNL

Luther Group(Marine Studies)

• Energy resolved SID Molecular Capping

Gas Phase

• Energy-resolved SID• Molecular Dynamics

• RRKM Theory

Molecular Capping Agents

Ion-Molecule ReactionsFragmentationMechanisms

Metal Sulfide Metal Sulfide Formation

Page 3: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

ESI FT-ICR Mass Spectrometry

O idi d P tid

ESI FT ICR Mass Spectrometry

Oxidized Peptides

Jeffrey M. Spraggins, Julie A. Lloyd, Murray V. Johnston, Julia Laskin, Douglas P. Rid J A S M Sp (2009) A t d f li tiRidge J.Am. Soc. Mass Spec. (2009), Accepted for puplication.

Julie A. Lloyd, Jeffrey M. Spraggins, Murray V. Johnston, Julia Laskin, J. Am. Soc. Mass Spec. (2006), 17(9), 1289-1298

Page 4: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Oxidation ReactionOxidation Reaction

AngII + O Tyr*

AngII AngII + 3OO3

( 143 M)

His*

AngII + 4O Tyr* and His*

(~143µM)

g

Page 5: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr-Ile-His-Pro-PheAsp Arg Val Tyr Ile His Pro Phe

Page 6: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

6 T FT-ICR MS: PNNL6 T FT ICR MS: PNNLQuad

Bender

6T Magnet

Lens 4 Lens 5Lens 3

Lens 2

Segmented

SAMSurface

DecelerationLenses

Lens 1

gLenses Trapping

Plates

CollisionalQuadrupole

Resolving Quadrupole

Accumulation Quadrupole

Ion Source

Ion Funnel

Quadrupole20-50 mTorr

Quadrupole5×10-5 Torr

Quadrupole2 mTorr

C d C lli iIon Funnel0.6-0.8 Torr Trapping

PlatesConductance

LimitCollimating

Plate

Laskin J.; Denisov E. V.; Shukla A. K.; Barlow S. E.; Futrell J. H. Analytical chemistry 2002, 74, 3255-61.

Page 7: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+3O

sity

AngII

Inte

ns

AngII+4O

AngII+O

m/z

m/z(b-d: 43eV SID Spectra)

Page 8: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

y7

Page 9: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Energy Resolved FECs: AngIIEnergy Resolved FECs: AngIIen

sity

Rel

ativ

e In

teR

Collision Energy (eV)

Page 10: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Acidic Amino Acids

HN

OH

H2N

O

O

AcidsJ. Laskin

J. Futrell

O

HN

NH2OO

HO

O

N

H2N

HH

J. ut

V. Wysocki

J. Beauchamp

H2N

O

H

O

H2N

HN

O

H2N

NH

O

NH

J p

O

O

Scheme Ia Scheme Ib

O

H2N O

NH

HO

OO

NH

N

H2N

HH

H

O

O

H2N

NH

O

y7

H2NO

H2N

Page 11: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII: charge delocalizationAngII: charge delocalization

Page 12: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

Page 13: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

b4+O4

Page 14: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Energy Resolved FECs: AngII+OEnergy Resolved FECs: AngII Oen

sity

Rel

ativ

e In

teR

Collision Energy (eV)

Page 15: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+OOH

HO

OH AngII Ob4 fragmentation pathway

N

O

HN

HO

H

O

N

O

NH

O

ONH

NH

OH

OH

Scheme II

b4+O

ONH

OO

O

OH

HO

NHH

ON

H

Page 16: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+O: b4 fragmentAngII O: b4 fragment

Page 17: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Acidic Amino Acids

HN

OH

H2N

O

O

AcidsJ. Laskin

J. Futrell

O

HN

NH2OO

HO

O

N

H2N

HH

J. ut

V. Wysocki

J. Beauchamp

H2N

O

H

O

H2N

HN

O

H2N

NH

O

NH

J p

O

O

Scheme Ia Scheme Ib

O

H2N O

NH

HO

OO

NH

N

H2N

HH

H

O

O

H2N

NH

O

H2NO

H2N

Page 18: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

Page 19: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

-71-45

-71-88

b55

Page 20: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+3OAngII 3O[MH+3O]+-45 & [MH+3O]+-71

HN

O

NH

O

H

O

HNO

H

H

O

NH

H

O

O

NNH

O

H

O

Scheme III

N

O

HN H

OH

C

O

NH

HOH

N

CO

O

3O +

[MH+3O]+-45

[MH+3O]+-71

Page 21: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+3OHN

N

O

HN

N

O

AngII 3O[MH+3O]+-88 & b5

fragmentation pathway

HN

O

HN

O

O

HN

O

HN

O

O

H

H

NNH

H

NH

HN O O

O

H

Scheme IV

O

NH

NH

OO

O

H

H

O

NH

O

NH

O

H

Scheme IV

NH

O

H

O

3O + 88

HN H

O

N

H N

O

HNO

O

H2N

O

NH

O

[MH+3O]+-88

N H

O

H2N

O

NH

O

H

b5

Page 22: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Transition StatesTransition States

RRKM Theory

ve In

tens

ityR

elat

iv

Collision Energy (eV)

[MH+nO]+ DRVYIHPF DRVY*IHPF DRVYIH*PF DRVY*IH*PF [ O] M/Z 1046 1062 1110 1126 E0(eV) 1.14 1.20 1.21 1.24 ΔS‡(cal/mol K) -25.9 -21.6 -17.0 -15.3 Relative E 0 0 06 0 07 0 11 Relative E0 0 0.06 0.07 0.11 A, s-1 5.6x107 4.8x108 4.8x109 1.2x1010

Log (A) 7.7 8.7 9.7 10.1

Page 23: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Entropic Considerations

ΔS‡(cal/mol K)

Considerations(a) y7 fragment

(b) b4+O fragmentOHO

-25.9 -21.6 -17.0

( ) b4 O ag t

(c) [AngII+3O]-45

N H

O

H

O

N

O

OH

O

H2N

O

HN

O

H

OOHN

H

NH

O

HN

(a) (b) (c)

Side Chain

Backbone

Amide Bond

Page 24: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

ConclusionsConclusionsUnmodified Ang II

Charge-remote selectivity towards y7 fragmentCharge remote selectivity towards y7 fragment

M+O adduct FECs suggest that the b4 pathway is a charge-remote process.

C-term Tyr* - Backbone interaction leads to b4 fragment ion.y 4 g

M+3O product FECs show both charge-remote and charge-directed selective fragmentation channels are opened with the oxidation of the His residue.

Loss of 45m/z and 71m/z driven by strong H-bonding within the His* side chain.His* is thought to compete with Arg for the lone proton leading to the b5 and [MH+3O]+-88 charge-directed fragments.

RRKM results imply destabilization due to entropic effects.

Consistent with proposed fragmentation mechanisms for oxidation products

Page 25: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

The Big PictureThe Big Picture

Structurally characterize peptide degradation by ozone exposure

Contribution to Fundamental MS/MS Literature

Understanding oxidized peptide fragmentation could benefit MS protein g p p f g pstructural research

Method for increasing fragmentation sequence coverage for proteomic studiesstudies

Page 26: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

ESI FT-ICR Mass SpectrometryESI FT ICR Mass Spectrometry

Metal Sulfide Clusters

Page 27: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

+ - +

-Dissolved Ions

Project Goal

Clusters

• Metal Sulfide Precipitation

- Cluster Aggregation†

1(Dissolved PolynuclearMolecular Species)

• Experimental Approach

Capping Agents

Nanoparticles

- Capping Agents

10Nanoparticles

(1-100nm)

- Ion-Molecule Reactions

∞Solid state material

† T. F. Rozan, M. E. Lassman, D. P. Ridge, G. W. Luther. Evidence for iron, copper and zinc complexation as multinuclear

Size (nm)material zinc complexation as multinuclear sulphide clusters in oxic rivers.Nature, 2000, 406, 879-882.

Page 28: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

+ - +

- Project GoalDissolved Ions

Mass SpectrometryClusters

1

UV/VIS SpectroscopyNanoparticles

10Nanoparticles

∞Solid state material Size (nm)material

Page 29: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

7T FT-ICR MS: UD7T FT ICR MS: UD

Page 30: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

ESI of Metal Salt Solutions

Observed Nucleation Processes

Page 31: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Salt Clusters Observed using ESI FT-ICR MSSalt Clusters Observed using ESI FT ICR MS

Page 32: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Signal VarianceVariance• [Cd(CH3COO)3]-

• [Cd2(CH3COO)5]-

Sampling was done using separate aliquots for each spectrum and [Cd2(CH3COO)5]

• [Cd3(CH3COO)7]-

• [Cd4(CH3COO)9]-

spectrum and

[ 4( 3 )9]

• [Cd5(CH3COO)11]-

• [Cd6(CH3COO)13]-[ 6( 3 )13]

• [Cd7(CH3COO)15]-

• [Cd8(CH3COO)17]-

A single aliquot was continually injected as spectra were repeatedly [ 8( 3 )17]taken.

0 3 mM cadmium acetate 0.3 mM cadmium acetate water/MeOH solution (1:1)

Page 33: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Important PointsImportant PointsVariance in signal over time suggests that clusters observed using ESI are forming in solution. observed using ESI are forming in solution.

Results highlight processes taking place in low dielectric g g p g pconstant solvents

Water/MeOH (ε=66†)Hydrothermal Fluids (ε=10-23‡)

†Akerlof G Dielectric Constant of some Organic Solvent-Water Mixtures at various Temperatures J Am Chem Soc †Akerlof, G. Dielectric Constant of some Organic Solvent-Water Mixtures at various Temperatures. J. Am. Chem. Soc. 1932, 54, 4125-4139.‡Weingartner, H.; Franck, E. U. Supercritical Water as a Solvent. Angew Chem Int Ed Engl. 2005, 44, 2672-2692.

Page 34: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Making Metal Sulfide Clusters

Molecular Capping Agents

Page 35: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Solution Chemistry: Mononuclear AnionsSolution Chemistry: Mononuclear Anions

A) 3 mM aqueous solution of Cd(NO3)2•4H2O diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO3)2•4H2O and 2-mercaptopyridine (1:1) diluted 50/50 with MeOH.50/50 with MeOH.

C) H2S(g) bubbled through a 3 mM aqueous solution of Cd(NO3)2•4H2O followed by dditi f 2 t idi addition of 2-mercaptopyridine

(1:1), then diluted 50/50 with MeOH.

Page 36: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Solution Chemistry: Binuclear AnionsSolution Chemistry: Binuclear Anions

A) 3 mM aqueous solution of Cd(NO3)2•4H2O diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO3)2•4H2O and 2-mercaptopyridine (1:1) diluted 50/50 with MeOH.50/50 with MeOH.

C) H2S(g) bubbled through a 3 mM aqueous solution of Cd(NO3)2•4H2O followed by dditi f 2 t idi addition of 2-mercaptopyridine

(1:1), then diluted 50/50 with MeOH.

Page 37: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Solution Chemistry: Trinuclear AnionsSolution Chemistry: Trinuclear Anions

A) 3 mM aqueous solution of Cd(NO3)2•4H2O diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO3)2•4H2O and 2-mercaptopyridine (1:1) diluted 50/50 with MeOH.50/50 with MeOH.

C) H2S(g) bubbled through a 3 mM aqueous solution of Cd(NO3)2•4H2O followed by dditi f 2 t idi addition of 2-mercaptopyridine

(1:1), then diluted 50/50 with MeOH.

Page 38: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Important PointsImportant PointsSulfidic clusters are observed when 2-mercaptopyridine is introduced.introduced.

Reactivity with H2S is selective based on cluster size for y 2[Cdx(NO3)2x+1]- species.

Sampling a solution based processGas phase ion-molecule reactions

Page 39: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Making Metal Sulfide Clusters

Gas Phase Ion-Molecule Reactions

Page 40: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cadmium Salt ClustersCadmium Salt ClustersReactive Clusters

[Cd(CH3COO)3]-

[Cd2(CH3COO)5]-

[Cd3(CH3COO)7]-

[Cd4(CH3COO)9]-

[Cd2(CH3COO)3]+

[Cd3(CH3COO)5]+

[Cd4(CH3COO)7]+

Non-Reactive Clusters

[Cd(NO3)3]-

[Cd2(NO3)5]-

[Cd3(NO3)7]-

[Cd4(NO3)9]-

[CdNO3(CH3OH)]+

[CdNO3(CH3OH)(H2O)]+

[CdxCl2x+1]-

[ZnxCl2x+1]-

[Cd4(NO3)9] [ 3( 3 )( 2 )]

[CdCl(CH OH)]+[CdCl(CH3OH)]+

[Cd2Cl3(CH3OH)]+

[ZnCl(CH3OH)]+

Page 41: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2(NO3)5]-[Cd2(NO3)5]

H2S

-2H

NO

3{536 m/z}

H2S

-2H

NO

3

[Cd2SH(NO3)4]-[Cd2S(NO3)3]-

{444 m/z} {507 m/z}-HNO3

H2S

HN

O3

[Cd2(SH)2(NO3)3]-

{478 m/z}

H

-2H

Page 42: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2(NO3)5]-Cd2S0 [Cd2(NO3)5]

H2S

-2H

NO

3{536 m/z}

H2S

-2H

NO

3

Cd2S0

[Cd2SH(NO3)4]-[Cd2S(NO3)3]-

{444 m/z} {507 m/z}-HNO3

H2S

HN

O3

Cd2S1

[Cd2(SH)2(NO3)3]-

{478 m/z}

H

-2H

Cd2S2

Page 43: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2(NO3)5]-

OH

{536 m/z}S0

r = k[Cluster Family][H2S]

d[S0]

dt= -k1[S0]

[Cd2(NO3)4SH]-

H2S

-CH

3CO

O

{507 m/z}S

k1r = k[Cluster Family]

H2S is in excess d[S1] k [S ] k [S ][Cd2S(NO3)3]-

{444 m/z}

2S CO

OH

S1

k

•Pseudo First Order kinetics[ 1]

dt= k1[S0] – k2[S2]

[S ]= [A] e-k1t

[Cd2(NO3)3(SH)2]-

{478 m/z}

H2

-CH

3C

S2

k2

d[S2]

dt= k2[S1]Integrated Rate Equations

[S0]= [A]0 e k1t

[S1]=k1

k2-k1(e-k1t - e-k2t)

k3 = 0

dt

[A]0 k2 k1

(k k )(k k ) (k k )(k k ) (k k )(k k )

e-k1t e-k2t e-k3t

[S2]= k1k2 + +(k2-k1)(k3-k1) (k1-k2)(k3-k2) (k1-k3)(k2-k3)

[ 2] 1 2

Page 44: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

4x10-9 torr[Cd2(NO3)5]- +H2S (g)

[Cd2SH(NO3)4]-

[Cd2S(NO3)3]-

[Cd2(SH)2(NO3)3]-

Page 45: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2S0]-

k = 0 084 ± 0 004 s-1

[Cd2(NO3)5]- +H2S

[Cd2S1]-

k1= 0.084 ± 0.004 s

k2= 0.019 ± 0.001s-1

[Cd2SH(NO3)4]-

[Cd2S(NO3)3]-

[Cd2S2]-

2

[Cd2(SH)2(NO3)3]-

H2S: 4x10-9 torr

Page 46: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2S0]-

k = 0 084 ± 0 004 s-1

Reaction Efficiency

[Cd2S1]-

k1= 0.084 ± 0.004 s

k2= 0.019 ± 0.001s-1

Efficiency

• Assume fastest RXN is collision rate limited

[Cd2S2]-

2

[Cd(NO3)(CH3OH)]+

k1= 2.85 ± 0.27 s-1

• Capture Collision Theory†

H2S: 4x10-9 torr

Page 47: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2S0]-

k = 0 084 ± 0 004 s-1

Reaction Efficiency

[Cd2S1]-

k1= 0.084 ± 0.004 s

k2= 0.019 ± 0.001s-1

Efficiency

• Assume fastest RXN is collision rate limited

[Cd2S2]-

2

[Cd(NO3)(CH3OH)]+

k1= 2.85 ± 0.27 s-1

• Capture Collision Theory†

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ μ

=−

−x

921

x1

1x

c PTorr10x4

Da19.29s85.2k

kk

H2S: 4x10-9 torr

Page 48: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd2S0]-

k = 0 084 ± 0 004 s-1

Reaction Efficiency

[Cd2S1]-

k1= 0.084 ± 0.004 s

k2= 0.019 ± 0.001s-1

k1/kc= 0.031

Efficiency

• Assume fastest RXN is collision rate limited

[Cd2S2]-

2

k2/kc= 0.0069 [Cd(NO3)(CH3OH)]+

k1= 2.85 ± 0.27 s-1

• Capture Collision Theory†

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ μ

=−

−x

921

x1

1x

c PTorr10x4

Da19.29s85.2k

kk

H2S: 4x10-9 torr

Page 49: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Anionic Cadmium ClustersReactant

P (10-9

torr)ΔH

(kcal/mol)k1/kc k2/kc k3/kc k4/kc k5/kc k6/kc k7/kc

[Cd(CH3COO)3]- 4 -6.236082 0 032 0 034 0 023

Anionic Cadmium Clusters

[Cd(CH3COO)3] 4 6.236082 0.032 0.034 0.023

[Cd(CH3COO)3]- 9 -6.236082 0.035 0.042 0.030

[Cd2(CH3COO)5]- 4 0.018 0.015 0.010 0.0020

[Cd2(CH3COO)5]- 9 0.019 0.015 0.0095 0.0034[ 2( 3 )5]

[Cd3(CH3COO)7]- 4 0.015 0.14 0.038 0.011 0.019 0.0073

[Cd3(CH3COO)7]- 9 0.016 0.24 0.061 0.012 0.035 0.0082

[Cd4(CH3COO)9]- 4 0.013 0.034(24) 1.00* 1.00* 1.00* 0.0079 0.0097(15)

[Cd4(CH3COO)9]- 9 0.013 0.042(15) 1.00* 1.00* 1.00* 0.0080 0.015

[Cd(NO3)3]- 4 & 9 9.710921 No RXN

[Cd2(NO3)5]- 4 0 031 0 0069[Cd2(NO3)5] 4 0.031 0.0069

[Cd3(NO3)7]- 4 0.046 0.035 0.00090

[Cd4(NO3)9]- 4 0.0094 0.0090 0.017

[CdCl3]- 4 & 9 8.8245642 No RXN[ 3]

[CdxCl2x+1]- 4 & 9 No RXN

Page 50: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Anionic Cadmium ClustersReactant

P (10-9

torr)ΔH

(kcal/mol)k1/kc k2/kc k3/kc k4/kc k5/kc k6/kc k7/kc

[Cd(CH3COO)3]- 4 -6.236082 0 032 0 034 0 023

Anionic Cadmium Clusters

[Cd(CH3COO)3] 4 6.236082 0.032 0.034 0.023

[Cd(CH3COO)3]- 9 -6.236082 0.035 0.042 0.030

[Cd2(CH3COO)5]- 4 0.018 0.015 0.010 0.0020

[Cd2(CH3COO)5]- 9 0.019 0.015 0.0095 0.0034

Most Anionic Metal Cluster reactionsare < 5% efficient.[ 2( 3 )5]

[Cd3(CH3COO)7]- 4 0.015 0.14 0.038 0.011 0.019 0.0073

[Cd3(CH3COO)7]- 9 0.016 0.24 0.061 0.012 0.035 0.0082

[Cd4(CH3COO)9]- 4 0.013 0.034(24) 1.00* 1.00* 1.00* 0.0079 0.0097(15)

[Cd4(CH3COO)9]- 9 0.013 0.042(15) 1.00* 1.00* 1.00* 0.0080 0.015

[Cd(NO3)3]- 4 & 9 9.710921 No RXN

[Cd2(NO3)5]- 4 0 031 0 0069[Cd2(NO3)5] 4 0.031 0.0069

[Cd3(NO3)7]- 4 0.046 0.035 0.00090

[Cd4(NO3)9]- 4 0.0094 0.0090 0.017

[CdCl3]- 4 & 9 8.8245642 No RXN[ 3]

[CdxCl2x+1]- 4 & 9 No RXN

Page 51: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Anionic Cadmium ClustersReactant

P (10-9

torr)ΔH

(kcal/mol)k1/kc k2/kc k3/kc k4/kc k5/kc k6/kc k7/kc

[Cd(CH3COO)3]- 4 -6.236082 0 032 0 034 0 023

Anionic Cadmium Clusters

[Cd(CH3COO)3] 4 6.236082 0.032 0.034 0.023

[Cd(CH3COO)3]- 9 -6.236082 0.035 0.042 0.030

[Cd2(CH3COO)5]- 4 0.018 0.015 0.010 0.0020

[Cd2(CH3COO)5]- 9 0.019 0.015 0.0095 0.0034

The Exception…[ 2( 3 )5]

[Cd3(CH3COO)7]- 4 0.015 0.14 0.038 0.011 0.019 0.0073

[Cd3(CH3COO)7]- 9 0.016 0.24 0.061 0.012 0.035 0.0082

[Cd4(CH3COO)9]- 4 0.013 0.034(24) 1.00* 1.00* 1.00* 0.0079 0.0097(15)

[Cd4(CH3COO)9]- 9 0.013 0.042(15) 1.00* 1.00* 1.00* 0.0080 0.015

[Cd(NO3)3]- 4 & 9 9.710921 No RXN

[Cd2(NO3)5]- 4 0 031 0 0069[Cd2(NO3)5] 4 0.031 0.0069

[Cd3(NO3)7]- 4 0.046 0.035 0.00090

[Cd4(NO3)9]- 4 0.0094 0.0090 0.017

[CdCl3]- 4 & 9 8.8245642 No RXN[ 3]

[CdxCl2x+1]- 4 & 9 No RXN

Page 52: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd4(CH3COO)9]-

[Cd4(CH3COO)8SH]-

H2S

-2C

H3C

OO

H

H2S

-CH

3CO

OH

[Cd4(CH3COO)7S]-

-CH3COOH{894 m/z}

{980 m/z}

{954 m/z}

[Cd4(CH3COO)7(SH)2]-[Cd4(CH3COO)6S(SH)]-

-CH3COOH

{894 m/z}

H2S

-CH

3CO

OH

{954 m/z}

{868 m/z} {928 m/z}

H2S

-CH

3CO

OH

[Cd4(CH3COO)4S2]-

-CH3COOH{808 m/z}

OH

OH

OH

[Cd4(CH3COO)6(SH)3]-[Cd4(CH3COO)5S(SH)2]-

-CH3COOH

H2S

-CH

3CO

O

{842 m/z} {902 m/z}

H2S

-CH

3CO

O

[Cd4(CH3COO)4S2(SH)]-

-CH3COOH{782 m/z}

H2S

-CH

3CO

O

[Cd4(CH3COO)3S3]-

-CH3COOH{722 m/z}

H2S

3CO

OH

H2S

3CO

OH

H2S

3CO

OH

H2S

3CO

OH

[Cd4(CH3COO)5(SH)4]-[Cd4(CH3COO)4S(SH)3]-

-CH3COOH

-CH

3

{816 m/z} {876 m/z}

-CH

3

[Cd4(CH3COO)3S2(SH)2]-

-CH3COOH{756 m/z}

-CH

3

[Cd4(CH3COO)2S3(SH)]-

-CH3COOH{696 m/z}

-CH

3

H2S

-CH

3CO

OH

H2S

-CH

3CO

OH

H2S

-CH

3CO

OH

H2S

-CH

3CO

OH

[Cd4(CH3COO)4(SH)5]-[Cd4(CH3COO)3S(SH)4]-

-CH3COOH{790 m/z} {850 m/z}

[Cd4(CH3COO)2S2(SH)3]-

-CH3COOH{730 m/z}[Cd4(CH3COO)S3(SH)2]-

-CH3COOH{670 m/z}

[Cd4(CH3COO)3(SH)6]-[Cd4(CH3COO)2S(SH)5]-

H2S

-CH

3CO

OH

H2S

-CH

3CO

OH

[Cd4(CH3COO)S2(SH)4]-

H2S

-CH

3CO

OH

[Cd4S3(SH)3]-

-CH3COOH

H2S

-CH

3CO

OH

-CH3COOH{764 m/z} {824 m/z}-CH3COOH{704 m/z}-CH3COOH

{644 m/z}

[Cd4(CH3COO)2(SH)7]-[Cd4(CH3COO)S(SH)6]-

-CH3COOH

H2S

-CH

3CO

OH

{738 m/z} {798 m/z}

H2S

-CH

3CO

OH

[Cd4S(SH)5]-

-CH3COOH{678 m/z}

H2S

-CH

3CO

OH

HH

[Cd4(CH3COO)(SH)8]-[Cd4S(SH)7]-

-CH3COOH

H2S

-CH

3CO

OH

{712 m/z} {772 m/z}

H2S

-CH

3CO

OH

Page 53: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd4(CH3COO)9]- +H2S (g)[Cd4S0]-

k1/kc= 0.013

k1/kc= 0.013

[Cd4S(CH3COO)9]-9x10-9 torr[Cd4S1]-

[Cd4S2]-

1 c

k2/kc= 0.034

k2/kc= 0.043

k /k = 1 0*

[Cd4S(CH3COO)9]

[Cd4S2(SH)3(CH3COO)2]-

[Cd4S2(SH)4(CH3COO)]-

[Cd4S3]-k3/kc= 1.0*

k3/kc= 1.0

k4/kc= 1.0*

[ 4 2( )4( 3 )][Cd4S3(SH)3]-

[Cd4S2(SH)5]-

[Cd4S4]-k4/kc= 1.0*

k /k = 1 0*

k5/kc= 1.0*4x10-9 torr

[Cd4S5]-

[Cd S ]-

k5/kc= 1.0*

k6/kc= 0.0079

k6/kc= 0.0080

[Cd4S6]

[Cd4S7]-k7/kc= 0.0097

k7/kc= 0.015

Page 54: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

9x10-9 torr

[Cd4S(CH3COO)9]-

[Cd4(CH3COO)9]- +H2S (g)

[Cd4S2(SH) ]-[Cd4S(CH3COO)9]

[Cd4S2(SH)3(CH3COO)2]-

[Cd4S2(SH)4(CH3COO)]-

[Cd4S2(SH)5]

[ 4 2( )4( 3 )][Cd4S3(SH)3]-

Page 55: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Anionic Cadmium ClustersReactant

P (10-9

torr)ΔH

(kcal/mol)k1/kc k2/kc k3/kc k4/kc k5/kc k6/kc k7/kc

[Cd(CH3COO)3]- 4 -6.236 0 032 0 034 0 023

Anionic Cadmium Clusters

[Cd(CH3COO)3] 4 6.236 0.032 0.034 0.023

[Cd(CH3COO)3]- 9 -6.236 0.035 0.042 0.030

[Cd2(CH3COO)5]- 4 0.018 0.015 0.010 0.0020

[Cd2(CH3COO)5]- 9 0.019 0.015 0.0095 0.0034[ 2( 3 )5]

[Cd3(CH3COO)7]- 4 0.015 0.14 0.038 0.011 0.019 0.0073

[Cd3(CH3COO)7]- 9 0.016 0.24 0.061 0.012 0.035 0.0082

Calculated reaction enthalpies are consistent with observed reactivity.

[Cd4(CH3COO)9]- 4 0.013 0.034(24) 1.00* 1.00* 1.00* 0.0079 0.0097(15)

[Cd4(CH3COO)9]- 9 0.013 0.042(15) 1.00* 1.00* 1.00* 0.0080 0.015

[Cd(NO3)3]- 4 & 9 9.711 No RXN

[Cd2(NO3)5]- 4 0 031 0 0069[Cd2(NO3)5] 4 0.031 0.0069

[Cd3(NO3)7]- 4 0.046 0.035 0.00090

[Cd4(NO3)9]- 4 0.0094 0.0090 0.017

[CdCl3]- 4 & 9 8.825 No RXN[ 3]

[CdxCl2x+1]- 4 & 9 No RXN

Page 56: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Metal Sulfide Clusters

Page 57: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd4(CH3COO)7]+

+H2S

SH- Substitution

CH3COOH Elimination

H2S Addition

Page 58: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd4(CH3COO)7]++H2S (g)

[Cd4SH(CH3COO)6]+ [Cd4(SH)2(CH3COO)5]+

9x10-9 torr

[ 4 ( 3 )6]

[Cd4(SH)3(CH3COO)4]+

[Cd4S(SH)(CH3COO)4]+

[Cd4SH(CH3COO)6(H2S)]+

[ 4( )3( 3 )4][Cd4S(SH)2(CH3COO)3]+

[Cd4(SH)2(CH3COO)5(H2S)]+

[Cd4(SH)4(CH3COO)3]+

[Cd4S(SH)3(CH3COO)2]+

[Cd4S(SH)4(CH3COO)]+

[Cd4S(SH)3(CH3COO)2(H2S)]+

[Cd4(SH)3(CH3COO)4(H2S)]+

Page 59: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[Cd4(CH3COO)7]++H2S (g) 9x10-9 torr

[Cd4(SH)3(CH3COO)4]+

[Cd4S(SH)2(CH3COO)3]+

[Cd4(SH)2(CH3COO)5(H2S)]+

[Cd4SH(CH3COO)6]+

[C 4(S )2(C 3COO)5( 2S)]

[Cd4(SH)2(CH3COO)5]+

[Cd4S(SH)(CH3COO)4]+

[Cd4SH(CH3COO)6(H2S)]+

[Cd4(SH)4(CH3COO)3]+

[Cd4S(SH)3(CH3COO)2]+

[Cd4(SH)3(CH3COO)4(H2S)]+[Cd4(SH)3(CH3COO)4(H2S)]

[Cd4S(SH)4(CH3COO)]+

[Cd4S(SH)3(CH3COO)2(H2S)]+

Page 60: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.442 Not Obs

[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.183 Not Obs

[CdCl]+ -11.163 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.903 Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 61: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759478 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066

Cationic Metal Clusters show much higherreaction efficiencies.

[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.441937 Not Obs

[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.182772 Not Obs

[CdCl]+ -11.162765 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.902944  Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 62: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.442 Not Obs

[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.183 Not Obs

[CdCl]+ -11.163 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.903 Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 63: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759478 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.441937 Not Obs

Reaction rates vary significantly with successive[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.182772 Not Obs

Reaction rates vary significantly with successivesulfide addition.

[CdCl]+ -11.162765 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.902944  Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 64: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759478 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066

NO3 > OH > Cl

[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.441937 Not Obs

[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.182772 Not Obs

[CdCl]+ -11.162765 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.902944  Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 65: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Cationic Cadmium ClustersReactant

P(10-9 torr)

ΔH (kcal/mol)

k1/kc k2/kc k3/kc k4/kc k5/kc

[Cd(CH3COO)]+ -3.759478 Not Obs

Cationic Cadmium Clusters

[Cd2(CH3COO)3]+ 4 0.77 0.0033 0.0045

[Cd3(CH3COO)5]+ 4 0.923 0.0722 0.0045 0.0013[Cd (CH COO) ]+ 9 0 88 0 073 0 0062 0 0066

Calculated reaction enthalpy is consistent with observed reactivity.[Cd3(CH3COO)5] 9 0.88 0.073 0.0062 0.0066

[Cd4(CH3COO)7]+ 9 0.37 0.54 0.28 0.0029 0.0016

[Cd(NO3)]+ -17.441937 Not Obs

y

[Cd(NO3)(CH3OH)]+ 4 1.00

[Cd(NO3)(CH3OH)(H2O)]+ 4 0.61

[CdOH]+ -27.182772 Not Obs

[CdCl]+ -11.162765 Not Obs

[CdCl(CH3OH)]+ 4 0.16 0.0062

[CdOH(CH3OH)]+ 4 0.77

[ ( 3 )]

[ZnCl]+ -11.902944  Not Obs

[ZnCl(CH3OH)]+ 4 0.037

Page 66: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

ConclusionsConclusionsESI of salt solutions show variation of cluster size vs. time.

Data suggests that both % methanol and concentration play a role.

Solution experiments show successive substitutions of mp for NO3

Treatment with H2S leads to replacement of (NO3)2 with SO4 for larger clusters.

Gas phase ion-molecule reactions between metal salt clusters and H2S result in the formation of a variety of metal sulfide species.

Anionic clusters display < 5% reaction efficiency with the exception of Anionic clusters display < 5% reaction efficiency with the exception of [Cd4(CH3COO)9]-

Cationic metal clusters show higher initial reaction efficiencies which decreases significantly with successive SH- substitutionsignificantly with successive SH substitution.

DFT calculations are consistent with gas phase reactivity (Kaitlin Papson).

Similarities between gas and condensed phases highlighted by salt nucleation in binary solvents, spectator solvent molecules, and similarities in [Cdx(NO3)2x+1]- reactivity.

Page 67: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Dissolved Ions Project Goal+ - +-

ClustersMass Spectrometry

1

Size (nm)

Nanoparticles Spectroscopy

10

∞Solid state material

Page 68: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

The Big PictureThe Big Picture

Elucidation of initial steps for metal sulfide formation

Gas phase ion-molecule reactions as models for aqueous metal sulfide reactions

The Next Step: high pressure source-side reactions.p g p

Structural characterizationSurface deposition

Page 69: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Tying it all together….Tying it all together….The technique: FT-ICR MSUnderstanding environmental chemical processesUnderstanding environmental chemical processes

Atmospheric: BiomoleculesAquatic: Inorganic clustersq g

Analytical ChemistryMass Spectrometry

Page 70: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AcknowledgementsAcknowledgementsDr. RidgeOur Research Group

FundingUD GK 12p

Kaitlin PapsonNick ZeringoUna Kim

UD GK-12NSFDelaware EPSCoRUna Kim

Scott Robinson

C ll b

UD IGERT

CollaboratorsGeorge Luther

Kate MullaughMurray Johnston

Julie LloydJulia Laskin (PNNL)

Page 71: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Environmental PerspectiveEnvironmental Perspective

Evidence of Salt Nucleation at Hydrothermal SitesSalt deposits†

gyser-like brine discharges†

‘salt diapirs‡’ (dī· ə· pîr)Buoyant/Mobile salt layer piercing the brittle overlying rocky y p g y g

†Hovland, M.; Rueslatten, H. G.; Johnsen, H. K.; Kvamme, B.; Kuznetsova, T. Salt Formation Associated with Sub-Surface Boiling and Supercritical Water. Mar. Pet. Geol. 2006, 23, 855-869.

‡Hovland, M.; Fichler, C.; Rueslatten, H.; Johnsen, H. K. Deep-Rooted Piercement Structures in Deep Sedimentary Basins -Manifestations of Supercritical Water Generation at Depth? J. Geochem. Explor. 2006, 89, 157-160.

Page 72: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

B

+

FT-ICR MS

Page 73: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

B XXXX

qB+ + +f = 2πm

FT-ICR MS

Page 74: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

B XXXX

+ _

+

FT-ICR MS

Page 75: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Why we care? Past Research

The Instrument Making Clusters

Gas Phase Moving Forward

Fourier Transform

f =qB2πm

Page 76: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Energy Resolved FECs: AngII+3OEnergy Resolved FECs: AngII 3Oen

sity

Rel

ativ

e In

teR

Collision Energy (eV)

Page 77: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

-71-45

-71

Page 78: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[AngII+3O]-45[AngII 3O] 45

Page 79: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[AngII+3O]-71[AngII 3O] 71

Page 80: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Asp-Arg-Val-Tyr(+O)-Ile-His(+3O)-Pro-PheAsp Arg Val Tyr( O) Ile His( 3O) Pro Phe

-88

b55

Page 81: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

AngII+3O: b5 fragmentAngII 3O: b5 fragment

Page 82: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[AngII+3O]+-88 fragment[AngII 3O] 88 fragment

Page 83: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

[AngII+3O]+-88 fragment[AngII 3O] 88 fragment

Page 84: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

RRKM Modeling: Dr. Julia LaskinRRKM Modeling: Dr. Julia Laskin

RTEAek −=TST: Arrhenius Equation

Energy DepositionAek =

Survival CurvesFrequencies

Activation energy RRKM FrequenciesE0 & ΔS‡

Activation Entropy0

[MH+nO]+ DRVYIHPF DRVY*IHPF DRVYIH*PF DRVY*IH*PF M/Z 1046 1062 1110 1126 E0(eV) 1.14 1.20 1.21 1.24 ΔS‡(cal/mol K) -25.9 -21.6 -17.0 -15.3 Relative E0 0 0.06 0.07 0.11 A, s-1 5.6x107 4.8x108 4.8x109 1.2x1010

Log (A) 7.7 8.7 9.7 10.1

Page 85: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Electrospray MechanismElectrospray Mechanism

Page 86: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Solution Chemistry: Tetranuclear AnionsSolution Chemistry: Tetranuclear Anions

A) 3 mM aqueous solution of Cd(NO3)2•4H2O diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO3)2•4H2O and 2-mercaptopyridine (1:1) diluted 50/50 with MeOH.50/50 with MeOH.

C) H2S(g) bubbled through a 3 mM aqueous solution of Cd(NO3)2•4H2O followed by dditi f 2 t idi addition of 2-mercaptopyridine

(1:1), then diluted 50/50 with MeOH.

Page 87: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Solution Chemistry: Pentanuclear AnionsSolution Chemistry: Pentanuclear Anions

A) 3 mM aqueous solution of Cd(NO3)2•4H2O diluted 50/50 with MeOH.

B) 1.5 mM aqueous solution of Cd(NO3)2•4H2O and 2-mercaptopyridine (1:1) diluted 50/50 with MeOH.50/50 with MeOH.

C) H2S(g) bubbled through a 3 mM aqueous solution of Cd(NO3)2•4H2O followed by dditi f 2 t idi addition of 2-mercaptopyridine

(1:1), then diluted 50/50 with MeOH.

Page 88: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Bimolecular Rate Constants[Cd(NO3)(CH3OH)]+

k1= 2 85 ± 0 27 s-1• Determine [H2S]k1 2.85 ± 0.27 s• Assume fasted measured k is collision rate limited.

• Capture Collision Theory 4x10-9 Torr

( )2( )220

10.5260.5092

0.9754kk

2

L

<<+

+= ττ

’ d l 21

D T'1

'11.85 ⎟⎠⎞

⎜⎝⎛α

μ=τ

µD’ dipole moment (0.97 D)α' volume polarizability(3.67 Å3)

τ = 2.49 464.1kk

L

=

( )

21'⎟⎞

⎜⎛ α

11310L smoleculecm10x304.8k −−−=

1139L smoleculecm10

'Z342.2k −−−

⎟⎟⎠

⎞⎜⎜⎝

⎛μα

=

µ’ reduced mass (29.193 Da)

L

1139 smoleculecm10x216.1k −−−=

Theoretical collision rateTheoretical collision rate

Page 89: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Bimolecular Rate Constants[Cd(NO3)(CH3OH)]+

k1= 2 85 ± 0 27 s-1• Determine [H2S]k1 2.85 ± 0.27 s• Assume fasted measured k is collision rate limited.

• Capture Collision Theory 4x10-9 Torr

1139 smoleculecm10x216.1k −−−=Theoretical collision rate

]SH[k

smoleculecm10x216.1k2

1111392

1 == −−−[H2S] = 2.34x109 molecules cm-3

[H2S] = 6.62x10-8 Torr

113 s0.0007 0.0024k −±=Slowest reaction observed

113921 smoleculecm10x12.021.1k −−−±= 113122

3 smoleculecm10x31.003.1k −−−±=1 smoleculecm10x12.021.1k ± 3 smoleculecm10x31.003.1k ±Fastest Slowest

Page 90: Environmental Applications of FT-ICR Mass SpectrometryFT-ICR Mass Spectrometry Oxidized Peptide and Metal Sulfide Clusters Jeffrey M. Spraggins University of Delaware Department of

Reaction Efficiency [Cd(NO3)(CH3OH)]+

111 s0.27 85.2k −±=

113921 smoleculecm10x12.021.1k −−−±=

0.1kk=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ μ

=−

−x

921

x1

1x

c PTorr10x4

Da19.29s85.2k

kk

kc

11392 smoleculecm10x120211k −−−±=

113 s0.0003 0.0024k −±=

113122 smoleculecm10x130031k −−−±=

111 s0.27 85.2k −±=

1 smoleculecm10x12.021.1k ±= 3 smoleculecm10x13.003.1k ±=

1.00.1kk

c

±= 0001.0000896.0kk

c

±=

Fastest Slowest

c c