Engineering reportused for external forces. Moments are always positive when anti-clockwise...

47
Engineering report Derivation of stiness matrix for a beam Nasser M. Abbasi July 7, 2016

Transcript of Engineering reportused for external forces. Moments are always positive when anti-clockwise...

Page 1: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Engineering report

Derivation of sti๏ฟฝness matrix for a beam

Nasser M. Abbasi

July 7, 2016

Page 2: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes
Page 3: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Contents

1 Introduction 1

2 Direct method 32.1 Examples using the direct beam sti๏ฟฝness matrix . . . . . . . . . . . . . . . . . 13

2.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Finite elements or adding more elements 253.1 Example 3 redone with 2 elements . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Generating shear and bending moments diagrams 35

5 Finding the sti๏ฟฝness matrix using methods other than direct method 375.1 Virtual work method for derivation of the sti๏ฟฝness matrix . . . . . . . . . . . 385.2 Potential energy (minimize a functional) method to derive the sti๏ฟฝness matrix 40

6 References 43

iii

Page 4: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Contents CONTENTS

iv

Page 5: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 1

Introduction

A short review for solving the beam problem in 2D is given. The deflection curve, bendingmoment and shear force diagrams are calculated for a beam subject to bending moment andshear force using direct sti๏ฟฝness method and then using finite elements method by addingmore elements. The problem is solved first by finding the sti๏ฟฝness matrix using the directmethod and then using the virtual work method.

1

Page 6: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 1. INTRODUCTION

2

Page 7: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 2

Direct method

Local contents2.1 Examples using the direct beam sti๏ฟฝness matrix . . . . . . . . . . . . . . . . . . . 13

3

Page 8: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

Starting with only one element beam which is subject to bending and shear forces. There are4 nodal degrees of freedom. Rotation at the left and right nodes of the beam and transversedisplacements at the left and right nodes. The following diagram shows the sign conventionused for external forces. Moments are always positive when anti-clockwise direction andvertical forces are positive when in the positive ๐‘ฆ direction.

The two nodes are numbered 1 and 2 from left to right. ๐‘€1 is the moment at the left node(node 1), ๐‘€2 is the moment at the right node (node 2). ๐‘‰1 is the vertical force at the leftnode and ๐‘‰2 is the vertical force at the right node.

x

y

1 2

M1 M2

V1V2

The above diagram shows the signs used for the applied forces direction when acting inthe positive sense. Since this is a one dimensional problem, the displacement field (theunknown being solved for) will be a function of one independent variable which is the ๐‘ฅcoordinate. The displacement field in the vertical direction is called ๐‘ฃ (๐‘ฅ). This is the verticaldisplacement of point ๐‘ฅ on the beam from the original ๐‘ฅโˆ’๐‘Ž๐‘ฅ๐‘–๐‘ . The following diagram showsthe notation used for the coordinates.

x,u

y,v

Angular displacement at distance ๐‘ฅ on the beam is found using ๐œƒ (๐‘ฅ) = ๐‘‘๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ . At the left node,

the degrees of freedom or the displacements, are called ๐‘ฃ1, ๐œƒ1 and at the right node they arecalled ๐‘ฃ2, ๐œƒ2. At an arbitrary location ๐‘ฅ in the beam, the vertical displacement is ๐‘ฃ (๐‘ฅ) andthe rotation at that location is ๐œƒ (๐‘ฅ).

The following diagram shows the displacement field ๐‘ฃ (๐‘ฅ)

4

Page 9: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

1 21 2

main displacement field quantity we need to find

x dvx

dx

v 1 v 2

vx

x,u

y,v

In the direct method of finding the sti๏ฟฝness matrix, the forces at the ends of the beam arefound directly by the use of beam theory. In beam theory the signs are di๏ฟฝerent from whatis given in the first diagram above. Therefore, the moment and shear forces obtained usingbeam theory (๐‘€๐ต and ๐‘‰๐ต in the diagram below) will have di๏ฟฝerent signs when comparedto the external forces. The signs are then adjusted to reflect the convention as shown in thediagram above using ๐‘€ and ๐‘‰.

For an example, the external moment ๐‘€1 is opposite in sign to ๐‘€๐ต1 and the reaction ๐‘‰2is opposite to ๐‘‰๐ต2. To illustrate this more, a diagram with both sign conventions is givenbelow.

Beam theory positive sign directions for bending moments and shear forces

Applied external moments and end forces shown in positive sense directions

M1 M2

V1V2

1 2

MB1 MB2

VB1 VB2

The goal now is to obtain expressions for external loads ๐‘€๐‘– and ๐‘…๐‘– in the above diagram as

5

Page 10: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

function of the displacements at the nodes {๐‘‘} = {๐‘ฃ1, ๐œƒ1, ๐‘ฃ2, ๐œƒ2}๐‘‡.

In other words, the goal is to obtain an expression of the form ๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘} where [๐พ] is thesti๏ฟฝness matrix where ๏ฟฝ๐‘๏ฟฝ = {๐‘‰1,๐‘€1, ๐‘…2,๐‘€2}

๐‘‡ is the nodal forces or load vector, and {๐‘‘} is thenodal displacement vector.

In this case [๐พ] will be a 4 ร— 4 matrix and ๏ฟฝ๐‘๏ฟฝ is a 4 ร— 1 vector and {๐‘‘} is a 4 ร— 1 vector.

Starting with ๐‘‰1. It is in the same direction as the shear force ๐‘‰๐ต1. Since ๐‘‰๐ต1 =๐‘‘๐‘€๐ต1๐‘‘๐‘ฅ then

๐‘‰1 =๐‘‘๐‘€๐ต1๐‘‘๐‘ฅ

Since from beam theory ๐‘€๐ต1 = โˆ’๐œŽ (๐‘ฅ) ๐ผ๐‘ฆ , the above becomes

๐‘‰1 = โˆ’๐ผ๐‘ฆ๐‘‘๐œŽ (๐‘ฅ)๐‘‘๐‘ฅ

But ๐œŽ (๐‘ฅ) = ๐ธ๐œ€ (๐‘ฅ) and ๐œ€ (๐‘ฅ) = โˆ’๐‘ฆ๐œŒ where ๐œŒ is radius of curvature, therefore the above becomes

๐‘‰1 = ๐ธ๐ผ๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

1๐œŒ๏ฟฝ

Since 1๐œŒ =

๏ฟฝ๐‘‘2๐‘ข๐‘‘๐‘ฅ2 ๏ฟฝ

๏ฟฝ1+๏ฟฝ๐‘‘๐‘ข๐‘‘๐‘ฅ ๏ฟฝ

2๏ฟฝ3/2 and for a small angle of deflection ๐‘‘๐‘ข

๐‘‘๐‘ฅ โ‰ช 1 then 1๐œŒ = ๏ฟฝ๐‘‘

2๐‘ข๐‘‘๐‘ฅ2

๏ฟฝ, and the above

now becomes

๐‘‰1 = ๐ธ๐ผ๐‘‘3๐‘ข (๐‘ฅ)๐‘‘๐‘ฅ3

Before continuing, the following diagram illustrates the above derivation. This comes frombeam theory.

Deflection curve

x

x

Radius of curvature

vx

x dv

dx

1 d 2v

dx2

6

Page 11: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

Now ๐‘€1 is obtained. ๐‘€1 is in the opposite sense of the bending moment ๐‘€๐ต1 hence anegative sign is added giving ๐‘€1 = โˆ’๐‘€๐ต1. But ๐‘€๐ต1 = โˆ’๐œŽ (๐‘ฅ) ๐ผ

๐‘ฆ therefore

๐‘€1 = ๐œŽ (๐‘ฅ)๐ผ๐‘ฆ

= ๐ธ๐œ€ (๐‘ฅ)๐ผ๐‘ฆ

= ๐ธ ๏ฟฝโˆ’๐‘ฆ๐œŒ ๏ฟฝ

๐ผ๐‘ฆ

= โˆ’๐ธ๐ผ ๏ฟฝ1๐œŒ๏ฟฝ

= โˆ’๐ธ๐ผ๐‘‘2๐‘ค๐‘‘๐‘ฅ2

๐‘‰2 is now found. It is in the opposite sense of the shear force ๐‘‰๐ต2, hence a negative sign isadded giving

๐‘‰2 = โˆ’๐‘‰๐ต2

= โˆ’๐‘‘๐‘€๐ต2๐‘‘๐‘ฅ

Since ๐‘€๐ต2 = โˆ’๐œŽ (๐‘ฅ) ๐ผ๐‘ฆ , the above becomes

๐‘‰2 =๐ผ๐‘ฆ๐‘‘๐œŽ (๐‘ฅ)๐‘‘๐‘ฅ

But ๐œŽ (๐‘ฅ) = ๐ธ๐œ€ (๐‘ฅ) and ๐œ€ (๐‘ฅ) = โˆ’๐‘ฆ๐œŒ where ๐œŒ is radius of curvature. The above becomes

๐‘‰2 = โˆ’๐ธ๐ผ๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

1๐œŒ๏ฟฝ

But 1๐œŒ =

๏ฟฝ๐‘‘2๐‘ค๐‘‘๐‘ฅ2 ๏ฟฝ

๏ฟฝ1+๏ฟฝ๐‘‘๐‘ค๐‘‘๐‘ฅ ๏ฟฝ

2๏ฟฝ3/2 and for small angle of deflection ๐‘‘๐‘ค

๐‘‘๐‘ฅ โ‰ช 1 hence 1๐œŒ = ๏ฟฝ๐‘‘

2๐‘ข๐‘‘๐‘ฅ2

๏ฟฝ then the above

becomes

๐‘‰2 = โˆ’๐ธ๐ผ๐‘‘3๐‘ข (๐‘ฅ)๐‘‘๐‘ฅ3

Finally ๐‘€2 is in the same direction as ๐‘€๐ต2 so no sign change is needed. ๐‘€๐ต2 = โˆ’๐œŽ (๐‘ฅ) ๐ผ๐‘ฆ ,

7

Page 12: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

therefore

๐‘€2 = โˆ’๐œŽ (๐‘ฅ)๐ผ๐‘ฆ

= โˆ’๐ธ๐œ€ (๐‘ฅ)๐ผ๐‘ฆ

= โˆ’๐ธ ๏ฟฝโˆ’๐‘ฆ๐œŒ ๏ฟฝ

๐ผ๐‘ฆ

= ๐ธ๐ผ ๏ฟฝ1๐œŒ๏ฟฝ

= ๐ธ๐ผ๐‘‘2๐‘ข๐‘‘๐‘ฅ2

The following is a summary of what was found so far. Notice that the above expressions areevaluates at ๐‘ฅ = 0 and at ๐‘ฅ = ๐ฟ. Accordingly to obtain the nodal end forces vector ๏ฟฝ๐‘๏ฟฝ

๏ฟฝ๐‘๏ฟฝ =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘‰1

๐‘€1

๐‘‰2

๐‘€2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐ธ๐ผ ๐‘‘3๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ3 ๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘2๐‘ข๐‘‘๐‘ฅ2 ๏ฟฝ๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘3๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ3 ๏ฟฝ

๐‘ฅ=๐ฟ

๐ธ๐ผ ๐‘‘2๐‘ข๐‘‘๐‘ฅ2 ๏ฟฝ๐‘ฅ=๐ฟ

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

(1)

The RHS of the above is now expressed as function of the nodal displacements ๐‘ฃ1, ๐œƒ1, ๐‘ฃ2, ๐œƒ2.To do that, the field displacement ๐‘ฃ (๐‘ฅ) which is the transverse displacement of the beam isassumed to be a polynomial in ๐‘ฅ of degree 3 or

๐‘ฃ (๐‘ฅ) = ๐‘Ž0 + ๐‘Ž1๐‘ฅ + ๐‘Ž2๐‘ฅ2 + ๐‘Ž3๐‘ฅ3

๐œƒ (๐‘ฅ) =๐‘‘๐‘ฃ (๐‘ฅ)๐‘‘๐‘ฅ

= ๐‘Ž1 + 2๐‘Ž2๐‘ฅ + 3๐‘Ž3๐‘ฅ2 (A)

Polynomial of degree 3 is used since there are 4 degrees of freedom, and a minimum of 4free parameters is needed. Hence

๐‘ฃ1 = ๐‘ฃ (๐‘ฅ)|๐‘ฅ=0 = ๐‘Ž0 (2)

And

๐œƒ1 = ๐œƒ (๐‘ฅ)|๐‘ฅ=0 = ๐‘Ž1 (3)

Assuming the length of the beam is ๐ฟ, then

๐‘ฃ2 = ๐‘ฃ (๐‘ฅ)|๐‘ฅ=๐ฟ = ๐‘Ž0 + ๐‘Ž1๐ฟ + ๐‘Ž2๐ฟ2 + ๐‘Ž3๐ฟ3 (4)

And

๐œƒ2 = ๐œƒ (๐‘ฅ)|๐‘ฅ=๐ฟ = ๐‘Ž1 + 2๐‘Ž2๐ฟ + 3๐‘Ž3๐ฟ2 (5)

8

Page 13: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

Equations (2-5) gives

{๐‘‘} =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘Ž0๐‘Ž1

๐‘Ž0 + ๐‘Ž1๐ฟ + ๐‘Ž2๐ฟ2 + ๐‘Ž3๐ฟ3

๐‘Ž1 + 2๐‘Ž2๐ฟ + 3๐‘Ž3๐ฟ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 0 00 1 0 01 ๐ฟ ๐ฟ2 ๐ฟ3

0 1 2๐ฟ 3๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘Ž0๐‘Ž1๐‘Ž2๐‘Ž3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

Solving for ๐‘Ž๐‘– givesโŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘Ž0๐‘Ž1๐‘Ž2๐‘Ž3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 0 00 1 0 0

โˆ’ 3๐ฟ2 โˆ’ 2

๐ฟ3๐ฟ2 โˆ’ 1

๐ฟ2๐ฟ3

1๐ฟ2 โˆ’ 2

๐ฟ31๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฃ1๐œƒ1

3๐ฟ2๐‘ฃ2 โˆ’

1๐ฟ๐œƒ2 โˆ’

3๐ฟ2๐‘ฃ1 โˆ’

2๐ฟ๐œƒ1

1๐ฟ2๐œƒ1 +

1๐ฟ2๐œƒ2 +

2๐ฟ3๐‘ฃ1 โˆ’

2๐ฟ3๐‘ฃ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

๐‘ฃ (๐‘ฅ), the field displacement function from Eq. (A) can now be written as a function of thenodal displacements

๐‘ฃ (๐‘ฅ) = ๐‘Ž0 + ๐‘Ž1๐‘ฅ + ๐‘Ž2๐‘ฅ2 + ๐‘Ž3๐‘ฅ3

= ๐‘ฃ1 + ๐œƒ1๐‘ฅ + ๏ฟฝ3๐ฟ2

๐‘ฃ2 โˆ’1๐ฟ๐œƒ2 โˆ’

3๐ฟ2

๐‘ฃ1 โˆ’2๐ฟ๐œƒ1๏ฟฝ ๐‘ฅ2 + ๏ฟฝ

1๐ฟ2

๐œƒ1 +1๐ฟ2

๐œƒ2 +2๐ฟ3

๐‘ฃ1 โˆ’2๐ฟ3

๐‘ฃ2๏ฟฝ ๐‘ฅ3

= ๐‘ฃ1 + ๐‘ฅ๐œƒ1 โˆ’ 2๐‘ฅ2

๐ฟ๐œƒ1 +

๐‘ฅ3

๐ฟ2๐œƒ1 โˆ’

๐‘ฅ2

๐ฟ๐œƒ2 +

๐‘ฅ3

๐ฟ2๐œƒ2 โˆ’ 3

๐‘ฅ2

๐ฟ2๐‘ฃ1 + 2

๐‘ฅ3

๐ฟ3๐‘ฃ1 + 3

๐‘ฅ2

๐ฟ2๐‘ฃ2 โˆ’ 2

๐‘ฅ3

๐ฟ3๐‘ฃ2

Or in matrix form

๐‘ฃ (๐‘ฅ) = ๏ฟฝ1 โˆ’ 3 ๐‘ฅ2

๐ฟ2 + 2 ๐‘ฅ3

๐ฟ3 ๐‘ฅ โˆ’ 2๐‘ฅ2

๐ฟ + ๐‘ฅ3

๐ฟ2 3 ๐‘ฅ2

๐ฟ2 โˆ’ 2 ๐‘ฅ3

๐ฟ3 โˆ’๐‘ฅ2

๐ฟ + ๐‘ฅ3

๐ฟ2๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ 1๐ฟ3๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ 1

๐ฟ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

The above can be written as

๐‘ฃ (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

(5A)

๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘}

9

Page 14: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

Where ๐‘๐‘– are called the shape functions. The shape functions areโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘1 (๐‘ฅ)๐‘2 (๐‘ฅ)๐‘3 (๐‘ฅ)๐‘4 (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1๐ฟ3๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ

1๐ฟ2๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ1๐ฟ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ

1๐ฟ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

We notice that ๐‘1 (0) = 1 and ๐‘1 (๐ฟ) = 0 as expected. Also๐‘‘๐‘2 (๐‘ฅ)๐‘‘๐‘ฅ

๏ฟฝ๐‘ฅ=0

=1๐ฟ2

๏ฟฝ๐ฟ2 โˆ’ 4๐ฟ๐‘ฅ + 3๐‘ฅ2๏ฟฝ๏ฟฝ๐‘ฅ=0

= 1

And๐‘‘๐‘2 (๐‘ฅ)๐‘‘๐‘ฅ

๏ฟฝ๐‘ฅ=๐ฟ

=1๐ฟ2

๏ฟฝ๐ฟ2 โˆ’ 4๐ฟ๐‘ฅ + 3๐‘ฅ2๏ฟฝ๏ฟฝ๐‘ฅ=๐ฟ

= 0

Also ๐‘3 (0) = 0 and ๐‘3 (๐ฟ) = 1 and๐‘‘๐‘4 (๐‘ฅ)๐‘‘๐‘ฅ

๏ฟฝ๐‘ฅ=0

=1๐ฟ2

๏ฟฝโˆ’2๐ฟ๐‘ฅ + 3๐‘ฅ2๏ฟฝ๏ฟฝ๐‘ฅ=0

= 0

and๐‘‘๐‘4 (๐‘ฅ)๐‘‘๐‘ฅ

๏ฟฝ๐‘ฅ=๐ฟ

=1๐ฟ2

๏ฟฝโˆ’2๐ฟ๐‘ฅ + 3๐‘ฅ2๏ฟฝ๏ฟฝ๐‘ฅ=๐ฟ

= 1

The shape functions have thus been verified. The sti๏ฟฝness matrix is now found by substitutingEq. (5A) into Eq. (1), repeated below

๏ฟฝ๐‘๏ฟฝ =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘‰1

๐‘€1

๐‘‰2

๐‘€2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐ธ๐ผ ๐‘‘3๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ3 ๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘2๐‘ฃ๐‘‘๐‘ฅ2 ๏ฟฝ๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘3๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ3 ๏ฟฝ

๐‘ฅ=๐ฟ

๐ธ๐ผ ๐‘‘2๐‘ฃ๐‘‘๐‘ฅ2 ๏ฟฝ๐‘ฅ=๐ฟ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Hence

๏ฟฝ๐‘๏ฟฝ =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘‰1

๐‘€1

๐‘‰2

๐‘€2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐ธ๐ผ ๐‘‘3

๐‘‘๐‘ฅ3(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)

โˆ’๐ธ๐ผ ๐‘‘2

๐‘‘๐‘ฅ2(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)

โˆ’๐ธ๐ผ ๐‘‘3

๐‘‘๐‘ฅ3(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)

๐ธ๐ผ ๐‘‘2

๐‘‘๐‘ฅ2(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

(6)

But๐‘‘3

๐‘‘๐‘ฅ3๐‘1 (๐‘ฅ) =

1๐ฟ3

๐‘‘3

๐‘‘๐‘ฅ3๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ

=12๐ฟ3

10

Page 15: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

And๐‘‘3

๐‘‘๐‘ฅ3๐‘2 (๐‘ฅ) =

1๐ฟ2

๐‘‘3

๐‘‘๐‘ฅ3๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

=6๐ฟ2

And๐‘‘3

๐‘‘๐‘ฅ3๐‘3 (๐‘ฅ) =

1๐ฟ3

๐‘‘3

๐‘‘๐‘ฅ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ

=โˆ’12๐ฟ3

And๐‘‘3

๐‘‘๐‘ฅ3๐‘4 (๐‘ฅ) =

1๐ฟ2

๐‘‘3

๐‘‘๐‘ฅ3๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

=6๐ฟ2

For the second derivatives๐‘‘2

๐‘‘๐‘ฅ2๐‘1 (๐‘ฅ) =

1๐ฟ3

๐‘‘2

๐‘‘๐‘ฅ2๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ

=1๐ฟ3

(12๐‘ฅ โˆ’ 6๐ฟ)

And๐‘‘2

๐‘‘๐‘ฅ2๐‘2 (๐‘ฅ) =

1๐ฟ2

๐‘‘2

๐‘‘๐‘ฅ2๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

=1๐ฟ2

(6๐‘ฅ โˆ’ 4๐ฟ)

And๐‘‘2

๐‘‘๐‘ฅ2๐‘3 (๐‘ฅ) =

1๐ฟ3

๐‘‘2

๐‘‘๐‘ฅ2๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ

=1๐ฟ3

(6๐ฟ โˆ’ 12๐‘ฅ)

And๐‘‘2

๐‘‘๐‘ฅ2๐‘4 (๐‘ฅ) =

1๐ฟ2

๐‘‘2

๐‘‘๐‘ฅ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

=1๐ฟ2

(6๐‘ฅ โˆ’ 2๐ฟ)

11

Page 16: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 2. DIRECT METHOD

Hence Eq. (6) becomes

๏ฟฝ๐‘๏ฟฝ =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘‰1

๐‘€1

๐‘‰2

๐‘€2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐ธ๐ผ ๐‘‘3

๐‘‘๐‘ฅ3(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘2

๐‘‘๐‘ฅ2(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๐‘‘3

๐‘‘๐‘ฅ3(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)๏ฟฝ

๐‘ฅ=๐ฟ

๐ธ๐ผ ๐‘‘2

๐‘‘๐‘ฅ2(๐‘1๐‘ฃ1 + ๐‘2๐œƒ1 + ๐‘3๐‘ฃ2 + ๐‘4๐œƒ2)๏ฟฝ

๐‘ฅ=๐ฟ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐ธ๐ผ ๏ฟฝ 12๐ฟ3๐‘ฃ1 +6๐ฟ2๐œƒ1 โˆ’

12๐ฟ3๐‘ฃ2 +

6๐ฟ2๐œƒ2๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๏ฟฝ 1๐ฟ3(12๐‘ฅ โˆ’ 6๐ฟ) ๐‘ฃ1 +

1๐ฟ2(6๐‘ฅ โˆ’ 4๐ฟ) ๐œƒ1 +

1๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ) ๐‘ฃ2 +

1๐ฟ2(6๐‘ฅ โˆ’ 2๐ฟ) ๐œƒ2๏ฟฝ

๐‘ฅ=0

โˆ’๐ธ๐ผ ๏ฟฝ 12๐ฟ3๐‘ฃ1 +6๐ฟ2๐œƒ1 โˆ’

12๐ฟ3๐‘ฃ2 +

6๐ฟ2๐œƒ2๏ฟฝ

๐‘ฅ=๐ฟ

๐ธ๐ผ ๏ฟฝ 1๐ฟ3(12๐‘ฅ โˆ’ 6๐ฟ) ๐‘ฃ1 +

1๐ฟ2(6๐‘ฅ โˆ’ 4๐ฟ) ๐œƒ1 +

1๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ) ๐‘ฃ2 +

1๐ฟ2(6๐‘ฅ โˆ’ 2๐ฟ) ๐œƒ2๏ฟฝ

๐‘ฅ=๐ฟ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟโˆ’ (12๐‘ฅ โˆ’ 6๐ฟ)๐‘ฅ=0 โˆ’๐ฟ (6๐‘ฅ โˆ’ 4๐ฟ)๐‘ฅ=0 โˆ’ (6๐ฟ โˆ’ 12๐‘ฅ)๐‘ฅ=0 โˆ’๐ฟ (6๐‘ฅ โˆ’ 2๐ฟ)๐‘ฅ=0

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ(12๐‘ฅ โˆ’ 6๐ฟ)๐‘ฅ=๐ฟ ๐ฟ (6๐‘ฅ โˆ’ 4๐ฟ)๐‘ฅ=๐ฟ (6๐ฟ โˆ’ 12๐‘ฅ)๐‘ฅ=๐ฟ ๐ฟ (6๐‘ฅ โˆ’ 2๐ฟ)๐‘ฅ=๐ฟ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

(7)

Or in matrix form, after evaluating the expressions above for ๐‘ฅ = ๐ฟ and ๐‘ฅ = 0 asโŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘‰1

๐‘€1

๐‘‰2

๐‘€2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’ 12๐ฟ3 โˆ’ 6

๐ฟ212๐ฟ3 โˆ’ 6

๐ฟ2

(12๐ฟ โˆ’ 6๐ฟ) ๐ฟ (6๐ฟ โˆ’ 4๐ฟ) (6๐ฟ โˆ’ 12๐ฟ) ๐ฟ (6๐ฟ โˆ’ 2๐ฟ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

The above now is in the form

๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}

Hence the sti๏ฟฝness matrix is

[๐พ] =๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Knowing the sti๏ฟฝness matrix means knowing the nodal displacements {๐‘‘} when given theforces at the nodes. The power of the finite element method now comes after all the nodaldisplacements ๐‘ฃ1, ๐œƒ1, ๐‘ฃ2, ๐œƒ2 are calculated by solving ๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}. This is because the polyno-

12

Page 17: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

mial ๐‘ฃ (๐‘ฅ) is now completely determined and hence ๐‘ฃ (๐‘ฅ) and ๐œƒ (๐‘ฅ) can now be evaluated forany ๐‘ฅ along the beam and not just at its end nodes as the case with finite di๏ฟฝerence method.Eq. 5A above can now be used to find the displacement ๐‘ฃ (๐‘ฅ) and ๐œƒ (๐‘ฅ) everywhere.

๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘}

๐‘ฃ (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

To summarise, these are the steps to obtain ๐‘ฃ (๐‘ฅ)

1. An expression for [๐พ] is found.

2. ๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘} is solved for {๐‘‘}

3. ๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘} is calculated by assuming ๐‘ฃ (๐‘ฅ) is a polynomial. This gives the displace-ment ๐‘ฃ (๐‘ฅ) to use to evaluate the transverse displacement anywhere on the beam andnot just at the end nodes.

4. ๐œƒ (๐‘ฅ) = ๐‘‘๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ = ๐‘‘

๐‘‘๐‘ฅ [๐‘] {๐‘‘} is obtained to evaluate the rotation of the beam any where andnot just at the end nodes.

5. The strain ๐œ– (๐‘ฅ) = โˆ’๐‘ฆ [๐ต] {๐‘‘} is found, where [๐ต] is the gradient matrix [๐ต] = ๐‘‘2

๐‘‘๐‘ฅ2 [๐‘].

6. The stress from ๐œŽ = ๐ธ๐œ– = โˆ’๐ธ๐‘ฆ [๐ต] {๐‘‘} is found.

7. The bending moment diagram from ๐‘€(๐‘ฅ) = ๐ธ๐ผ [๐ต] {๐‘‘} is found.

8. The shear force diagram from ๐‘‰ (๐‘ฅ) = ๐‘‘๐‘‘๐‘ฅ๐‘€(๐‘ฅ) is found.

2.1 Examples using the direct beam sti๏ฟฝness matrix

The beam sti๏ฟฝness matrix is now used to solve few beam problems. Starting with simpleone span beam

2.1.1 Example 1

A one span beam, a cantilever beam of length ๐ฟ, with point load ๐‘ƒ at the free end

L

P

13

Page 18: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

The first step is to make the free body diagram and show all moments and forces at thenodes

L

P

R

M1M2

๐‘ƒ is the given force. ๐‘€2 = 0 since there is no external moment at the right end. Hence๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘} for this system is

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘…๐‘€1

โˆ’๐‘ƒ0

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

Now is an important step. The known end displacements from boundary conditions issubstituted into {๐‘‘}, and the corresponding row and columns from the above system ofequations are removed1. Boundary conditions indicates that there is no rotation on theleft end (since fixed). Hence ๐‘ฃ1 = 0 and ๐œƒ1 = 0. Hence the only unknowns are ๐‘ฃ2 and ๐œƒ2.Therefore the first and the second rows and columns are removed, giving

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉโˆ’๐‘ƒ0

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ=

๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽ12 โˆ’6๐ฟโˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ

Now the above is solved for

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ. Let ๐ธ = 30 ร— 106 psi (steel), ๐ผ = 57 ๐‘–๐‘›4, ๐ฟ = 144 ๐‘–๐‘›, and

๐‘ƒ = 400 lb, hence๏ฟฝ ๏ฟฝ1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[P;P*L;-P;0];11 x=A(3:end,3:end)\load(3:end)๏ฟฝ ๏ฟฝ

1Instead of removing rows/columns for known boundary conditions, we can also just put a 1 on the diagonalof the sti๏ฟฝness matrix for that boundary conditions. I will do this example again using this method

14

Page 19: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

ห™

which givesx =-0.2324-0.0024

Therefore the vertical displacement at the right end is ๐‘ฃ2 = 0.2324 inches (downwards) and๐œƒ2 = โˆ’0.0024 radians. Now that all nodal displacements are found, the field displacementfunction is completely determined.

{๐‘‘} =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.2324โˆ’0.0024

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

From Eq. 5A

๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘}

= ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.2324โˆ’0.0024

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ 1๐ฟ3๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ 1

๐ฟ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.2324โˆ’0.0024

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=0.002 4๐ฟ2

๏ฟฝ๐ฟ๐‘ฅ2 โˆ’ ๐‘ฅ3๏ฟฝ +0.232 4๐ฟ3

๏ฟฝ2๐‘ฅ3 โˆ’ 3๐ฟ๐‘ฅ2๏ฟฝ

But ๐ฟ = 144 inches, and the above becomes

๐‘ฃ (๐‘ฅ) = 3.992 0 ร— 10โˆ’8๐‘ฅ3 โˆ’ 1.695 6 ร— 10โˆ’5๐‘ฅ2

To verify, let ๐‘ฅ = 144 in the above

๐‘ฃ (๐‘ฅ = 144) = 3.992 0 ร— 10โˆ’81443 โˆ’ 1.695 6 ร— 10โˆ’51442

= โˆ’0.232 40

The following is a plot of the deflection curve for the beam๏ฟฝ ๏ฟฝ1 v=@(x) 3.992*10^-8*x.^3-1.6956*10^-5*x.^22 x=0:0.1:144;3 plot(x,v(x),'r-','LineWidth',2);4 ylim([-0.8 0.3]);5 title('beam deflection curve');6 xlabel('x inch'); ylabel('deflection inch');7 grid๏ฟฝ ๏ฟฝ

15

Page 20: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

ห™

Now instead of removing rows/columns for the known boundary conditions, a 1 is put onthe diagonal. Starting again with

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘…๐‘€1

โˆ’๐‘ƒ0

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

Since ๐‘ฃ1 = 0 and ๐œƒ1 = 0, thenโŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00โˆ’๐‘ƒ0

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 0 00 1 0 00 0 12 โˆ’6๐ฟ0 0 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

The above system is now solved as before. ๐ธ = 30 ร— 106 psi, ๐ผ = 57 ๐‘–๐‘›4, ๐ฟ = 144 in, ๐‘ƒ = 400 lb๏ฟฝ ๏ฟฝ1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[0;0;-P;0]; %put zeros for known B.C.11 A(:,1)=0; A(1,:)=0; A(1,1)=1; %put 1 on diagonal12 A(:,2)=0; A(2,:)=0; A(2,2)=1; %put 1 on diagonal13 A๏ฟฝ ๏ฟฝ

ห™A =

16

Page 21: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

1.0e+07 *0.0000 0 0 00 0.0000 0 00 0 0.0007 -0.04960 0 -0.0496 4.7583๏ฟฝ ๏ฟฝ

1 sol=A\load %SOLVE๏ฟฝ ๏ฟฝห™sol =00-0.2324-0.0024

The same solution is obtained as before, but without the need to remove rows/column fromthe sti๏ฟฝness matrix. This method might be easier for programming than the first method ofremoving rows/columns.

The rest now is the same as was done earlier and will not be repeated.

2.1.2 Example 2

This is the same example as above, but the vertical load ๐‘ƒ is now placed in the middle ofthe beam

L

P

In using sti๏ฟฝness method, all loads must be on the nodes. The vector ๏ฟฝ๐‘๏ฟฝ is the nodal forcesvector. Hence equivalent nodal loads are found for the load in the middle of the beam. Theequivalent loading is the following

L

P/2P/2 PL/8PL/8

17

Page 22: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Therefore, the problem is as if it was the following problem

L

P/2P/2

PL/8PL/8

Now that equivalent loading is in place, we continue as before. Making a free body diagramshowing all loads (including reaction forces)

L

P/2

P/2

PL/8PL/8

M1

R

The sti๏ฟฝness equation is now written as

๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘… โˆ’ ๐‘ƒ/2๐‘€1 โˆ’ ๐‘ƒ๐ฟ/8

โˆ’๐‘ƒ/2๐‘ƒ๐ฟ/8

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

There is no need to determine ๐‘… and ๐‘€1 at this point since these rows will be removed dueto boundary conditions ๐‘ฃ1 = 0 and ๐œƒ1 = 0 and hence those quantities are not needed tosolve the equations. Note that the rows and columns are removed for the known boundarydisplacements before solving ๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}. Hence, after removing the first two rows andcolumns, the above system simplifies to

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉโˆ’๐‘ƒ/2๐‘ƒ๐ฟ/8

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ=

๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽ12 โˆ’6๐ฟโˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ

The above is now solved for

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญusing the same numerical values for ๐‘ƒ, ๐ธ, ๐ผ, ๐ฟ as in the first

example๏ฟฝ ๏ฟฝ1 P=400;2 L=144;

18

Page 23: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[-P/2;P*L/8];11 x=A(3:end,3:end)\load๏ฟฝ ๏ฟฝ

ห™x =-0.072630472854641-0.000605253940455

Therefore

{๐‘‘} =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.072630472854641โˆ’0.000605253940455

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

This is enough to obtain ๐‘ฃ (๐‘ฅ) as before. Now the reactions ๐‘… and ๐‘€1 can be determined ifneeded. Going back to the full ๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}, results in

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘… โˆ’ ๐‘ƒ/2๐‘€1 โˆ’ ๐‘ƒ๐ฟ/8

โˆ’๐‘ƒ/2๐‘ƒ๐ฟ/8

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.072630472854641โˆ’0.000605253940455

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

0.871 57 โˆ’ 3.631 5 ร— 10โˆ’3๐ฟ0.435 78๐ฟ โˆ’ 1.210 5 ร— 10โˆ’3๐ฟ2

3.631 5 ร— 10โˆ’3๐ฟ โˆ’ 0.871 570.435 78๐ฟ โˆ’ 2.421 ร— 10โˆ’3๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Hence the first equation becomes

๐‘… โˆ’ ๐‘ƒ/2 =๐ธ๐ผ๐ฟ3

๏ฟฝ0.871 57 โˆ’ 3.631 5 ร— 10โˆ’3๐ฟ๏ฟฝ

and since ๐ธ = 30 ร— 106 psi (steel) and ๐ผ = 57 ๐‘–๐‘›4and ๐ฟ = 144 in and ๐‘ƒ = 400 lb, then

๐‘… =๏ฟฝ30ร—106๏ฟฝ57

1443๏ฟฝ0.871 57 โˆ’ 3.631 5 ร— 10โˆ’3 (144)๏ฟฝ + 400/2 . Therefore

๐‘… = 400 lb

and ๐‘€1 โˆ’ ๐‘ƒ๐ฟ/8 = ๐ธ๐ผ๐ฟ3๏ฟฝ0.435 78๐ฟ โˆ’ 1.210 5 ร— 10โˆ’3๐ฟ2๏ฟฝ + ๐‘ƒ๐ฟ/8 , hence

๐‘€1 = 28 762 lb-ft

Now that all nodal reactions are found, the displacement field is found and the deflection

19

Page 24: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

curve can be plotted.

๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘}

๐‘ฃ (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00

โˆ’0.072630472854641โˆ’0.000605253940455

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ 1๐ฟ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽโˆ’0.072630472854641โˆ’0.000605253940455

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

=6.052 5 ร— 10โˆ’4

๐ฟ2๏ฟฝ๐ฟ๐‘ฅ2 โˆ’ ๐‘ฅ3๏ฟฝ +

0.072 63๐ฟ3

๏ฟฝ2๐‘ฅ3 โˆ’ 3๐ฟ๐‘ฅ2๏ฟฝ

Since ๐ฟ = 144 inches, the above becomes

๐‘ฃ (๐‘ฅ) =6.052 5 ร— 10โˆ’4

(144)2๏ฟฝ(144) ๐‘ฅ2 โˆ’ ๐‘ฅ3๏ฟฝ +

0.072 63(144)3

๏ฟฝ2๐‘ฅ3 โˆ’ 3 (144) ๐‘ฅ2๏ฟฝ

= 1.945 9 ร— 10โˆ’8๐‘ฅ3 โˆ’ 6.304 7 ร— 10โˆ’6๐‘ฅ2

The following is the plot

2.1.3 Example 3

Assuming the beam is fixed on the left end as above, but simply supported on the right end,and the vertical load ๐‘ƒ now at distance ๐‘Ž from the left end and at distance ๐‘ from the rightend, and a uniform distributed load of density ๐‘š lb/in is on the beam.

20

Page 25: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Pm (lb/in

a b

M1

Using the following values: ๐‘Ž = 0.625๐ฟ, ๐‘ = 0.375๐ฟ, ๐ธ = 30 ร— 106 psi (steel), ๐ผ = 57 ๐‘–๐‘›4, ๐ฟ =144 in, ๐‘ƒ = 1000 lb, ๐‘š = 200 lb/in.

In the above, the left end reaction forces are shown as ๐‘…1 and moment reaction as ๐‘€1 andthe reaction at the right end as ๐‘…2. Starting by finding equivalent loads for the point load๐‘ƒ and equivalent loads for for the uniform distributed load ๐‘š. All external loads must betransferred to the nodes for the sti๏ฟฝness method to work. Equivalent load for the abovepoint load is

Pb2L2a

L3Pa2L2b

L3

a b

Pab2

L2

Pa2b

L2

Equivalent load for the uniform distributed loading is

mL2

mL2

12mL2

mL2

12

21

Page 26: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Using free body diagram, with all the loads on it gives the following diagram (In this diagram๐‘€ is the reaction moment and ๐‘…1, ๐‘…2 are the reaction forces)

Now that all loads are on the nodes, the sti๏ฟฝness equation is applied

๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘}โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘…1 โˆ’๐‘ƒ๐‘2(๐ฟ+2๐‘Ž)

๐ฟ3 โˆ’ ๐‘š๐ฟ2

๐‘€โˆ’ ๐‘ƒ๐‘Ž๐‘2

๐ฟ2 โˆ’ ๐‘š๐ฟ2

12

๐‘…2 โˆ’๐‘ƒ๐‘Ž2(๐ฟ+2๐‘)

๐ฟ3 โˆ’ ๐‘š๐ฟ2

๐‘ƒ๐‘Ž2๐‘๐ฟ2 + ๐‘š๐ฟ2

12

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

Boundary conditions are now applied. ๐‘ฃ1 = 0, ๐œƒ1 = 0,๐‘ฃ2 = 0. Therefore the first, second andthird rows/columns are removed giving

๐‘ƒ๐‘Ž2๐‘๐ฟ2

+๐‘š๐ฟ2

12=

๐ธ๐ผ๐ฟ3

4๐ฟ2๐œƒ2

Hence

๐œƒ2 = ๏ฟฝ๐‘ƒ๐‘Ž2๐‘๐ฟ2

+๐‘š๐ฟ2

12 ๏ฟฝ ๏ฟฝ๐ฟ4๐ธ๐ผ๏ฟฝ

Substituting numerical values for the above as given at the top of the problem results in

๐œƒ2 =โŽ›โŽœโŽœโŽœโŽ(1000) (0.625 (144))2 (0.375 (144))

(144)2+(200) (144)2

12

โŽžโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽ

1444 ๏ฟฝ30 ร— 106๏ฟฝ (57)

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

= 7.719 9 ร— 10โˆ’3๐‘Ÿ๐‘Ž๐‘‘

22

Page 27: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Hence the field displacement ๐‘ข (๐‘ฅ) is now found

๐‘ฃ (๐‘ฅ) = [๐‘] {๐‘‘}

๐‘ฃ (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

000

7.719 9 ร— 10โˆ’3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=1๐ฟ2

๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ ๏ฟฝ7.719 9 ร— 10โˆ’3๏ฟฝ

= 3.722 9 ร— 10โˆ’7๐‘ฅ3 โˆ’ 5.361 ร— 10โˆ’5๐‘ฅ2

And a plot of the deflection curve is๏ฟฝ ๏ฟฝ1 clear all; close all;2 v=@(x) 3.7229*10^-7*x.^3-5.361*10^-5*x.^23 x=0:0.1:144;4 plot(x,v(x),'r-','LineWidth',2);5 ylim([-0.5 0.3]);6 title('beam deflection curve');7 xlabel('x inch'); ylabel('deflection inch');8 grid๏ฟฝ ๏ฟฝ

ห™

23

Page 28: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

24

Page 29: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 3

Finite elements or adding moreelements

Finite elements generated displacements are smaller in value than the actual analyticalvalues. To improve the accuracy, more elements are added. To add more elements, thebeam is divided into 2,3,4 and more beam elements. To show how this works, example 3above is solved again using two elements. It is found that displacement field ๐‘ฃ (๐‘ฅ) becomesmore accurate (By comparing the the result with the exact solution based on using the beam4th order di๏ฟฝerential equation. It is found to be almost the same with only 2 elements)

3.1 Example 3 redone with 2 elements

The first step is to divide the beam into two elements and number the degrees of freedomand global nodes as follows

Pm (lb/inP

L

L/2 L/2

m (lb/in)Divide into 2 elements

There is 6 total degrees of freedom. two at each node. Hence the sti๏ฟฝness matrix for thewhole beam (including both elements) will be 6 by 6. For each element however, the samesti๏ฟฝness matrix will be used as above and that will remain as before 4 by 4.

25

Page 30: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

1 2 3

v 1 v 2 v 3

The sti๏ฟฝness matrix for each element is found and then the global sti๏ฟฝness matrix is assem-bled. Then ๏ฟฝ๐‘๐‘”๐‘™๐‘œ๐‘๐‘Ž๐‘™๏ฟฝ = ๏ฟฝ๐พ๐‘”๐‘™๐‘œ๐‘๐‘Ž๐‘™๏ฟฝ ๏ฟฝ๐‘‘๐‘”๐‘™๐‘œ๐‘๐‘Ž๐‘™๏ฟฝ is solved as before. The first step is to move all loads tothe nodes as was done before. This is done for each element. The formulas for equivalentloads remain the same, but now ๐ฟ becomes ๐ฟ/2. The following diagram show the equivalentloading for ๐‘ƒ

1 2 3

a b

L/2 L/2

Pb2L/22a

L/23Pa2L/22b

L/23Pab2

L/22Pa2b

L/22

a 0.125L

b 0.375L

Equivalent loading of point load P after moving to nodes

of second element

The equivalent loading for distributed load ๐‘š is

26

Page 31: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Now the above two diagrams are put together to show all equivalent loads with the originalreaction forces to obtain the following diagram

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Pb2L/22a

L/23

Pa2L/22b

L/23

Pab2

L/22

Pa2b

L/22

R1R3

M1

Nodal loading for 2 elements beam after performing equivalent loading

27

Page 32: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

๏ฟฝ๐‘๏ฟฝ = [๐พ] {๐‘‘} for each element is now constructed. Starting with the first elementโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘…1 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘€1 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

12

โˆ’๐‘ƒ๐‘2๏ฟฝ ๐ฟ2+2๐‘Ž๏ฟฝ

(๐ฟ/2)3โˆ’

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ2

12 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

12 โˆ’ ๐‘ƒ๐‘Ž๐‘2

๏ฟฝ ๐ฟ2 ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ

๏ฟฝ๐ฟ2๏ฟฝ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6 ๏ฟฝ๐ฟ2๏ฟฝ โˆ’12 6 ๏ฟฝ๐ฟ2๏ฟฝ

6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ

6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

And for the second elementโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’๐‘ƒ๐‘2๏ฟฝ ๐ฟ2+2๐‘Ž๏ฟฝ

(๐ฟ/2)3โˆ’

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ2

12 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

12 โˆ’ ๐‘ƒ๐‘Ž๐‘2

๏ฟฝ ๐ฟ2 ๏ฟฝ2

๐‘…3 โˆ’๐‘ƒ๐‘Ž2๏ฟฝ ๐ฟ2+2๐‘๏ฟฝ

๏ฟฝ ๐ฟ2 ๏ฟฝ3 โˆ’

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ2

12 + ๐‘ƒ๐‘Ž2๐‘

๏ฟฝ ๐ฟ2 ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ

๏ฟฝ๐ฟ2๏ฟฝ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6 ๏ฟฝ๐ฟ2๏ฟฝ โˆ’12 6 ๏ฟฝ๐ฟ2๏ฟฝ

6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ

6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ2๐œƒ2

๐‘ฃ3๐œƒ3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

The 2 systems above are assembled to obtain the global sti๏ฟฝness matrix equation givingโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘…1 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘€1 โˆ’๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

12

โˆ’2๐‘ƒ๐‘2๏ฟฝ ๐ฟ2+2๐‘Ž๏ฟฝ

๏ฟฝ ๐ฟ2 ๏ฟฝ3 โˆ’ 2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

โˆ’2๐‘ƒ๐‘Ž๐‘2

๏ฟฝ ๐ฟ2 ๏ฟฝ2

๐‘…3 โˆ’๐‘ƒ๐‘Ž2๏ฟฝ ๐ฟ2+2๐‘๏ฟฝ

๏ฟฝ ๐ฟ2 ๏ฟฝ3 โˆ’

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ2

12 + ๐‘ƒ๐‘Ž2๐‘

๏ฟฝ ๐ฟ2 ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ

๏ฟฝ๐ฟ2๏ฟฝ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6 ๏ฟฝ๐ฟ2๏ฟฝ โˆ’12 6 ๏ฟฝ๐ฟ2๏ฟฝ 0 0

6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

0 0

โˆ’12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 12 + 12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ + 6 ๏ฟฝ๐ฟ2๏ฟฝ โˆ’12 6 ๏ฟฝ๐ฟ2๏ฟฝ

6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ + 6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2+ 4 ๏ฟฝ๐ฟ2๏ฟฝ

2โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ

2

0 0 โˆ’12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 12 โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ

0 0 6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

โˆ’6 ๏ฟฝ๐ฟ2๏ฟฝ 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

๐‘ฃ3๐œƒ3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

The boundary conditions are now applied giving ๐‘ฃ1 = 0, ๐œƒ1 = 0 since the first node is fixed,and ๐‘ฃ3 = 0. And putting 1 on the diagonal of the sti๏ฟฝness matrix corresponding to these

28

Page 33: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

known boundary conditions results inโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

00

โˆ’2๐‘ƒ๐‘2๏ฟฝ ๐ฟ2+2๐‘Ž๏ฟฝ

(๐ฟ/2)3โˆ’ 2๐‘š(๐ฟ/2)2

โˆ’2 ๐‘ƒ๐‘Ž๐‘2

(๐ฟ/2)2

0๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

12 + ๐‘ƒ๐‘Ž2๐‘

๏ฟฝ ๐ฟ2 ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ

๏ฟฝ๐ฟ2๏ฟฝ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 0 0 0 00 1 0 0 0 0

0 0 24 0 0 6 ๏ฟฝ๐ฟ2๏ฟฝ

0 0 0 8 ๏ฟฝ๐ฟ2๏ฟฝ2

0 2 ๏ฟฝ๐ฟ2๏ฟฝ2

0 0 0 0 1 0

0 0 6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

0 4 ๏ฟฝ๐ฟ2๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

00๐‘ฃ2๐œƒ2

0๐œƒ3

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

As was mentioned earlier, another method would be to remove the rows/columns whichresults in โŽ›

โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’2๐‘ƒ๐‘2๏ฟฝ ๐ฟ2+2๐‘Ž๏ฟฝ

(๐ฟ/2)3โˆ’ 2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ

2

โˆ’2๐‘ƒ๐‘Ž๐‘2

๏ฟฝ ๐ฟ2 ๏ฟฝ2

๐‘š๏ฟฝ ๐ฟ2 ๏ฟฝ2

12 + ๐‘ƒ๐‘Ž2๐‘

๏ฟฝ ๐ฟ2 ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ

๏ฟฝ๐ฟ2๏ฟฝ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

24 0 6 ๏ฟฝ๐ฟ2๏ฟฝ

0 8 ๏ฟฝ๐ฟ2๏ฟฝ2

2 ๏ฟฝ๐ฟ2๏ฟฝ2

6 ๏ฟฝ๐ฟ2๏ฟฝ 2 ๏ฟฝ๐ฟ2๏ฟฝ2

4 ๏ฟฝ๐ฟ2๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฃ2๐œƒ2

๐œƒ3

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Giving the same solution. There are 3 unknowns to solve for. Once these unknowns aresolved for, ๐‘ฃ (๐‘ฅ) for the first element and for the second element are fully determined. Thefollowing code displays the deflection curve for the above beam๏ฟฝ ๏ฟฝ

1 clear all; close all;2 P=400;3 L=144;4 E=30*10^6;5 I=57.1;6 m=200;7 a=0.125*L;8 b=0.375*L;9 A=E*I/(L/2)^3*[1 0 0 0 0 0;10 0 1 0 0 0 0;11 0 0 24 0 0 6*L/2;12 0 0 0 8*(L/2)^2 0 2*(L/2)^2;13 0 0 0 0 1 0;14 0 0 6*L/2 2*(L/2)^2 0 4*(L/2)^2];15 A16 load = [0;17 0;18 -(m*L/2) - 2*P*b^2*(L/2+2*a)/(L/2)^3;19 -2*P*a*b^2/(L/2)^2;20 0;21 P*a^2*b/(L/2)^2+(m*(L/2)^2)/12]

29

Page 34: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

22 sol=A\load๏ฟฝ ๏ฟฝห™A =1.0e+08 *0.0000 0 0 0 0 00 0.0000 0 0 0 00 0 0.0011 0 0 0.01980 0 0 1.9033 0 0.47580 0 0 0 0.0000 00 0 0.0198 0.4758 0 0.9517load =00-15075-8100087750sol =00-0.2735-0.001900.0076

The above solution gives ๐‘ฃ2 = โˆ’0.2735 in (downwards displacement) and ๐œƒ2 = โˆ’0.0019radians and ๐œƒ3 = 0.0076 radians. ๐‘ฃ (๐‘ฅ) polynomial is now found for each element

๐‘ฃ๐‘’๐‘™๐‘’๐‘š1 (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ1๐œƒ1

๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

00๐‘ฃ2๐œƒ2

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

=โŽ›โŽœโŽœโŽœโŽ

1

๏ฟฝ ๐ฟ2 ๏ฟฝ3 ๏ฟฝ3 ๏ฟฝ

๐ฟ2๏ฟฝ ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ 1

๏ฟฝ ๐ฟ2 ๏ฟฝ2 ๏ฟฝโˆ’ ๏ฟฝ

๐ฟ2๏ฟฝ ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽโˆ’0.2735โˆ’0.0019

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

=2.188๐ฟ3 ๏ฟฝ2๐‘ฅ3 โˆ’

32๐ฟ๐‘ฅ2๏ฟฝ โˆ’

0.007 6๐ฟ2 ๏ฟฝ๐‘ฅ3 โˆ’

12๐ฟ๐‘ฅ2๏ฟฝ

The above polynomial is the transverse deflection of the beam for the region 0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ/2.

30

Page 35: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

๐‘ฃ (๐‘ฅ) for the second element is found in similar way

๐‘ฃ๐‘’๐‘™๐‘’๐‘š2 (๐‘ฅ) = ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

๐‘ฃ2๐œƒ2

0๐œƒ3

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

= ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘3 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’0.2735โˆ’0.0019

00.0076

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= ๏ฟฝ๐‘1 (๐‘ฅ) ๐‘2 (๐‘ฅ) ๐‘4 (๐‘ฅ)๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’0.2735โˆ’0.00190.0076

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=โŽ›โŽœโŽœโŽœโŽœโŽ

1

๏ฟฝ ๐ฟ2 ๏ฟฝ3 ๏ฟฝ๏ฟฝ

๐ฟ2๏ฟฝ3โˆ’ 3 ๏ฟฝ๐ฟ2๏ฟฝ ๐‘ฅ

2 + 2๐‘ฅ3๏ฟฝ1

๏ฟฝ ๐ฟ2 ๏ฟฝ2 ๏ฟฝ๏ฟฝ

๐ฟ2๏ฟฝ2๐‘ฅ โˆ’ 2 ๏ฟฝ๐ฟ2๏ฟฝ ๐‘ฅ

2 + ๐‘ฅ3๏ฟฝ1

๏ฟฝ ๐ฟ2 ๏ฟฝ2 ๏ฟฝโˆ’ ๏ฟฝ

๐ฟ2๏ฟฝ ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’0.2735โˆ’0.00190.0076

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Hence

๐‘ฃ๐‘’๐‘™๐‘’๐‘š2 (๐‘ฅ) =0.030 4๐ฟ2 ๏ฟฝ๐‘ฅ3 โˆ’

12๐ฟ๐‘ฅ2๏ฟฝ โˆ’

0.007 6๐ฟ2 ๏ฟฝ

14๐ฟ2๐‘ฅ โˆ’ ๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ โˆ’

2.188๐ฟ3 ๏ฟฝ

18๐ฟ3 โˆ’

32๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ

Which is valid for ๐ฟ/2 โ‰ค ๐‘ฅ โ‰ค ๐ฟ. The following is a plot of the deflection curve using the above2 equations

When the above plot is compared to the case with one element, the deflection is seen to belarger now. Comparing the above to the analytical solution shows that the deflection nowis almost exactly the same as the analytical solution. Hence by using only two elementsinstead of one element, the solution has become more accurate and almost agrees with theanalytical solution.

The following diagram shows the deflection curve of problem three above when using oneelement and two elements on the same plot to help illustrate the di๏ฟฝerence in the result

31

Page 36: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

more clearly.

The analytical deflection for the beam in problem three above (fixed on the left and simplysupported at the right end) when there is uniformly loaded with ๐‘ค lbs per unit length isgiven by

๐‘ฃ (๐‘ฅ) = โˆ’๐‘ค๐‘ฅ2

48๐ธ๐ผ๏ฟฝ3๐ฟ2 โˆ’ 5๐ฟ๐‘ฅ + 2๐‘ฅ2๏ฟฝ

While the analytical deflection for the same beam but when there is a point load P at distance๐‘Ž from the left end is given by

๐‘ฃ (๐‘ฅ) = โˆ’๐‘ƒ(โŸจ๐ฟ โˆ’ ๐‘ŽโŸฉ3 (3๐ฟ โˆ’ ๐‘ฅ)๐‘ฅ2 + ๐ฟ2(3(๐ฟ โˆ’ ๐‘Ž)(๐ฟ โˆ’ ๐‘ฅ)๐‘ฅ2 + 2๐ฟ โŸจ๐‘ฅ โˆ’ ๐‘ŽโŸฉ3))

Therefore, the analytical expression for deflection is given by the sum of the above expres-sions, giving

๐‘ฃ (๐‘ฅ) = โˆ’๐‘ค๐‘ฅ2

48๐ธ๐ผ๏ฟฝ3๐ฟ2 โˆ’ 5๐ฟ๐‘ฅ + 2๐‘ฅ2๏ฟฝ โˆ’ ๐‘ƒ(โŸจ๐ฟ โˆ’ ๐‘ŽโŸฉ3 (3๐ฟ โˆ’ ๐‘ฅ)๐‘ฅ2 + ๐ฟ2(3(๐ฟ โˆ’ ๐‘Ž)(๐ฟ โˆ’ ๐‘ฅ)๐‘ฅ2 + 2๐ฟ โŸจ๐‘ฅ โˆ’ ๐‘ŽโŸฉ3))

Where โŸจ๐‘ฅ โˆ’ ๐‘ŽโŸฉmeans it is zero when ๐‘ฅโˆ’๐‘Ž is negative. In other words โŸจ๐‘ฅ โˆ’ ๐‘ŽโŸฉ = (๐‘ฅ โˆ’ ๐‘Ž)๐‘ˆ๐‘›๐‘–๐‘ก๐‘†๐‘ก๐‘’๐‘ (๐‘ฅ โˆ’ ๐‘Ž)

The following diagram is a plot of the analytical deflection with the two elements deflectioncalculated using Finite elements above.

32

Page 37: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

In the above, the blue dashed curve is the analytical solution, and the red curve is the finiteelements solution using 2 elements. It can be seen that the finite element solution for thedeflection is now in a very good agreement with the analytical solution.

33

Page 38: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

34

Page 39: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 4

Generating shear and bendingmoments diagrams

After solving the problem using finite elements and obtaining the field displacement function๐‘ฃ (๐‘ฅ) as was shown in the above examples, the shear force and bending moments along the

beam can be calculated. Since the bending moment is given by ๐‘€(๐‘ฅ) = โˆ’๐ธ๐ผ๐‘‘2๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ2 and shear

force is given by ๐‘‰ (๐‘ฅ) = ๐‘‘๐‘€๐‘‘๐‘ฅ = โˆ’๐ธ๐ผ๐‘‘

3๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ3 then these diagrams are now readily plotted as shown

below for example three above using the result from the finite elements with 2 elements.Recalling from above that

๐‘ฃ (๐‘ฅ) =2.188๐ฟ3

๏ฟฝ2๐‘ฅ3 โˆ’ 32๐ฟ๐‘ฅ

2๏ฟฝ โˆ’ 0.007 6๐ฟ2

๏ฟฝ๐‘ฅ3 โˆ’ 12๐ฟ๐‘ฅ

2๏ฟฝ0.030 4๐ฟ2

๏ฟฝ๐‘ฅ3 โˆ’ 12๐ฟ๐‘ฅ

2๏ฟฝ โˆ’ 0.007 6๐ฟ2

๏ฟฝ14๐ฟ

2๐‘ฅ โˆ’ ๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ โˆ’ 2.188๐ฟ3

๏ฟฝ18๐ฟ

3 โˆ’ 32๐ฟ๐‘ฅ

2 + 2๐‘ฅ3๏ฟฝ

โŽซโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽญ

0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ/2๐ฟ/2 โ‰ค ๐‘ฅ โ‰ค ๐ฟ

Hence

๐‘€(๐‘ฅ) = โˆ’๐ธ๐ผโˆ’0.0076(6๐‘ฅโˆ’๐ฟ)

๐ฟ2 + 2.188(12๐‘ฅโˆ’3๐ฟ)๐ฟ3

โˆ’0.0076(6๐‘ฅโˆ’2๐ฟ)๐ฟ2 + 0.0304(6๐‘ฅโˆ’๐ฟ)

๐ฟ2 โˆ’ 2.188(12๐‘ฅโˆ’3๐ฟ)๐ฟ3

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ

0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ/2๐ฟ/2 โ‰ค ๐‘ฅ โ‰ค ๐ฟ

using ๐ธ = 30 ร— 106 psi and ๐ผ = 57 in4 and ๐ฟ = 144 in, the bending moment diagram plot is

35

Page 40: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

CHAPTER 4. GENERATING SHEAR . . .

The bending moment diagram clearly does not agree with the bending moment diagramthat can be generated from the analytical solution given below (generated using my otherprogram which solves this problem analytically)

The reason for this is because the solution ๐‘ฃ (๐‘ฅ) obtained using the finite elements methodis a third degree polynomial and after di๏ฟฝerentiating twice to obtain the bending moment

(๐‘€(๐‘ฅ) = โˆ’๐ธ๐ผ๐‘‘2๐‘ฃ๐‘‘๐‘ฅ2 ) the result becomes a linear function in ๐‘ฅ while in the analytical solution

case, when the load is distributed, the solution ๐‘ฃ (๐‘ฅ) is a fourth degree polynomial. Hencethe bending moment will be quadratic function in ๐‘ฅ in the analytical case.

Therefore, in order to obtain good approximation for the bending moment and shear forcediagrams using finite elements, more elements will be needed.

36

Page 41: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 5

Finding the sti๏ฟฝness matrix usingmethods other than direct method

Local contents5.1 Virtual work method for derivation of the sti๏ฟฝness matrix . . . . . . . . . . . . . 385.2 Potential energy (minimize a functional) method to derive the sti๏ฟฝness matrix . 40

37

Page 42: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

5.1. Virtual work method for derivation of . . . CHAPTER 5. FINDING THE . . .

There are three main methods to obtain the sti๏ฟฝness matrix

1. Variational method (minimizing a functional). This functional is the potential energyof the structure and loads.

2. Weighted residual. Requires the di๏ฟฝerential equation as a starting point. Approximatedin weighted average. Galerkin weighted residual method is the most common methodfor implementation.

3. Virtual work method. Making the virtual work zero for an arbitrary allowed displace-ment.

5.1 Virtual work method for derivation of the sti๏ฟฝnessmatrix

In virtual work method, a small displacement is assumed to occur. Looking at small volumeelement, the amount of work done by external loads to cause the small displacement is setequal to amount of increased internal strain energy. Assuming the field of displacement isgiven by ๐’– = {๐‘ข, ๐‘ฃ, ๐‘ค} and assuming the external loads are given by ๏ฟฝ๐‘๏ฟฝ acting on the nodes,

hence these point loads will do work given by {๐›ฟ๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ on that unit volume where {๐‘‘} is thenodal displacements. In all these derivations, only loads acting directly on the nodes areconsidered for now. In other words, body forces and traction forces are not considered inorder to simplify the derivations.

The increase of strain energy is {๐›ฟ๐œ€}๐‘‡ {๐œŽ} in that same unit volume.

This area is the Strain energy per

unit volume

Hence, for a unit volume

{๐›ฟ๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ = {๐›ฟ๐œ€}๐‘‡ {๐œŽ}

And for the whole volume

{๐›ฟ๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ = ๏ฟฝ๐‘‰{๐›ฟ๐œ€}๐‘‡ {๐œŽ} ๐‘‘๐‘‰ (1)

Assuming that displacement can be written as a function of the nodal displacements of the

38

Page 43: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

5.1. Virtual work method for derivation of . . . CHAPTER 5. FINDING THE . . .

element results in

๐’– = [๐‘] {๐‘‘}

Therefore

๐›ฟ๐’– = [๐‘] {๐›ฟ๐‘‘}

{๐›ฟ๐’–}๐‘‡ = {๐›ฟ๐‘‘}๐‘‡ [๐‘]๐‘‡ (2)

Since {๐œ€} = ๐œ• {๐’–} then {๐œ€} = ๐œ• [๐‘] {๐‘‘} = [๐ต] {๐‘‘} where ๐ต is the strain displacement matrix[๐ต] = ๐œ• [๐‘], hence

{๐œ€} = [๐ต] {๐‘‘}{๐›ฟ๐œ€} = [๐ต] {๐›ฟ๐‘‘}

{๐›ฟ๐œ€}๐‘‡ = {๐›ฟ๐‘‘}๐‘‡ [๐ต]๐‘‡ (3)

Now from the stress-strain relation {๐œŽ} = [๐ธ] {๐œ€}, hence

{๐œŽ} = [๐ธ] [๐ต] {๐‘‘} (4)

Substituting Eqs. (2,3,4) into (1) results in

{๐›ฟ๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ โˆ’๏ฟฝ๐‘‰{๐›ฟ๐‘‘}๐‘‡ [๐ต]๐‘‡ [๐ธ] [๐ต] {๐‘‘} ๐‘‘๐‘‰ = 0

Since {๐›ฟ๐‘‘} and {๐‘‘} do not depend on the integration variables they can be moved outsidethe integral, giving

{๐›ฟ๐‘‘}๐‘‡ ๏ฟฝ๏ฟฝ๐‘๏ฟฝ โˆ’ {๐‘‘}๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰๏ฟฝ = 0

Since the above is true for any admissible ๐›ฟ๐‘‘ then the only condition is that

๏ฟฝ๐‘๏ฟฝ = {๐‘‘}๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰

This is in the form ๐‘ƒ = ๐พฮ”, therefore

[๐พ] = ๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰

knowing [๐ต] allows finding [๐‘˜] by integrating over the volume. For the beam element though,

๐’– = ๐‘ฃ (๐‘ฅ) the transverse displacement. This means [๐ต] = ๐‘‘2

๐‘‘๐‘ฅ2 [๐‘]. Recalling from the abovethat for the beam element,

[๐‘] = ๏ฟฝ 1๐ฟ3๏ฟฝ๐ฟ3 โˆ’ 3๐ฟ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝ๐ฟ2๐‘ฅ โˆ’ 2๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ 1

๐ฟ3๏ฟฝ3๐ฟ๐‘ฅ2 โˆ’ 2๐‘ฅ3๏ฟฝ 1

๐ฟ2๏ฟฝโˆ’๐ฟ๐‘ฅ2 + ๐‘ฅ3๏ฟฝ๏ฟฝ

Hence

[๐ต] =๐‘‘2

๐‘‘๐‘ฅ2[๐‘] = ๏ฟฝ 1

๐ฟ3(โˆ’6๐ฟ + 12๐‘ฅ) 1

๐ฟ2(โˆ’4๐ฟ + 6๐‘ฅ) 1

๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ2(โˆ’2๐ฟ + 6๐‘ฅ)๏ฟฝ

39

Page 44: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

Hence

[๐พ] = ๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰

= ๏ฟฝ๐‘‰

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

1๐ฟ3(โˆ’6๐ฟ + 12๐‘ฅ)

1๐ฟ2(โˆ’4๐ฟ + 6๐‘ฅ)

1๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ)

1๐ฟ2(โˆ’2๐ฟ + 6๐‘ฅ)

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

๐ธ ๏ฟฝ 1๐ฟ3(โˆ’6๐ฟ + 12๐‘ฅ) 1

๐ฟ2(โˆ’4๐ฟ + 6๐‘ฅ) 1

๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ2(โˆ’2๐ฟ + 6๐‘ฅ)๏ฟฝ ๐‘‘๐‘‰

= ๐ธ๐ผ๏ฟฝ๐ฟ

0

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

1๐ฟ3(โˆ’6๐ฟ + 12๐‘ฅ)

1๐ฟ2(โˆ’4๐ฟ + 6๐‘ฅ)

1๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ)

1๐ฟ2(โˆ’2๐ฟ + 6๐‘ฅ)

โŽซโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽชโŽชโŽญ

๏ฟฝ 1๐ฟ3(โˆ’6๐ฟ + 12๐‘ฅ) 1

๐ฟ2(โˆ’4๐ฟ + 6๐‘ฅ) 1

๐ฟ3(6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ2(โˆ’2๐ฟ + 6๐‘ฅ)๏ฟฝ ๐‘‘๐‘ฅ

= ๐ธ๐ผ๏ฟฝ๐ฟ

0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1๐ฟ6(6๐ฟ โˆ’ 12๐‘ฅ)2 1

๐ฟ5(4๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) โˆ’ 1

๐ฟ6(6๐ฟ โˆ’ 12๐‘ฅ)2 1

๐ฟ5(2๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ)

1๐ฟ5(4๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ4(4๐ฟ โˆ’ 6๐‘ฅ)2 โˆ’ 1

๐ฟ5(4๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ4(2๐ฟ โˆ’ 6๐‘ฅ) (4๐ฟ โˆ’ 6๐‘ฅ)

โˆ’ 1๐ฟ6(6๐ฟ โˆ’ 12๐‘ฅ)2 โˆ’ 1

๐ฟ5(4๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ6(6๐ฟ โˆ’ 12๐‘ฅ)2 โˆ’ 1

๐ฟ5(2๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ)

1๐ฟ5(2๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ4(2๐ฟ โˆ’ 6๐‘ฅ) (4๐ฟ โˆ’ 6๐‘ฅ) โˆ’ 1

๐ฟ5(2๐ฟ โˆ’ 6๐‘ฅ) (6๐ฟ โˆ’ 12๐‘ฅ) 1

๐ฟ4(2๐ฟ โˆ’ 6๐‘ฅ)2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

๐‘‘๐‘ฅ

= ๐ธ๐ผ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12๐ฟ3

6๐ฟ2 โˆ’ 12

๐ฟ36๐ฟ2

6๐ฟ2

4๐ฟ โˆ’ 6

๐ฟ22๐ฟ

โˆ’ 12๐ฟ3 โˆ’ 6

๐ฟ212๐ฟ3 โˆ’ 6

๐ฟ26๐ฟ2

2๐ฟ โˆ’ 6

๐ฟ24๐ฟ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐ธ๐ผ๐ฟ3

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

12 6๐ฟ โˆ’12 6๐ฟ6๐ฟ 4๐ฟ2 โˆ’6๐ฟ 2๐ฟ2

โˆ’12 โˆ’6๐ฟ 12 โˆ’6๐ฟ6๐ฟ 2๐ฟ2 โˆ’6๐ฟ 4๐ฟ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Which is the sti๏ฟฝness matrix found earlier.

5.2 Potential energy (minimize a functional) method toderive the sti๏ฟฝness matrix

This method is very similar to the first method actually. It all comes down to finding afunctional, which is the potential energy of the system, and minimizing this with respect tothe nodal displacements. The result gives the sti๏ฟฝness matrix.

Let the system total potential energy by called ฮ  and let the total internal energy in thesystem be ๐‘ˆ and let the work done by external loads acting on the nodes be ฮฉ, then

ฮ  = ๐‘ˆ โˆ’ฮฉ

Work done by external loads have a negative sign since they are an external agent to thesystem and work is being done onto the system. The internal strain energy is given by

40

Page 45: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

12โˆซ๐‘‰{๐œŽ}๐‘‡ {๐œ€} ๐‘‘๐‘‰ and the work done by external loads is {๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ, hence

ฮ  =12 ๏ฟฝ๐‘‰

{๐œŽ}๐‘‡ {๐œ€} ๐‘‘๐‘‰ โˆ’ {๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ (1)

Now the rest follows as before. Assuming that displacement can be written as a function ofthe nodal displacements {๐‘‘}, hence

๐’– = [๐‘] {๐‘‘}

Since {๐œ€} = ๐œ• {๐’–} then {๐œ€} = ๐œ• [๐‘] {๐‘‘} = [๐ต] {๐‘‘} where ๐ต is the strain displacement matrix[๐ต] = ๐œ• [๐‘], hence

{๐œ€} = [๐ต] {๐‘‘}

Now from the stress-strain relation {๐œŽ} = [๐ธ] {๐œ€}, hence

{๐œŽ}๐‘‡ = {๐‘‘}๐‘‡ [๐ต]๐‘‡ [๐ธ] (4)

Substituting Eqs. (2,3,4) into (1) results in

ฮ  =12 ๏ฟฝ๐‘‰

{๐‘‘}๐‘‡ [๐ต]๐‘‡ [๐ธ] [๐ต] {๐‘‘} ๐‘‘๐‘‰ โˆ’ {๐‘‘}๐‘‡ ๏ฟฝ๐‘๏ฟฝ

Setting ๐œ•ฮ ๐œ•{๐‘‘} = 0 gives

0 = {๐‘‘}๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰ โˆ’ ๏ฟฝ๐‘๏ฟฝ

Which is on the form ๐‘ƒ = [๐พ]๐ท which means that

[๐พ] = ๏ฟฝ๐‘‰[๐ต]๐‘‡ [๐ธ] [๐ต] ๐‘‘๐‘‰

As was found by the virtual work method.

41

Page 46: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

42

Page 47: Engineering reportused for external forces. Moments are always positive when anti-clockwise direction and vertical forces are positive when in the positive ๐‘ฆdirection. The two nodes

Chapter 6

References

1. A first course in Finite element method, 3rd edition, by Daryl L. Logan

2. Matrix analysis of framed structures, 2nd edition, by William Weaver, James Gere

43