Ellingham Diagram · 2014. 7. 31. · Ellingham Diagram. Growth rates of selected oxides...

19
Ellingham Diagram

Transcript of Ellingham Diagram · 2014. 7. 31. · Ellingham Diagram. Growth rates of selected oxides...

  • Ellingham Diagram

  • Growth rates of selected oxidesCoO>NiO>Cr2O3>Al2O3

    Thermodynamic stabilities of selected oxides Al2O3>Cr2O3>CoO>NiO

  • Effect of Electrical Current on Oxidation Rate

    x

    Cations

    Electrons

    Anions

    Cation Vacancies

    Metal GasOxideMO

    MOO2eM 2212 =++ −+

    −− =+ 2221 O2eOor

    −− +=+ 2eMOOM 2

    −+ += 2eMM 2

    or

    1Ma 2Op

    M O2

    o

    MO2 2MO;O2M G∆=+Overall reaction:

    p'O2

    ( )M/MO

    = exp 2 G∆ MOO

    RT a"M exp∆GMO

    O

    RT= p"O2

    ( )1

    ½

  • Oxidation Under Open Circuit Conditions

    vBN x

    Z Fxi

    i

    A

    ii= − +( )

    ∂µ∂

    ∂φ∂

    1

    )(x

    FZxN

    BCvCj i

    i

    A

    iiiii ∂

    ∂φ∂∂µ

    +−==

    2)( FZCRTN

    DkTBii

    iAii

    κ==

    Replace Bi in ji

    ⎟⎠⎞

    ⎜⎝⎛ +−=

    xFZ

    xFZj ii

    i

    ii ∂

    ∂φ∂∂µκ

    22

    Consider a scale growing by cations moving outward.

    jZ F x

    Z Fxc

    c

    c

    cc= − +

    ⎛⎝⎜

    ⎞⎠⎟

    κ ∂µ∂

    ∂φ∂2 2

    (B.)

    jZ F x

    Z Fxe

    e

    e

    ee= − +

    ⎛⎝⎜

    ⎞⎠⎟

    κ ∂µ∂

    ∂φ∂2 2

    Electrical Neutrality (C.)Z j Z jc c e e+ = 0

    (A.)

    (B.)

  • ( )∂φ∂ κ κ

    κ ∂µ∂

    κ ∂µ∂x F Z x Z xc e

    c

    c

    c e

    e

    e= −+

    +⎡

    ⎣⎢

    ⎦⎥

    1

    The cation flux now becomes:

    ( )j

    Z F xZZ xc

    c e

    c c e

    c c

    e

    e= −+

    −⎡

    ⎣⎢

    ⎦⎥

    κ κκ κ

    ∂µ∂

    ∂µ∂2 2

    Considering ionic equilibrium and integrating across the oxide

    jZ F x

    dcc

    c e

    c eM

    M

    M= −

    +′″

    ∫1

    2 2

    κ κκ κ

    µµ

    µ

    The relation between jC and scale growth rate is

    j C dxdtc M

    =

    CM mol cm-3

    Comparison with the parabolic rate equation

    dxdt

    kx

    =′

    where k’ is the parabolic rate constant in cm2s-1.

    ′ =+″

    ∫k Z F C dc Mc e

    c eM

    M

    M12 2

    κ κκ κ

    µµ

    µ

    ( )∂φ∂ κ κ

    κ ∂µ∂

    κ ∂µ∂x F Z x Z xc e

    c

    c

    c e

    e

    e= −+

    +⎡

    ⎣⎢

    ⎦⎥

    1

    The cation flux now becomes:

    ( )j

    Z F xZZ xc

    c e

    c c e

    c c

    e

    e= −+

    −⎡

    ⎣⎢

    ⎦⎥

    κ κκ κ

    ∂µ∂

    ∂µ∂2 2

    Considering ionic equilibrium and integrating across the oxide

    jZ F x

    dcc

    c e

    c eM

    M

    M= −

    +′″

    ∫1

    2 2

    κ κκ κ

    µµ

    µ

    The relation between jC and scale growth rate is

    j C dxdtc M

    =

    CM mol cm-3

    Comparison with the parabolic rate equation

    dxdt

    kx

    =′

    where k’ is the parabolic rate constant in cm2s-1.

    ′ =+″

    ∫k Z F C dc Mc e

    c eM

    M

    M12 2

    κ κκ κ

    µµ

    µ

    ( )∂φ∂ κ κ

    κ ∂µ∂

    κ ∂µ∂x F Z x Z xc e

    c

    c

    c e

    e

    e= −+

    +⎡

    ⎣⎢

    ⎦⎥

    1

    The cation flux now becomes:

    ( )j

    Z F xZZ xc

    c e

    c c e

    c c

    e

    e= −+

    −⎡

    ⎣⎢

    ⎦⎥

    κ κκ κ

    ∂µ∂

    ∂µ∂2 2

    Considering ionic equilibrium and integrating across the oxide

    jZ F x

    dcc

    c e

    c eM

    M

    M= −

    +′″

    ∫1

    2 2

    κ κκ κ

    µµ

    µ

    The relation between jC and scale growth rate is

    j C dxdtc M

    =

    CM mol cm-3

    Comparison with the parabolic rate equation

    dxdt

    kx

    =′

    where k’ is the parabolic rate constant in cm2s-1.

    ′ =+″

    ∫k Z F C dc Mc e

    c eM

    M

    M12 2

    κ κκ κ

    µµ

    µ

    ( )∂φ∂ κ κ

    κ ∂µ∂

    κ ∂µ∂x F Z x Z xc e

    c

    c

    c e

    e

    e= −+

    +⎡

    ⎣⎢

    ⎦⎥

    1

    The cation flux now becomes:

    ( )j

    Z F xZZ xc

    c e

    c c e

    c c

    e

    e= −+

    −⎡

    ⎣⎢

    ⎦⎥

    κ κκ κ

    ∂µ∂

    ∂µ∂2 2

    Considering ionic equilibrium and integrating across the oxide

    jZ F x

    dcc

    c e

    c eM

    M

    M= −

    +′″

    ∫1

    2 2

    κ κκ κ

    µµ

    µ

    The relation between jC and scale growth rate is

    j C dxdtc M

    =

    dxdt

    kx

    =′

    where k’ is the parabolic rate constant in cm2s-1.

    ′ =+″

    ∫k Z F C dc Mc e

    c eM

    M

    M12 2

    κ κκ κ

    µµ

    µ

  • Oxidation in the Presence of an Impressed CurrentEquations (A) and (B) are unchanged. Equation (C) is written:

    iFjZFjZ eecc =+

    ( ) ( )ece

    e

    ec

    c

    c

    ec

    ixZxZFx κκ∂

    ∂µκ∂∂µκ

    κκ∂∂φ

    +−⎥

    ⎤⎢⎣

    ⎡++

    +−=

    1

    κκ

    ∂∂µ

    ∂∂µ

    κκκ

    FZi

    xZZ

    xFZj

    c

    ce

    e

    cc

    c

    ecc +⎥

    ⎤⎢⎣

    ⎡−−= 22

    xFZi M

    c

    eStop

    µκ ∆=

    Note: If the external oxygen pressure is 1 atm, oMOM G∆=∆µ

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡−′=′

    StopOC i

    ikk 1

  • For chromia at 900oC: κe = 10-2 (ohm cm)-1 Park & Natesan, 1990∆Go = -820,000 J/mole

    For a 1 µm thick oxide: iStop = -140 A/cm2

    For a typical Fuel Cell current density of 1 A/cm2,OCkk ′=′

    (Note: if Park & Natesan’s 2-probe data are correct there could be asubstantial effect of current on chromia growth.)

  • Parabolic Rate Constants 900C dry air

    y = 1.23E-11x

    y = 2.61E-11x

    0

    2 E -0 6

    4 E -0 6

    6 E -0 6

    8 E -0 6

    1 E -0 5

    1 E -0 5

    0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 3 0 0 0 0 0 3 5 0 0 0 0 4 0 0 0 0 0 4 5 0 0 0 0 5 0 0 0 0 0seconds

    g2/cm4

    Nickel

    Sr-doped Nickel

    Parabolic Rate ConstantNickel 2.61x10-11 g2/cm4sSr-doped Nickel 2.23x10-11 g2/cm4s

  • Surface Micrographs

    Nickel 900C Sr-doped Nickel 900C

  • Planar SOFC Configuration

    Repeat Components

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−= C

    O

    AO

    pp

    FRTV

    2

    2ln40

    voltsV 7.0≈

    2/1 cmAmpi ≈Electrolyte – YSZ Cathode – La/Sr-Manganite (LSM) Anode – Ni/YSZ Interconnect – Metallic

  • Oxidized Ni-50 Cr AlloyCr-Rich Second Phase has Dissolved in the Cr-Depleted Zone

    Cr O32Cr-depleted zone

    Alloy

  • H2-3%H2OAir

    Air

    AirAir

    H2-3%H2O

    Thermocouple

    Exhaust

    Materials:

    • 10 mil thick Ag tube

    Experimental Arrangement

    Materials:

    • 10 mil thick Ag tube

    Variables:

    • Temperatures, 700, 600, 500oC;

    • Simultaneous exposures to H2+3%H2O and air;

    Variables:

    • Temperatures, 700, 600, 500oC;

    • Simultaneous exposures to H2+3%H2O and air;Courtesy of Dr. Prabhakar

    Singh, PNNL

  • Diagram of Apparatus

  • Dry Air Exposures – 700oCTime vs. Mass Change / Area (700oC, dry air)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0 200 400 600 800 1000 1200 1400 1600 1800 2000Exposure (Cycles)

    Mas

    s C

    hang

    e / A

    rea

    (mg/

    cm2 )

    Crofer - 1

    Crofer - 2

    E-brite - 1

    E-brite - 2

    AL453 - 1

    AL453 - 2

    ZMG232 - 1

    ZMG232 - 2

  • Simulated Anode Gas (Ar-4%H2, H2O) Exposures – 700oC

    Time vs. Mass Change / Area for Crofer, E-brite, AL453, & Ni (700oC, Ar/H2/H20)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 200 400 600 800 1000 1200 1400 1600 1800 2000

    Exposure (cycles)

    Mas

    s C

    hang

    e / A

    rea

    (mg/

    cm2 )

    Crofer - 1Crofer - 2E-brite - 1E-brite - 2E-brite - 3AL453 - 1AL453 - 2Ni

  • Microstructural and Phase IdentificationCrofer 700oC

    Cr2O3MnCr2O4

    Dry Air2000 cycles

    Internal Al2O3Wet Air1017 cycles

    Internal Al2O3

    SAG2000 cycles

    Internal Al2O3

    Cr2O3

    Cr2O3

    MnCr2O4

    Si rich oxide Si rich oxide

    MnCr2O4

    Si rich oxide

  • Degradation Mechanism

    H2(g) = 2[H]Ag

    [H]Ag

    O2(g)= 2[O]Ag [O]Ag

    [O]Ag+[H]A==H2O(g)

    H2(g)Air

    Reaction Steps1. (H2)g = 2(H)Ag Ag/Fuel interface

    2. (O2) g = 2(O)Ag Ag/ Air Interface

    3. 2(H) Ag + (O)Ag = (H2O) g Bulk Ag

    Bulk Degradation Related to :1.Dissociation and dissolution of H and O in the bulk metal2. Interaction between dissolved H & O to form High pressure H2O gas3. Nucleation and growth of steam bubbles/voids at GB/defects

    Courtesy of Dr. Prabhakar Singh, PNNL

  • Pressure of CrO3

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    0.7 0.75 0.8 0.85 0.9 0.95 1 1.051/T*103 (K-1)

    log

    p CrO

    3 (at

    m)

    log p(Cr) log p(Mn)(A) log p(La) log p(Mn)(B)

    Cr2O3

    LaCrO3

    MnCr2O4

    Partial pressures of CrO3 in Equilibrium with

    Cr2O3, MnO-saturated MnCr2O4, and LaCrO3

    Note: similar reductions would be achieved in the pressure of CrO2(OH)2

  • Crofer oxidized in contact with LaSrMnO4(cathode) for 88hrs at 900oC in air + 0.1atm H2O

    Crofer (side in contact with cathode)

    MnCr2O4with ~1.5% Sr and ~2.6% La

    Cr2O3 with ~2% Sr, ~4% La, and ~4.7% Mn

    ~74.9% Fe ~20% Cr ~2.2% La ~2% Mn ~0.9% Sr

    Crofer (side opposite cathode)

    MnCr2O4

    Cr2O3

    After exposure, the cathode contained ~0.9% Cr and ~1.8% Al

    Parabolic Rate Constants 900C dry airSurface MicrographsDiagram of ApparatusSimulated Anode Gas (Ar-4%H2, H2O) Exposures – 700oCMicrostructural and Phase IdentificationCrofer 700oCCrofer oxidized in contact with LaSrMnO4 (cathode) for 88hrs at 900oC in air + 0.1atm H2O

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice