Electrochemical Properties of Commercial NCA Cathode ...

7
163 Korean Chem. Eng. Res., 55(2), 163-169 (2017) https://doi.org/10.9713/kcer.2017.55.2.163 PISSN 0304-128X, EISSN 2233-9558 ์ƒ์šฉ ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์šฉ NCA ์–‘๊ทนํ™œ๋ฌผ์งˆ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๊น€์€๋ฏธ ยท ์ด๊ฐ€์„ ยท ๋‚˜๋ณ‘๊ธฐ โ€  ยท ์ •์ƒ๋ฌธ โ€  ์ถฉ๋ถ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณตํ•™๊ณผ 28644 ์ถฉ์ฒญ๋ถ๋„ ์ฒญ์ฃผ์‹œ ์„œ์›๊ตฌ ์ถฉ๋Œ€๋กœ 1 (2016 ๋…„ 12 ์›” 13 ์ผ ์ ‘์ˆ˜, 2017 ๋…„ 1 ์›” 11 ์ผ ์ˆ˜์ •๋ณธ ์ ‘์ˆ˜, 2017 ๋…„ 1 ์›” 13 ์ผ ์ฑ„ํƒ) Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery En Mei Jin, Ga-Eul Lee, Byuong-Ki Na โ€  and Sang Mun Jeong โ€  Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungbuk, 28644, Korea (Received 13 December 2016; Received in revised form 11 January 2017; accepted 13 January 2017) ์š” ์•ฝ LiNi 1-x-y Co x Al y O 2 (x=0.15, y=0.045 ํ˜น์€ 0.05, NCA) ์–‘๊ทน์†Œ์žฌ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๋ฐ ์–‘๊ทน์†Œ์žฌ์˜ ์ž…์ž ํฌ๊ธฐ ๋ถ„ํฌ์— ๋Œ€ํ•œ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์ˆ˜๋ช…ํŠน์„ฑ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ์‚ดํ”ผ๊ธฐ ์œ„ํ•ด ๋‘ ์ข…์˜ ์ƒ์—…์šฉ NCA (NCA#1, NCA#2) ์–‘๊ทน์†Œ์žฌ๋ฅผ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. NCA#1 ์€ ์•ฝ 5 ฮผm ์˜ ๊ท ์ผํ•œ ๊ตฌํ˜•์˜ ์ž…์ž๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  NCA#2 ๋Š” ์•ฝ 5 ฮผm ์™€ 11 ฮผm ์ •๋„์˜ ์ž…์ž๋“ค์ด ํ˜ผํ•ฉ๋˜์–ด ์žˆ๋Š” ๋ถ„๋ง์ด๋‹ค. ์ถฉ๋ฐฉ์ „ ์ธก์ • ๊ฒฐ๊ณผ NCA#2 ๋Š” ์ดˆ๊ธฐ ๋ฐฉ์ „์šฉ๋Ÿ‰์€ 197.0 mAh/g ์œผ๋กœ NCA#1 ์— ๋น„ํ•ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. NCA#1 ๊ณผ NCA#2 ์˜ ์šฉ๋Ÿ‰ ์œ ์ง€์œจ(30 ์‚ฌ์ดํด ๊ธฐ์ค€) ์€ ๊ฐ๊ฐ 92% ์™€ 94% ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Abstract - In order to investigate the electrochemical properties and the particle size effect of LiNi 1-x-y Co x Al y O 2 (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately 5 ฮผm. NCA#2 consisted of particles with bimodal size distribution of approximately 5 ฮผm and 11 ฮผm. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively. Key words: Lithium ion battery, High-capacity, NCA, Particle size, Electrochemical 1. ์„œ ๋ก  ์ตœ๊ทผ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€(LIB) ๋Š” ๊ธฐ์กด์˜ ์†Œํ˜•์ „์ž๊ธฐ๊ธฐ์—์„œ ์ „๊ธฐ ์ž๋™์ฐจ(EV), ์—๋„ˆ์ง€์ €์žฅ์žฅ์น˜(ESS) ์™€ ๊ฐ™์€ ์ค‘๋Œ€ํ˜• ์—๋„ˆ์ง€์›์œผ๋กœ ์‘ ์šฉ์„ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. EV, ESS ์™€ ๊ฐ™์€ ์ค‘๋Œ€ํ˜• ์—๋„ˆ์ง€์›์œผ๋กœ ์‘์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘๊ทน์†Œ์žฌ์˜ ๋†’์€ ์—๋„ˆ์ง€๋ฐ€๋„, ๋†’์€ ์ „์••๊ณผ ์ถฉ๋ฐฉ์ „ํšจ์œจ, ๊ณ ์•ˆ์ •์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์นœํ™˜๊ฒฝ์ ์ด ์†Œ์žฌ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค [1,2]. ํ˜„์žฌ๊นŒ์ง€ LiCoO 2 (LCO) ์–‘๊ทน์†Œ์žฌ๋Š” ๋†’์€ ์šฉ๋Ÿ‰ ์•ˆ์ •์„ฑ์œผ๋กœ ์ธํ•ด ์ƒ์—…์ ์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ์ด ๋˜์–ด ์™”์œผ๋‚˜ ๋‚ฎ์€ ์šฉ๋Ÿ‰๊ณผ ์ถœ๋ ฅ, ํ™˜๊ฒฝ์— ๋Œ€ ํ•œ ์˜ค์—ผ, ๊ทธ๋ฆฌ๊ณ  Co ์˜ ์ž์›์ ์ธ ์ œ์•ฝ ๋•Œ๋ฌธ์— ๊ฐ€๊ฒฉ์ ์ธ ๋ฉด์—์„œ ๋ถˆ์•ˆ ์ •ํ•˜๋ฏ€๋กœ EV ๋“ฑ ์ค‘๋Œ€ํ˜• ์ „์ง€๋กœ๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ LCO์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ LiNiO 2 (LNO) ๊ฐ€ ๊ทธ ๋Œ€์•ˆ์œผ๋กœ ๋– ์˜ฌ๋ž๋‹ค. LNO ์–‘๊ทน์†Œ์žฌ๋Š” LCO์™€ ๋น„์Šทํ•œ ์ธต์ƒ๊ตฌ์กฐ๋กœ ๋†’์€ ๊ฐ€์—ญ์šฉ๋Ÿ‰(>190 mAh/g) ์„ ๊ฐ–์ง€๋งŒ, LNO ๋Š” ํ•ฉ์„ฑ์ด ์–ด๋ ต๊ณ  ๋‚ฎ์€ ์—ด์•ˆ์ •์„ฑ๊ณผ ์—ด์•…ํ•œ ์ˆ˜๋ช…ํŠน์„ฑ ๋“ฑ ๋‹จ์ ์ด ์žˆ๋‹ค[3,4]. ๋”ฐ๋ผ์„œ LNO ์–‘๊ทน์†Œ์žฌ์˜ ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ธต์ƒ๊ตฌ์กฐ์˜ Li (Ni 1-x M x )O 2 (LNMO, 1-x>0.6, M=Mn, Co, Al, ๋“ฑ) ์–‘๊ทน์†Œ์žฌ๊ฐ€ ๋Œ€์•ˆ์œผ๋กœ ๋– ์˜ฌ๋ž๋‹ค. ํŠนํžˆ Co, Al ์„ LNMO ์— ๋„ํ•‘ํ•˜์—ฌ ๋†’์€ ๊ฐ€๊ฒฉ๊ฒฝ์Ÿ๋ ฅ๊ณผ ๋†’์€ ๋ฐฉ์ „์šฉ๋Ÿ‰(~200 mAh/g) ๋ฟ๋งŒ ์•„๋‹ˆ ๋ผ LNMO ์— ๋น„ํ•ด ์šฉ๋Ÿ‰๊ฐ์†Œ๋ฅผ ์™„ํ™”ํ•จ์œผ๋กœ์จ ์ตœ๊ทผ ์ค‘๋Œ€ํ˜• ๋ฆฌํŠฌ์ด์˜จ ์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์†Œ์žฌ๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค[5-7]. ๊ทธ๋Ÿฌ๋‚˜ Co ์™€ Al ์„ ๋„ ํ•‘ํ•œ LiNi 1-x-y Co x Al y O 2 (NCA, 0.4โ‰คxโ‰ค0.1, 0.1โ‰คyโ‰ค0.005) ์–‘๊ทน์†Œ์žฌ ๋Š” ๊ณผ์ถฉ์ „ ์‹œ ์ธต์ƒ๊ตฌ์กฐ์˜ ๋ถ•๊ดด๋กœ ์ธํ•œ ์—ด์  ๋ถˆ์•ˆ์ •์„ฑ, ๋‚ฎ์€ ์ˆ˜๋ช…ํŠน ์„ฑ๊ณผ ์œจํŠน์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์ดํด ์ง„ํ–‰์— ๋”ฐ๋ฅธ ๋‚ด๋ถ€ ์ž„ํ”ผ๋˜์Šค๊ฐ€ ์ฆ๊ฐ€ํ•˜ ๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค[8,9]. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰์ค‘์— ์žˆ๊ณ  ๊ทธ์ค‘์—์„œ๋„ NCA ์ž…์ž ํ‘œ๋ฉด์„ ์ฝ”ํŒ…ํ•˜๊ฑฐ๋‚˜ ์›์†Œ๋ฅผ ์น˜ํ™˜ ๋˜๋Š” ๋„ํ•‘ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค [10-13]. NCA ์–‘๊ทน์†Œ์žฌ์˜ ํ•ฉ์„ฑ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฃผ๋กœ ๊ณ ์ƒ๋ฒ•, ์กธ๊ฒ”๋ฒ•, ๊ทธ โ€  To whom correspondence should be addressed. E-mail: [email protected], [email protected] This is an Open-Access article distributed under the terms of the Creative Com- mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by- nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduc- tion in any medium, provided the original work is properly cited.

Transcript of Electrochemical Properties of Commercial NCA Cathode ...

163

Korean Chem. Eng. Res., 55(2), 163-169 (2017)

https://doi.org/10.9713/kcer.2017.55.2.163

PISSN 0304-128X, EISSN 2233-9558

์ƒ์šฉ ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์šฉ NCA ์–‘๊ทนํ™œ๋ฌผ์งˆ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ

๊น€์€๋ฏธ ยท ์ด๊ฐ€์„ ยท ๋‚˜๋ณ‘๊ธฐโ€  ยท ์ •์ƒ๋ฌธโ€ 

์ถฉ๋ถ๋Œ€ํ•™๊ต ํ™”ํ•™๊ณตํ•™๊ณผ

28644 ์ถฉ์ฒญ๋ถ๋„ ์ฒญ์ฃผ์‹œ ์„œ์›๊ตฌ ์ถฉ๋Œ€๋กœ 1

(2016๋…„ 12์›” 13์ผ ์ ‘์ˆ˜, 2017๋…„ 1์›” 11์ผ ์ˆ˜์ •๋ณธ ์ ‘์ˆ˜, 2017๋…„ 1์›” 13์ผ ์ฑ„ํƒ)

Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity

of Lithium Ion Battery

En Mei Jin, Ga-Eul Lee, Byuong-Ki Naโ€  and Sang Mun Jeongโ€ 

Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungbuk, 28644, Korea

(Received 13 December 2016; Received in revised form 11 January 2017; accepted 13 January 2017)

์š” ์•ฝ

LiNi1-x-yCoxAlyO2(x=0.15, y=0.045 ํ˜น์€ 0.05, NCA) ์–‘๊ทน์†Œ์žฌ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๋ฐ ์–‘๊ทน์†Œ์žฌ์˜ ์ž…์ž ํฌ๊ธฐ ๋ถ„ํฌ์—

๋Œ€ํ•œ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์ˆ˜๋ช…ํŠน์„ฑ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ์‚ดํ”ผ๊ธฐ ์œ„ํ•ด ๋‘ ์ข…์˜ ์ƒ์—…์šฉ NCA (NCA#1, NCA#2) ์–‘๊ทน์†Œ์žฌ๋ฅผ

๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. NCA#1์€ ์•ฝ 5 ยตm์˜ ๊ท ์ผํ•œ ๊ตฌํ˜•์˜ ์ž…์ž๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  NCA#2๋Š” ์•ฝ 5 ยตm์™€

11 ยตm ์ •๋„์˜ ์ž…์ž๋“ค์ด ํ˜ผํ•ฉ๋˜์–ด ์žˆ๋Š” ๋ถ„๋ง์ด๋‹ค. ์ถฉ๋ฐฉ์ „ ์ธก์ • ๊ฒฐ๊ณผ NCA#2๋Š” ์ดˆ๊ธฐ ๋ฐฉ์ „์šฉ๋Ÿ‰์€ 197.0 mAh/g์œผ๋กœ

NCA#1์— ๋น„ํ•ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. NCA#1๊ณผ NCA#2์˜ ์šฉ๋Ÿ‰ ์œ ์ง€์œจ(30์‚ฌ์ดํด ๊ธฐ์ค€)์€ ๊ฐ๊ฐ 92%์™€ 94%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Abstract โˆ’ In order to investigate the electrochemical properties and the particle size effect of LiNi1-x-yCoxAlyO2

(x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1,

NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform

spherical particles was found to be approximately 5 ยตm. NCA#2 consisted of particles with bimodal size distribution of

approximately 5 ยตm and 11 ยตm. From the results of charge-discharge performance test, a high initial discharge capacity

of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of

NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.

Key words: Lithium ion battery, High-capacity, NCA, Particle size, Electrochemical

1. ์„œ ๋ก 

์ตœ๊ทผ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€(LIB)๋Š” ๊ธฐ์กด์˜ ์†Œํ˜•์ „์ž๊ธฐ๊ธฐ์—์„œ ์ „๊ธฐ

์ž๋™์ฐจ(EV), ์—๋„ˆ์ง€์ €์žฅ์žฅ์น˜(ESS)์™€ ๊ฐ™์€ ์ค‘๋Œ€ํ˜• ์—๋„ˆ์ง€์›์œผ๋กœ ์‘

์šฉ์„ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. EV, ESS์™€ ๊ฐ™์€ ์ค‘๋Œ€ํ˜•

์—๋„ˆ์ง€์›์œผ๋กœ ์‘์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘๊ทน์†Œ์žฌ์˜ ๋†’์€ ์—๋„ˆ์ง€๋ฐ€๋„, ๋†’์€

์ „์••๊ณผ ์ถฉ๋ฐฉ์ „ํšจ์œจ, ๊ณ ์•ˆ์ •์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์นœํ™˜๊ฒฝ์ ์ด ์†Œ์žฌ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค

[1,2].

ํ˜„์žฌ๊นŒ์ง€ LiCoO2 (LCO) ์–‘๊ทน์†Œ์žฌ๋Š” ๋†’์€ ์šฉ๋Ÿ‰ ์•ˆ์ •์„ฑ์œผ๋กœ ์ธํ•ด

์ƒ์—…์ ์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ์ด ๋˜์–ด ์™”์œผ๋‚˜ ๋‚ฎ์€ ์šฉ๋Ÿ‰๊ณผ ์ถœ๋ ฅ, ํ™˜๊ฒฝ์— ๋Œ€

ํ•œ ์˜ค์—ผ, ๊ทธ๋ฆฌ๊ณ  Co์˜ ์ž์›์ ์ธ ์ œ์•ฝ ๋•Œ๋ฌธ์— ๊ฐ€๊ฒฉ์ ์ธ ๋ฉด์—์„œ ๋ถˆ์•ˆ

์ •ํ•˜๋ฏ€๋กœ EV ๋“ฑ ์ค‘๋Œ€ํ˜• ์ „์ง€๋กœ๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ LCO์˜

๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ LiNiO2 (LNO)๊ฐ€ ๊ทธ ๋Œ€์•ˆ์œผ๋กœ ๋– ์˜ฌ๋ž๋‹ค.

LNO ์–‘๊ทน์†Œ์žฌ๋Š” LCO์™€ ๋น„์Šทํ•œ ์ธต์ƒ๊ตฌ์กฐ๋กœ ๋†’์€ ๊ฐ€์—ญ์šฉ๋Ÿ‰(>190

mAh/g)์„ ๊ฐ–์ง€๋งŒ, LNO๋Š” ํ•ฉ์„ฑ์ด ์–ด๋ ต๊ณ  ๋‚ฎ์€ ์—ด์•ˆ์ •์„ฑ๊ณผ ์—ด์•…ํ•œ

์ˆ˜๋ช…ํŠน์„ฑ ๋“ฑ ๋‹จ์ ์ด ์žˆ๋‹ค[3,4]. ๋”ฐ๋ผ์„œ LNO ์–‘๊ทน์†Œ์žฌ์˜ ์ด๋Ÿฌํ•œ ๋‹จ์ ์„

๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ธต์ƒ๊ตฌ์กฐ์˜ Li (Ni1-xMx)O2 (LNMO, 1-x>0.6, M=Mn,

Co, Al, ๋“ฑ) ์–‘๊ทน์†Œ์žฌ๊ฐ€ ๋Œ€์•ˆ์œผ๋กœ ๋– ์˜ฌ๋ž๋‹ค. ํŠนํžˆ Co, Al์„ LNMO์—

๋„ํ•‘ํ•˜์—ฌ ๋†’์€ ๊ฐ€๊ฒฉ๊ฒฝ์Ÿ๋ ฅ๊ณผ ๋†’์€ ๋ฐฉ์ „์šฉ๋Ÿ‰(~200 mAh/g) ๋ฟ๋งŒ ์•„๋‹ˆ

๋ผ LNMO์— ๋น„ํ•ด ์šฉ๋Ÿ‰๊ฐ์†Œ๋ฅผ ์™„ํ™”ํ•จ์œผ๋กœ์จ ์ตœ๊ทผ ์ค‘๋Œ€ํ˜• ๋ฆฌํŠฌ์ด์˜จ

์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์†Œ์žฌ๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค[5-7]. ๊ทธ๋Ÿฌ๋‚˜ Co์™€ Al์„ ๋„

ํ•‘ํ•œ LiNi1-x-yCoxAlyO2 (NCA, 0.4โ‰คxโ‰ค0.1, 0.1โ‰คyโ‰ค0.005) ์–‘๊ทน์†Œ์žฌ

๋Š” ๊ณผ์ถฉ์ „ ์‹œ ์ธต์ƒ๊ตฌ์กฐ์˜ ๋ถ•๊ดด๋กœ ์ธํ•œ ์—ด์  ๋ถˆ์•ˆ์ •์„ฑ, ๋‚ฎ์€ ์ˆ˜๋ช…ํŠน

์„ฑ๊ณผ ์œจํŠน์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์ดํด ์ง„ํ–‰์— ๋”ฐ๋ฅธ ๋‚ด๋ถ€ ์ž„ํ”ผ๋˜์Šค๊ฐ€ ์ฆ๊ฐ€ํ•˜

๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค[8,9]. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด

์ง„ํ–‰์ค‘์— ์žˆ๊ณ  ๊ทธ์ค‘์—์„œ๋„ NCA ์ž…์ž ํ‘œ๋ฉด์„ ์ฝ”ํŒ…ํ•˜๊ฑฐ๋‚˜ ์›์†Œ๋ฅผ

์น˜ํ™˜ ๋˜๋Š” ๋„ํ•‘ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋– ์˜ค๋ฅด๊ณ  ์žˆ๋‹ค

[10-13]. NCA ์–‘๊ทน์†Œ์žฌ์˜ ํ•ฉ์„ฑ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฃผ๋กœ ๊ณ ์ƒ๋ฒ•, ์กธ๊ฒ”๋ฒ•, ๊ทธ

โ€ To whom correspondence should be addressed.E-mail: [email protected], [email protected] is an Open-Access article distributed under the terms of the Creative Com-mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduc-tion in any medium, provided the original work is properly cited.

164 ๊น€์€๋ฏธ ยท ์ด๊ฐ€์„ ยท ๋‚˜๋ณ‘๊ธฐ ยท ์ •์ƒ๋ฌธ

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

๋ฆฌ๊ณ  ๊ณต์นจ๋ฒ• ๋“ฑ์ด ์žˆ๋‹ค[14-17]. ๊ณต์นจ๋ฒ•์€ ์•ก์ƒ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ์จ ์ž…

์ž ํฌ๊ธฐ ๋ฐ ํ˜•ํƒœ ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•˜๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ Ni ํ•จ๋Ÿ‰์ด ๋†’์œผ๋ฉด ๋ฐฉ์ „์šฉ๋Ÿ‰์ด ํฌ๊ณ  ์‚ฌ์ดํด์ด ์ง„ํ–‰๋จ์—

๋”ฐ๋ผ ๊ธ‰๊ฒฉํ•œ ์šฉ๋Ÿ‰๊ฐ์†Œ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž…์ž

ํฌ๊ธฐ๊ฐ€ ๊ท ์ผํ•œ NCA#1 (LiNi0.805Co0.15Al0.045O2)๊ณผ ์ž…์žํฌ๊ธฐ๊ฐ€ ์ƒ์ดํ•˜๋ฉฐ

NCA#1์— ๋น„ํ•ด Ni ํ•จ๋Ÿ‰์ด ๋†’์€ NCA#2 (LiNi0.815Co0.15Al0.035O2)์™€

๊ฐ™์€ ์ƒ์—…์šฉ NCA ์–‘๊ทน์†Œ์žฌ๋ฅผ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์— ์‘์šฉํ•˜๊ธฐ ์œ„ํ•ด

์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๋ฐ ๋‚ด๋ถ€์˜ ์ž„ํ”ผ๋˜์Šค ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ต

ํ•ด ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์ˆ˜๋ช…ํŠน์„ฑ์— ๋Œ€ํ•œ ์ž…์ž ํฌ๊ธฐ ์˜ํ–ฅ์„ ๊ณ ์ฐฐํ•˜

๊ณ ์ž ํ•œ๋‹ค.

2. ์‹ค ํ—˜

๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€๋Š” NCA ์–‘๊ทน๊ทนํŒ, ์ „ํ•ด์งˆ๋กœ ์Œ๊ทน์€ ๊ธˆ์† ๋ฆฌํŠฌ ํ˜ธ์ผ

์„ ์ด์šฉํ•˜์—ฌ ์ œ์ž‘ํ•˜์˜€๋‹ค. NCA ์–‘๊ทน๊ทนํŒ์€ ์ƒ์—…์šฉ LiNi0.805Co0.15Al0.045O2

(NCA#1), LiNi0.815Co0.15Al0.035O2 (NCA#2) ์–‘๊ทน์†Œ์žฌ์™€ super-P

black ๋ฐ polyvinylidene fluoride (PVdF, Mw: ~400,000, Sigma-

Aldrich)๋ฅผ 94 : 3 : 3์˜ ์ค‘๋Ÿ‰๋น„์œจ๋กœ N-methyl-2-purrolidone (NMP)

์šฉ๋งค์— ๋ถ„์‚ฐ์‹œ์ผœ ์ค€๋น„ํ•œ ์Šฌ๋Ÿฌ๋ฆฌ๋ฅผ ์ œ์กฐํ•˜์˜€๋‹ค. ์ค€๋น„ํ•œ ์Šฌ๋Ÿฌ๋ฆฌ๋Š” ๋‹ฅ

ํ„ฐ๋ธ”๋ ˆ์ด๋“œ ๋ฐฉ๋ฒ•์œผ๋กœ ์•ฝ 20 ฮผm์˜ ๋‘๊ป˜๋ฅผ ๊ฐ–๋Š” Al ํ˜ธ์ผ์— ๋„ํฌํ•˜์—ฌ

120 oC์—์„œ ๊ฑด์กฐ ํ›„ ๋„ํฌ ๋‘๊ป˜์˜ 80%๋กœ ์••์ฐฉํ•˜์—ฌ ๊ทนํŒ์„ ์ œ์ž‘ํ•˜์—ฌ

์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ทนํŒ์€ CR2032 ์ฝ”์ธ์…€ ์šฉ ํฌ๊ธฐ(2 cm2)๋กœ ์›ํ˜•์œผ๋กœ ํŽ€

์นญํ•˜์—ฌ 120 oC์˜ ์ง„๊ณต์˜ค๋ธ์—์„œ 24์‹œ๊ฐ„ ๋™์•ˆ ์žฌ์ฐจ ๊ฑด์กฐ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.

์ „ํ•ด์งˆ์€ 1.15M์˜ LiPF6/EC-DMC (3:7 vol%) ์œ ๊ธฐ์šฉ๋งค๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ ,

์–‘๊ทน๊ณผ ์Œ๊ทน์˜ ๋‹จ๋ฝ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํด๋ฆฌ์—ํ‹ธ๋ Œ(Polyethylene,

PE, W-SCOPE, Korea)์„ ๋ถ„๋ฆฌ๋ง‰์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ „์ง€์˜ ์ œ์ž‘์€

๋ชจ๋‘ ์•„๋ฅด๊ณค ๋ถ„์œ„๊ธฐ์˜ ๊ธ€๋Ÿฌ๋ธŒ ๋ฐ•์Šค ์•ˆ์—์„œ ์ง„ํ–‰๋˜์—ˆ๋‹ค.

NCA ์–‘๊ทน์†Œ์žฌ์˜ ๊ฒฐ์ •๊ตฌ์กฐ์™€ ํ‘œ๋ฉดํ˜•์ƒ์€ X-ray ํšŒ์ ˆ ๋ถ„์„๋ฒ•(X-ray

diffraction spectroscopy, XRD, D8 Discover with GADDS, Bruker

AXS)๊ณผ ์ „๊ณ„๋ฐฉ์ถœํ˜• ์ฃผ์‚ฌํ˜„๋ฏธ๊ฒฝ(Field-emission scanning electron

microscopy, FE-SEM, LEO-1530, Carl Zeiss)์„ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜

์˜€๊ณ  ์ž…์ž๋ถ„ํฌ ๋ฐ ์ „๊ธฐ์ „๋„๋„๋Š” ๋ถ„์ฑ„์ €ํ•ญ์ธก์ •์žฅ์น˜(HPRM-M2,

Han Tech.)์™€ ์ž…๋„๋ถ„์„๊ธฐ(Particle size analyzer, Mastersizer 3000)๋ฅผ

์ด์šฉํ•˜์˜€๋‹ค. ์ œ์ž‘๋œ ์ „์ง€(CR2032)์˜ ์ˆœํ™˜์ „์œ„์ „๋ฅ˜ํŠน์„ฑ, ์ถฉ๋ฐฉ์ „ ํŠน์„ฑ

๋“ฑ ์ „๊ธฐํ™”ํ•™์  ์ธก์ •์€ WonAtech์‚ฌ์˜ WBCS 3000 ์ถฉ๋ฐฉ์ „๊ธฐ๊ธฐ๋ฅผ

์ด์šฉํ•˜์—ฌ 0.1 C์—์„œ ๊ฐ๊ฐ 2.8~4.5 V, 3.0~4.3 V์˜ ์ „์••๋ฒ”์œ„์—์„œ ์ธก

์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ถฉ๋ฐฉ์ „ ์‚ฌ์ดํด์— ๋”ฐ๋ฅธ ์ „์ง€์˜ ๋‚ด๋ถ€์ €ํ•ญ ํŠน์„ฑ์€ ๊ต

๋ฅ˜์ž„ํ”ผ๋˜์Šค(Metrohm Autolab, B. V., PGSTAT302N) ์ŠคํŽ™ํŠธ๋Ÿผ์œผ

๋กœ 10 mHz์—์„œ 100 kHz๊นŒ์ง€์˜ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ 10 mV์˜ ์ง„ํญ์œผ

๋กœ OCV ์ „์••์—์„œ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ ์ธก์ •๋œ ๋ฐ์ดํ„ฐ๋Š” NOVA ์†Œํ”„ํŠธ์›จ

์–ด(Metrohm Autolab B.V.)๋ฅผ ์ด์šฉํ•˜์—ฌ ํ”ผํŒ…ํ•˜์˜€๋‹ค. ๋ชจ๋“  ์ „๊ธฐํ™”ํ•™

์  ์ธก์ •์€ 25 oC์—์„œ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์‚ฌ์ดํด ์ง„ํ–‰ํ›„์˜ ์ž…์ž์˜ ํ˜•

ํƒœํ•™์  ๋ถ„์„์€ ์ง‘์†์ด์˜จ๋น”(Focused ion beam, FIB, 1540 EsB,

CARL ZEISS)์„ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค.

3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

์‚ฌ์šฉํ•œ NCA#1๊ณผ #2์˜ ํ˜•ํƒœํ•™์  ํŠน์„ฑ์€ FE-SEM์œผ๋กœ ๋ถ„์„ํ•˜์˜€๊ณ 

๊ทธ ๊ฒฐ๊ณผ๋ฅผ Fig. 1์— ๋‚˜ํƒ€๋ƒˆ๋‹ค. Fig. 1์—์„œ ๋ณด์—ฌ์ค€ ๊ฒƒ๊ณผ ๊ฐ™์ด NCA#1๊ณผ

NCA#2 ์ž…์ž๋Š” ์ž‘์€ 1์ฐจ ์ž…์ž๋“ค์ด ์„œ๋กœ ์‘์ง‘๋˜์–ด 2์ฐจ ์ž…์ž๋กœ ์ด๋ฃจ

Fig. 1. FE-SEM images of commercial NCA powders; (a) and (c) are analyzed with NCA#1 at low and high magnifications. (b) and (d) are

analyzed with NCA#2 at low and high magnifications.

์ƒ์šฉ ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์šฉ NCA ์–‘๊ทนํ™œ๋ฌผ์งˆ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ 165

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

์–ด์ ธ ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  NCA#1 ์ž…์ž์ธ ๊ฒฝ์šฐ ์•ฝ 5 ฮผm์˜

๊ท ์ผํ•œ ๊ตฌํ˜•์˜ 2์ฐจ์ž…์ž๋กœ, NCA#2์ธ ๊ฒฝ์šฐ๋Š” NCA#1๊ณผ ๋น„์Šทํ•œ ์•ฝ

5 ฮผm ํฌ๊ธฐ์˜ ์ž…์ž์™€ ์•ฝ 11 ฮผm์˜ ํฐ ์ž…์ž๋“ค์ด ํ˜ผํ•ฉ๋˜์–ด ์žˆ๋Š” ๊ฒƒ์„

ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ข€ ๋” ์ž์„ธํ•œ ์ž…์ž ๋ถ„ํฌ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž…๋„

๋ถ„ํฌ๋„๋ฅผ ์ธก์ •ํ•˜์˜€๊ณ  Fig. 2์—์„œ NCA#1๊ณผ NCA#2์˜ ์ž…๋„๋ถ„ํฌ ๊ฒฐ

๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. NCA#1์€ ๋ถ€ํ”ผ์˜ 95% ์ด์ƒ์ด ์•ฝ 5 ฮผm์˜ ์ž…์ž๋“ค

์ด ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ , NCA#2๋Š” 5 ฮผm ์ •๋„์˜ ์ž…์ž์™€ 11 ฮผm ์ž…์ž๋“ค๋กœ

ํ˜ผํ•ฉ๋˜์–ด ๊ตฌ์„ฑ๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ž…์ž ํฌ๊ธฐ์™€

๋ชจ์–‘์€ ์ „๊ธฐ์ „๋„๋„์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ

๋ผ์„œ ๋‹ค์–‘ํ•œ ์ž…์žํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” NCA ์–‘๊ทน์†Œ์žฌ์˜ ์ „๊ธฐ์ „๋„๋„ ํŠน์„ฑ์„

ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์••๋ ฅ์— ๋”ฐ๋ฅธ ๋ถ„์ฑ„์ €ํ•ญ์„ ์ธก์ •ํ•˜์—ฌ Fig. 3์— ๋‚˜ํƒ€

๋‚ด์—ˆ๋‹ค. ์ธก์ •ํ•œ ๊ฒฐ๊ณผ NCA#2 ๋ถ„๋ง์˜ ์ „๊ธฐ์ „๋„๋„๋Š” NCA#1์— ๋น„ํ•ด

๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๊ณ  ์••๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ „๊ธฐ์ „๋„๋„์˜ ์ฆ๊ฐ€๋Š” ๋”์šฑ ์„ 

๋ช…ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๊ฒƒ์€ ํฌ๊ณ  ์ž‘์€ ์ž…์ž์˜ ํ˜ผํ•ฉ์œผ๋กœ ์ธํ•˜์—ฌ ์••๋ ฅ

์ด ์ฆ๊ฐ€ํ•  ์ˆ˜๋กœ ํฐ ์ž…์ž๊ฐ„์˜ ๊ธฐ๊ณต ์‚ฌ์ด๋ฅผ ์ž‘์€ ์ž…์ž๋“ค์ด ์ฑ„์›Œ์คŒ์œผ

๋กœ์จ ์ž…์ž๊ฐ„์˜ ๋”์šฑ ๊ธด๋ฐ€ํ•œ ์ ‘์ด‰์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ ๋ฐ€

์ ‘ํ•œ ์ž…์ž๊ฐ„์˜ ๊ฑฐ๋ฆฌ๋Š” ์ „์ž ์ „๋‹ฌ์ด ๋”์šฑ ์šฉ์ดํ•˜์—ฌ ์ „๊ทน ๋‚ด๋ถ€์˜ ์ €

ํ•ญ์ด ์ž‘์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

Fig. 4๋Š” NCA#1๊ณผ NCA#2 ๋ถ„๋ง์˜ XRD ํŒจํ„ด์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

NCA#1๊ณผ NCA#2 ๋ถ„๋ง์€ ๋ชจ๋‘ 2ฮธ๊ฐ€ 18.7o, 36.6o, 37.9o, 38.2o, 44.4o,

48.5o, 58.6o, 64.4o, 64.8o, 68.1o์—์„œ ๊ฐ๊ฐ (003), (101), (006), (012),

(104), (015), (107), (018), (110), ๋ฐ (113) ๊ฒฐ์ •๋ฉด์— ํ•ด๋‹นํ•˜๋Š” ์ „ํ˜•

์ ์ธ R3m ๊ณต๊ฐ„๊ทธ๋ฃน์„ ๊ฐ–๋Š” ์ธต์ƒ๊ตฌ์กฐ์˜ ฮฑ-NaFeO2 ํŒจํ„ด์œผ๋กœ ๋‚˜ํƒ€

๋‚ฌ๋‹ค. XRD ๊ฒฐ๊ณผ์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ a์™€ c ๊ฒฉ์ž์ƒ์ˆ˜์˜ ๊ฐ’์€ ํ‘œ1์— ๋‚˜ํƒ€

๋‚ด์—ˆ๋‹ค. ํฐ c/a ๊ฐ’๊ณผ I(003)/I(104) ๊ฐ’์€ ๊ฒฐ์ •์„ฑ์ด ์šฐ์ˆ˜ํ•จ๊ณผ ๋ณด๋‹ค ์–‘ํ˜ธ

ํ•œ ์œก๋ฐฉ์ •๊ณ„(Hexagonal) ์ •๋ ฌ์„ ์˜๋ฏธํ•˜๋ฉฐ, Ni2+์™€ Li+์ด ๋”์šฑ ๋ฌด์งˆ

์„œํ•˜๊ฒŒ ๋ฐฐ์—ด๋จ์„ ์˜๋ฏธํ•จ์œผ๋กœ์จ ๋”์šฑ ์šฐ์ˆ˜ํ•œ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๊ธฐ

๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค[18-20]. Table 1์—์„œ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ๊ณผ ๊ฐ™์ด NCA#2์˜ c/a

์™€ I(003)/I(104) ๊ฐ’์ด ๊ฐ๊ฐ 4.9478๊ณผ 1.8515๋กœ NCA#1์— ๋น„ํ•ด ๋ชจ๋‘

ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋˜ํ•œ NCA#2์ธ ๊ฒฝ์šฐ Ni2+์™€ Li+์ด NCA#1์—

๋น„ํ•ด ๋”์šฑ ๋ฌด์งˆ์„œํ•˜๊ฒŒ ๋ฐฐ์—ด๋œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋”ฐ๋ผ์„œ NCA#2๋ฅผ

๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์†Œ์žฌ๋กœ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ ๋”์šฑ ์šฐ์ˆ˜ํ•œ ์ „

๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  NCA#2๋Š” NCA#1์— ๋น„ํ•ด

a์ถ• ๊ธธ์ด๊ฐ€ ์กฐ๊ธˆ ์ฆ๊ฐ€ํ•˜๊ณ  c์ถ•์€ ์กฐ๊ธˆ ๊ฐ์†Œํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ

์ „์ฒด ๋ถ€ํ”ผ๋Š” ์ฆ๊ฐ€ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Fig. 5๋Š” NCA#1๊ณผ NCA#2 ์–‘๊ทน์†Œ์žฌ๋ฅผ ์ด์šฉํ•œ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜

์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Fig. 5(a)๋Š” NCA#1๊ณผ NCA#2์˜

์ดˆ๊ธฐ ์‚ฌ์ดํด์˜ CV ๊ณก์„ ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , Fig. 5(b)์™€ (c)๋Š” NCA#1๊ณผ

NCA#2์˜ ์ถฉ์ „-๋ฐฉ์ „ ๊ณก์„ ์„ ๋‚˜ํƒ€๋‚ด์—ˆ์œผ๋ฉฐ Fig. 5(d)๋Š” ๋ฐฉ์ „์šฉ๋Ÿ‰-์‚ฌ

์ดํด ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. CV ํŠน์„ฑ ๋ถ„์„์€ 2.8~4.5 V์˜ ์ „์••์˜์—ญ๊ณผ

0.1 mV/s์˜ ์ฃผ์‚ฌ์†๋„์—์„œ ์ธก์ •๋˜์—ˆ๋‹ค. NCA#1๋Š” ์•ฝ 3.84, 4.05, ๊ทธ

Fig. 2. Particle size distributions of NCA#1 and NCA#2 powders.

Fig. 3. Electrical conductivity with applied pressure for the NCA#1

and NCA#2 powders.

Fig. 4. XRD patterns of NCA#1 and NCA#2 powders.

Table 1. Structural and lattice parameters of NCA#1 and NCA#2 powders

SamplesMain Element (mol%)

a (ร…) c (ร…) V (ร…3) c/a I(003)/I(104)Ni Co Al

NCA#1 80.5 15.0 4.5 2.8708 14.1905 101.2884 4.9430 1.8308

NCA#2 81.5 15.0 3.5 2.8695 14.1980 101.2508 4.9478 1.8515

166 ๊น€์€๋ฏธ ยท ์ด๊ฐ€์„ ยท ๋‚˜๋ณ‘๊ธฐ ยท ์ •์ƒ๋ฌธ

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

๋ฆฌ๊ณ  4.25 V ๋“ฑ ์„ธ ์˜์—ญ์—์„œ ์‚ฐํ™”ํ”ผํฌ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๊ณ  ํ™˜์›ํ”ผํฌ๋Š” ๊ฐ๊ฐ

3.62, 3.78, 4.11 V์—์„œ, NCA#2๋Š” 4.15์™€ 3.35 V์—์„œ ๋„“์€ ์‚ฐํ™”ํ™˜

์›ํ”ผํฌ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. I-I' ์‚ฐํ™”ํ™˜์›ํ”ผํฌ๋Š” ์œก๋ฐฉ์ •๊ณ„์—์„œ ๋‹จ์‚ฌ์ •๊ณ„

(Monoclinic) ๊ตฌ์กฐ๋กœ ๋ณ€ํ™”์— ์˜ํ•ด ๋‚˜ํƒ€๋‚˜๊ณ  II-II'๋Š” ๋‹จ์‚ฌ์ •๊ณ„์—์„œ

์œก๋ฐฉ์ •๊ณ„ ๊ตฌ์กฐ๋กœ, III-III'๋Š” ์œก๋ฐฉ์ •๊ณ„์—์„œ ์œก๋ฐฉ์ •๊ณ„ ๊ตฌ์กฐ๋กœ์˜ ๋ณ€ํ™”์—

์˜ํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์ด๋‹ค[21]. ์‚ฐํ™”ํ™˜์›ํ”ผํฌ๊ฐ€ ์„ ๋ช…ํ•˜์ง€ ์•Š๊ณ  ๋„“๊ฒŒ

๋‚˜ํƒ€๋‚œ ์ด์œ ๋Š” ์ž…์ž ํฌ๊ธฐ๊ฐ€ ๋‹ค๋ฅธ NCA๋Š” ์ „ํ•ด์•ก ์ค‘์˜ Li+์ด ์ž…์ž

ํฌ๊ธฐ์— ๋”ฐ๋ผ 2์ฐจ ์ž…์ž ๋‚ด๋ถ€๊นŒ์ง€์˜ ๋ฐ˜์‘ ์†๋„์— ๋Œ€ํ•œ ์ฐจ์ด์— ์˜ํ•ด

๋‚˜ํƒ€๋‚œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ NCA#2์ธ ๊ฒฝ์šฐ ํ”ผํฌ์ „๋ฅ˜๋ฐ€๋„๊ฐ€

NCA#1๋น„ํ•ด ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ด๋Š” NCA#2์˜ ์šฉ๋Ÿ‰์ด NCA#1์— ๋น„

ํ•ด ํด ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. Fig. 5(b)์™€ (c)๋Š” NCA#1๊ณผ NCA#2์˜ ์ถฉ

๋ฐฉ์ „ ๊ณก์„ ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. NCA#1๊ณผ NCA#2๋Š” ์ดˆ๊ธฐ ์‚ฌ์ดํด์— ๊ฐ๊ฐ

189.6๊ณผ 197.0 mAh/g์˜ ๋ฐฉ์ „์šฉ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , ์‚ฌ์ดํด์ด ์ง„ํ–‰๋จ

์— ๋”ฐ๋ผ NCA#1์€ NCA#2์— ๋น„ํ•ด ์‹ฌํ•œ ์šฉ๋Ÿ‰๊ฐ์†Œ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ผ

๋ฐ˜์ ์œผ๋กœ Ni ํ•จ๋Ÿ‰์ด ๋†’์„์ˆ˜๋ก ๋†’์€ ์ดˆ๊ธฐ ๋ฐฉ์ „์šฉ๋Ÿ‰์„ ๊ฐ–์ง€๋งŒ ์‚ฌ์ดํด

์ด ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๊ธ‰๊ฒฉํ•œ ์šฉ๋Ÿ‰๊ฐ์†Œ๊ฐ€ ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค[22].

ํ•˜์ง€๋งŒ ๋ณธ ์‹คํ—˜๊ฒฐ๊ณผ์—์„œ๋Š” NCA#2 (Ni=0.815)๋Š” NCA#1 (Ni=0.805)์—

๋น„ํ•ด ์šฉ๋Ÿ‰๊ฐ์†Œ๊ฐ€ ์ ์„ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” 5 ฮผm์™€ 11 ฮผm

ํฌ๊ธฐ์˜ ์ž…์ž๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์ถฉ๋ฐฉ์ „์ด ๊ฑฐ๋“ญ๋จ์— ๋”ฐ๋ผ ์ „๊ทน๊ณผ Al ์ง‘์ „

์ฒด์˜ ๋ถ„๋ฆฌ ๋˜๋Š” ์ „๊ทน ๋ถ•๊ดดํ˜„์ƒ์„ ์–ต์ œํ•˜๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Fig. 5(d)์—์„œ NCA#1๊ณผ NCA#2์˜ ์‚ฌ์ดํด ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

NCA#2NCA#1์— ๋น„ํ•ด ๋ชจ๋“  ์‚ฌ์ดํด์—์„œ ๋†’์€ ๋ฐฉ์ „์šฉ๋Ÿ‰ ๊ฐ’์„ ๋‚˜ํƒ€

๋‚ด์—ˆ๊ณ  30๋ฒˆ์งธ ์‚ฌ์ดํด์˜ NCA#1๊ณผ NCA#2์˜ ๋ฐฉ์ „์šฉ๋Ÿ‰์€ ๊ฐ๊ฐ

174.6 mAh/g์™€ 184.3 mAh/g์œผ๋กœ ๋ฐฉ์ „์šฉ๋Ÿ‰ ์œ ์ง€์œจ์„ ๊ฐ๊ฐ 92์™€

94%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ NCA#2๋Š” NCA#1์— ๋น„ํ•ด Ni ํ•จ๋Ÿ‰์ด ๋†’

์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์šฉ๋Ÿ‰์œ ์ง€์œจ์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์€ ๋‘ ๊ฐ€์ง€ ํฌ๊ธฐ๋ฅผ

๊ฐ–๋Š” ์ž…์ž์˜ ์˜ํ–ฅ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

๊ต๋ฅ˜์ž„ํ”ผ๋˜์Šค ๋ถ„์„๋ฒ•์€ ์ „์ง€์˜ ์–‘๊ทน/์Œ๊ทน๊ณผ ์ „ํ•ด์งˆ ์‚ฌ์ด์—์„œ ์ผ

์–ด๋‚˜๋Š” ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์„ ๋“ฑ๊ฐ€ํšŒ๋กœ์˜ ํ˜•ํƒœ๋กœ ๋ชจํ˜•ํ™”ํ•˜์—ฌ ํ•ด์„ํ•˜๋Š”

๋ฐฉ๋ฒ•์ด๋‹ค. ๊ต๋ฅ˜์ž„ํ”ผ๋˜์Šค๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ฐฉํ–ฅ์ด ๋ณ€ํ•˜๋Š”

๊ต๋ฅ˜ ์ „์••์„ ์ธ๊ฐ€ํ•  ๋•Œ ์ „๋ฅ˜์˜ ์‘๋‹ต ํŠน์„ฑ์„ ํ•ด์„ํ•˜์—ฌ ์ €ํ•ญ(R)๊ณผ ์บ

ํŒจ์‹œํ„ด์Šค(C) ๊ทธ๋ฆฌ๊ณ  ์ธ๋•ํ„ด์Šค(L) ๋“ฑ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. Fig. 6์€ ์ถฉ

๋ฐฉ์ „ ์ „ (a)๊ณผ 30๋ฒˆ์งธ ์‚ฌ์ดํด ๋ฐฉ์ „ ํ›„ (b)์˜ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ์„

๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ธก์ •ํ•œ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ์€ Fig. 6์— ์‚ฝ์ž…๋œ ๋“ฑ๊ฐ€ํšŒ

๋กœ์™€ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ๋จผ์ € ์ถฉ๋ฐฉ์ „ ์ „์˜ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์ธ

๊ฒฝ์šฐ ๋†’์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ํ•œ ๊ฐœ์˜ ๋ฐ˜์›๊ณผ ๊ฒฝ์‚ฌ์ง„ ์ง์„ ์ด ์ €์ฃผํŒŒ

์ˆ˜ ์˜์—ญ์—์„œ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Fig. 6(a)์— ์‚ฝ์ž…๋œ ๋“ฑ๊ฐ€ํšŒ๋กœ์™€ ๊ฐ™์ด ์ถฉ๋ฐฉ์ „

์ „์˜ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ์€ ๋จผ์ € ์™ธ๋ถ€์˜ ์ „ํ•ด์งˆ ์ €ํ•ญ(Rs), ๋ฐ˜์›์˜ ํ˜•

Fig. 5. Electrochemical performance of NCA#1 and NCA#2 electrodes used in lithium ion batteries. (a) Cyclic voltammograms after the first

cycle and the 30th cycle at a scan rate of 0.1 mV/s at 25 oC; charge-discharge curves of (b) NCA#1 and (c) NCA#2 with different

cycles; (d) cycling performance with cutoff voltage of 3.0~4.3 V at a current density of 0.1 C rate.

์ƒ์šฉ ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์šฉ NCA ์–‘๊ทนํ™œ๋ฌผ์งˆ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ 167

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

ํƒœ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ์ „๊ทน ๋ฌผ์งˆ ๊ณ„๋ฉด์—์„œ์˜ Li+ ์‚ฐํ™”/ํ™˜์›๋ฐ˜์‘์„ ๋‚˜ํƒ€๋‚ด๋Š”

์ „ํ•˜์ „๋‹ฌ ์ €ํ•ญ(R2, R3)์™€ ์ž…์ž๊ฒฐ์ •๊ตฌ์กฐ๋‚ด๋ถ€๋กœ์˜ ์ธต๊ฐ„์‚ฝ์ž…์— ์˜ํ•œ

ํ™”ํ•™์  ํ™•์‚ฐ์ €ํ•ญ(RW

)๋กœ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์‹คํ—˜์—์„œ๋Š” ์‚ฌ์šฉํ•œ ์–‘

๊ทน์†Œ์žฌ๊ฐ€ 1์ฐจ ์ž…์ž๋“ค์ด ์„œ๋กœ ์‘์ง‘ํ•˜์—ฌ 2์ฐจ ์ž…์ž๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฏ€๋กœ

1์ฐจ ์ž…์ž์™€ 2์ฐจ ์ž…์ž์˜ ์ „ํ•˜์ „๋‹ฌ ์ €ํ•ญ์„ ๊ตฌ๋ถ„ํ•˜์—ฌ R2๊ณผ R3๋กœ ๊ตฌ๋ถ„

ํ•˜์—ฌ ๋“ฑ๊ฐ€ํšŒ๋กœ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๋“ฑ๊ฐ€ํšŒ๋กœ๋ฅผ ๊ตฌ์„ฑํ•œ ํ›„ ์ด๋ฅผ ์ธก์ •ํ•œ

์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ๊ฒฐ๊ณผ์™€ ๋น„์„ ํ˜• ์ตœ์†Œ ์ž์Šน๋ฒ•(Non-linear least

square fitting)์„ ํ†ตํ•ด ์–ป์€ ๊ฐ๊ฐ์˜ ์ €ํ•ญ ๊ฐ’์„ Table 2์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

NCA#1๊ณผ NCA#2์˜ Rs๋Š” 2.72 ฮฉ๊ณผ 2.01 ฮฉ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ , R2+R3๋Š”

NCA#2๊ฐ€ 239.8 ฮฉ์œผ๋กœ NCA#1์— ๋น„ํ•ด ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” NCA#2์™€

๊ฐ™์ด ํฐ ์ž…์ž์™€ ์ž‘์€ ์ž…์ž๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ NCA ์–‘๊ทน์†Œ์žฌ๊ฐ€ ๋”์šฑ

๋ฉด๋ฐ€ํ•œ ์ ‘์ด‰์— ์˜ํ•ด ์ „๊ทน์—์„œ์˜ ์ „์ž์˜ ์ „๋‹ฌ์„ ๋”์šฑ ์šฉ์ดํ•˜๊ฒŒ ํ•˜์—ฌ

๋‚˜ํƒ€๋‚œ ๊ฒฐ๊ณผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. 30๋ฒˆ์งธ ๋ฐฉ์ „ํ›„ ์ธก์ •ํ•œ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ์€

Fig. 6(b)์— ์‚ฝ์ž…๋œ ๋“ฑ๊ฐ€ํšŒ๋กœ์™€ ๊ฐ™์ด ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์„œ R1์€ ๋‚ด๋ถ€

์ „๊ทน ์ž…์žํ‘œ๋ฉด์— ์ƒ์„ฑ๋˜๋Š” SEI (Solid electrolyte interphase)์—์„œ์˜

์ „ํ•˜์ „๋‹ฌ์— ํ•ด๋‹นํ•˜๋Š” ํ•„๋ฆ„์ €ํ•ญ์ด๋‹ค. 30๋ฒˆ์งธ ๋ฐฉ์ „ ํ›„์—๋Š” ๊ณ ์ฃผํŒŒ์ˆ˜

์—์„œ ์ค‘๊ฐ„ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๋‘ ๊ฐœ์˜ ๋ฐ˜์›๊ณผ ์ €์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๊ฒฝ

์‚ฌ์ง„ ์ง์„ ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐฉ์ „ ํ›„์˜ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™ํŠธ๋Ÿผ ํ”ผํŒ… ๊ฐ’์„ ๋ณด

๋ฉด R3์€ NCA#1์ด 4.55 ฮฉ, NCA#2๊ฐ€ 2.98 ฮฉ์œผ๋กœ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ฐ˜

๋ฉด์— R1+R2๋Š” NCA#1์— ๋น„ํ•ด NCA#2๊ฐ€ ํ›จ์”ฌ ์ž‘์€ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ด์—ˆ

๋‹ค. ์ด๋Š” NCA#2์˜ ํฐ ์ž…์ž์™€ ์ž‘์€ ์ž…์ž์˜ ํ˜ผํ•ฉํšจ๊ณผ๋กœ ์ธํ•˜์—ฌ ์ „๊ทน

๋‚ด์—์„œ์˜ ์ „ํ•˜์˜ ์ด๋™์ด ํ›จ์”ฌ ์šฉ์ดํ•˜์—ฌ ๋‚˜ํƒ€๋‚œ ํ˜„์ƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

์ถฉ๋ฐฉ์ „ ์‚ฌ์ดํด์— ๋”ฐ๋ฅธ ์ „๊ทน์˜ ํ˜•ํƒœํ•™์  ํŠน์„ฑ์€ ์ถฉ๋ฐฉ์ „ ์ „๊ณผ ํ›„์˜

FE-SEM ์ด๋ฏธ์ง€ ๋ฐ FIB๋ฅผ ์ด์šฉํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค. Fig. 7(a)~(d)๋Š” ์ถฉ

๋ฐฉ์ „ ํ•˜๊ธฐ ์ „๊ณผ 100๋ฒˆ์งธ ๋ฐฉ์ „ ์ „ํ›„์˜ NCA#1๊ณผ NCA#2 ์ „๊ทน์˜

FE-SEM ๋‹จ๋ฉด ์ด๋ฏธ์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , Fig. 7(e)~(f)๋Š” ์ถฉ๋ฐฉ์ „ ์ „๊ณผ

100๋ฒˆ์งธ ๋ฐฉ์ „ ์ „ํ›„ ์ „๊ทน์˜ FIB ์ด๋ฏธ์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. NCA#1์€ ์‚ฌ

์ดํด ์ง„ํ–‰ํ•œ ํ›„ ์ „๊ทน์˜ ๋‹จ๋ฉด ์ด๋ฏธ์ง€(Fig. 7(b))์—์„œ์™€ ๊ฐ™์ด ์ž…์ž๋“ค์˜

Fig. 6. Electrochemical impedance spectroscopy (EIS) of NCA#1 and

NCA#2 electrode used in lithium ion batteries (a) before the

electrochemical test and (b) after the 30th cycle at discharge

state. The frequency range from 100 MHz to 0.5 mHz with

an input signal amplitude of 10 mV.

Table 2. Resistance values obtained from equivalent circuit fitting of experimental data for NCA#1 and NCA#2

Samples Rs (ฮฉ) R1 (ฮฉ) R2 (ฮฉ) R3 (ฮฉ) Z

W (mMho)

NCA#1-Fresh 2.72 / 91 201 1.84

NCA#2-Fresh 2.01 / 33 207 4.91

NCA#1-10cycles 3.60 4.55 202 375 120

NCA#2-10cycles 3.42 2.98 158 198 110

Fig. 7. Cross-sectional FE-SEM images of the electrodes; (a) fresh

NCA#1, (b) NCA#1 after the 100th cycle at discharge state,

(c) fresh NCA#2 and (d) NCA#2 after the 100th cycle at dis-

charge state. Cross-sectional focused ion beam generated

images of the electrodes; (e) fresh NCA#1, (f) NCA#1 after

the 100th cycle at discharge state, (g) fresh NCA#2 and (h)

NCA#2 after the 100th cycle at discharge state.

168 ๊น€์€๋ฏธ ยท ์ด๊ฐ€์„ ยท ๋‚˜๋ณ‘๊ธฐ ยท ์ •์ƒ๋ฌธ

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

๋ถ€ํ”ผ๋ณ€ํ™”๋กœ ์ธํ•ด ์‚ฌ์ดํด ์ง„ํ–‰ํ•˜๊ธฐ ์ „์˜ ๋‹จ๋ฉด ์ด๋ฏธ์ง€์— ๋น„ํ•ด ์ž…์ž๋“ค

๊ฐ„์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ์„ ๋ช…ํ•˜๊ฒŒ ๊ฐ์†Œ๋˜์—ˆ๊ณ  ์ „๊ทน์˜ ๋ถ€ํ”ผ ๋˜ํ•œ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์œผ๋กœ

๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ NCA#2๋Š” ์‚ฌ์ดํด ์ง„ํ–‰ ํ›„(Fig. 7(d)) ๋น„๋ก ์ž…์ž์˜

๋ถ€ํ”ผ๋ณ€ํ™”๋Š” ์กฐ๊ธˆ ์ผ์–ด๋‚ฌ์œผ๋‚˜ ์ „๊ทน์˜ ๋ถ€ํ”ผ๋ณ€ํ™”๋Š” ๊ฑฐ์˜ ์ผ์–ด๋‚˜์ง€ ์•Š์€

๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. Fig. 7(e)~(h)๋Š” ์‚ฌ์ดํด ์ „ํ›„์˜ ์ž…์ž ๋‚ด๋ถ€์˜ ํ˜•

ํƒœํ•™์  ๋ถ„์„์„ ์œ„ํ•ด ์ธก์ •ํ•œ FIB ๊ฒฐ๊ณผ์ด๋‹ค. NCA#1๊ณผ NCA#2 ๋ชจ๋‘

์‚ฌ์ดํด ์ง„ํ–‰ ์ „์— ๋น„ํ•ด ์‚ฌ์ดํด ์ง„ํ–‰ํ•œ ํ›„์˜ ์ž…์ž์˜ ๋‚ด๋ถ€์— ํฌ๋ž™์ด

๋ฐœ์ƒํ•œ ๊ฒƒ์„ ํ™•์ธํ• ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ NCA#1๋Š” ์‚ฌ์ดํด ์ง„ํ–‰ํ•˜๊ธฐ ์ „์—

๋น„ํ•ด ์ž…์ž์˜ ์„ฑ์žฅ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๊ณ  ์ „๊ทน์˜ ๋ถˆ๊ท ์ผํ•œ ๋‹จ๋ฉด์„ ๋‚˜ํƒ€

๋‚ด์—ˆ๋‹ค. ๋ฐ˜๋ฉด์— NCA#2์ธ ๊ฒฝ์šฐ, ์ž…์ž์˜ ๋‚ด๋ถ€์— ํฌ๋ž™์ด ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ

๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜ ์ „๊ทน์˜ ๋‹จ๋ฉด์€ ๊ฑฐ์˜ ๋ณ€ํ™”๊ฐ€ ์—†์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š”

์œ„์˜ FE-SEM ์ด๋ฏธ์ง€์—์„œ ์„ค๋ช…ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์ž…์ž์˜ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์—

๋Œ€ํ•œ ์˜ํ–ฅ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋”ฐ๋ผ์„œ NCA#2์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž…์žํฌ๊ธฐ๋ฅผ

๊ฐ™์€ ์–‘๊ทน์†Œ์žฌ๋ฅผ ์ด์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ ์‚ฌ์ดํด ํŠน์„ฑ ๋ฐ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ

์ด ์šฐ์ˆ˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

4. ๊ฒฐ ๋ก 

์•ฝ 5 ฮผm์˜ ๊ท ์ผํ•œ ๊ตฌํ˜•์˜ NCA#1๊ณผ ์•ฝ 5 ฮผm์™€ 11 ฮผm์˜ ์ž…์ž๊ฐ€

ํ˜ผํ•ฉ๋œ NCA#2๋ฅผ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์˜ ์–‘๊ทน์†Œ์žฌ๋กœ ์‘์šฉํ•˜์—ฌ ์ „์ง€

๋ฅผ ์กฐ๋ฆฝํ•˜๊ณ  ์ด์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ถฉ๋ฐฉ์ „ ํŠน์„ฑ ์ธก

์ • ๊ฒฐ๊ณผ NCA#1๊ณผ NCA#2๋Š” ์ดˆ๊ธฐ ์‚ฌ์ดํด์— ๊ฐ๊ฐ 189.6๊ณผ 197.0

mAh/g์˜ ๋ฐฉ์ „์šฉ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , 30๋ฒˆ์งธ ์‚ฌ์ดํด ํ›„์˜ ๋ฐฉ์ „์šฉ๋Ÿ‰์€

๊ฐ๊ฐ 174.6 mAh/g์™€ 184.3 mAh/g์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ฐฉ์ „์šฉ๋Ÿ‰

์œ ์ง€์œจ์„ 30 ์‚ฌ์ดํด์„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ๊ฐ 92์™€ 94%๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ

์„œ NCA#2๋Š” NCA#1์— ๋น„ํ•ด Ni ํ•จ๋Ÿ‰์ด ๋†’์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์šฉ๋Ÿ‰์œ 

์ง€์œจ์ด ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์€ ๋‘ ๊ฐ€์ง€ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ž…์ž๋ฅผ ์ด์šฉํ•จ์œผ๋กœ

์จ ์ „๊ทน ๋‚ด์—์„œ์˜ ์ „ํ•˜์˜ ์ด๋™์ด ํ›จ์”ฌ ์šฉ์ดํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ „๊ทน์˜

๋ถ€ํ”ผ์ฆ๊ฐ€๋ฅผ ์–ต์ œํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋Š” ๋˜ํ•œ ์ž„ํ”ผ๋˜์Šค ์ŠคํŽ™

ํŠธ๋Ÿผ์—์„œ๋„ ์ฆ๋ช…๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ์ž…์žํฌ๊ธฐ๋ฅผ ๊ฐ™์€ ์–‘๊ทน์†Œ์žฌ

๋ฅผ ์ด์šฉํ•จ์œผ๋กœ์จ ์‚ฌ์ดํด ์ˆ˜๋ช…ํŠน์„ฑ์„ ํ–ฅ์ƒํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๊ธฐ๋Œ€ํ•  ์ˆ˜

์žˆ๋‹ค.

๊ฐ ์‚ฌ

๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฐ์—…ํ†ต์ƒ์ž์›๋ถ€ ๋ฐ ํ•œ๊ตญ์‚ฐ์—…๊ธฐ์ˆ ํ‰๊ฐ€๊ด€๋ฆฌ์›์˜ ๊ฒฝ์ œํ˜‘

๋ ฅ๊ถŒ์‚ฐ์—…์œก์„ฑ์‚ฌ์—…(๋น„์ฆˆ๋‹ˆ์Šคํ˜‘๋ ฅํ˜• R&D)์˜ ์ผํ™˜์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€์Œ

[R0004144].

References

1. Kang, K. Y., Choi, M. G., Lee, Y. G. and Kim, K. M., โ€œPhase Change

of Nanorod-Clustered MnO2 by Hydrothermal Reaction Conditions

and the Lithium-ion Battery Cathode Properties of LiMn2O4 Pre-

pared from the MnO2,โ€ Korean Chem. Eng. Res., 49(5), 541-547

(2011).

2. Lee, H. Y. and Lee, J. D., โ€œElectrochemical Performance on the

H3BO3 Treated Soft Carbon modified from PFO as Anode Mate-

rial,โ€ Korean Chem. Eng. Res., 54(6), 746-752(2016).

3. Wu, B., Wang, J., Li, J., Lin, W., Hu, H., Wang, F., Zhao, S., Gan,

C. and Zhao, J., โ€œMorphology Controllable Synthesis and Elec-

trochemical Performance of LiCoO2 for Lithium-ion Batteries,โ€

Electrochim. Acta, 209, 315-322(2016).

4. Vu, D. L. and Lee, J. W., โ€œProperties of LiNi0.8Co0.1Mn0.1O2 as

a High Energy Cathode Material for Lithium-ion Batteries,โ€

Korean J. Chem. Eng., 33(2), 514-526(2016).

5. Hua, W., Zhang, J., Zheng, Z., Liu, W., Peng, X., Guo, X. D., Zhong,

B., Wang, Y. J. and Wang, X., โ€œNa-doped Ni-rich LiNi0.5Co0.2

Mn0.3O2 Cathode Material with Both High Rate Capability and

High Tap Density for Lithium Ion Batteries,โ€ Dalton Trans., 43,

14824-14832(2014).

6. Nitta, N., Wu, F., Lee, J. T. and Yushin, G., โ€œLi-ion Battery Mate-

rials: Present and Future,โ€ Materials Today, 18, 252-264(2015).

7. Liu, J., Wang, S., Ding, Z., Zhou, R., Xia, Q. J., Chen, L., Wei,

W. and Wang, P., โ€œThe Effect of Boron Doping on Structure and

Electrochemical Performance of Lithium-Rich Layered Oxide

Materials,โ€ ACS Appl. Mater. Interfaces, 8, 18008-18017(2016).

8. Choo, S., Kim, H. Y., Yoon, D. Y., Choi, W., Oh, S. H., Ju, J. B.,

Ko, J. M., Jang, H. and Cho, W. I., โ€œElectrochemical Properties

of Co-less Layered Transition Metal Oxide as High Energy Cathode

Material for Li-ion Batteries,โ€ J. Korean Electrochem. Soc., 31,

905-910(2014).

9. Conry, T. E., Mehta, A., Cabana, J. and Doeff, M. M., โ€œStructural

Underpinnings of the Enhanced Cycling Stability upon Al-Substitu-

tion in LiNi0.45Mn0.45Co0.1-yAlyO2 Positive Electrode Materials

for Li-ion Batteries,โ€ Chem. Mater., 24, 3307-3317(2012).

10. Lim, S. N., Ahn, W., Yeon, S. H. and Park, S. B., โ€œEnhanced

Elevated-temperature Performance of Li(Ni0.8Co0.15Al0.05)O2 Elec-

trodes Coated with Li2O-2B2O3 Glass,โ€ Electrochim. Acta, 136,

1-9(2014).

11. Lee, D. J., Scrosati, B. and Sun, Y. K., โ€œNi3(PO4)2-coated Li[Ni0.8

Co0.15Al0.05]O2 Lithium Battery Electrode with Improved Cycling

Performance at 55 oC,โ€ J. Power Sources, 196, 7742-7746(2011).

12. Lee, S. H., Yoon, C. S., Amine, K. and Sun, Y. K., โ€œImprovement

of Long-term Cycling Performance of Li[Ni0.8Co0.15Al0.05]O2 by

AlF3 Coating,โ€ J. Power Sources, 234, 201-207(2013).

13. Liu, W., Hu, G., Du, K., Peng, Z. and Cao, Y., โ€œSurface Coating

of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a Molten Salt Method,โ€

Surface & Coatings Technology, 216, 267-272(2013).

14. Kang, S. H., Kim, J., Stoll, M. E., Abraham, D., Sun, Y. K. and

Amine, K., โ€œLayered Li(Ni0.5-xMn0.5-xM2x')O2 (M'=Co, Al, Ti; x=0,

0.025) Cathode Materials for Li-ion Rechargeable Batteries,โ€ J.

Power Sources, 112, 41-48(2002).

15. Santhanam, R. and Rambabu, B., โ€œHigh Rate Cycling Performance

of Li1.05Ni1/3Co1/3Mn1/3O2 Materials Prepared by Sol-gel and Co-

precipitation Methods for Lithium-ion Batteries,โ€ J. Power Sources,

195, 4313-4317(2010).

16. Chang, Z. R., Chen, Z. J., Wu, F., Tang, H. W. and Zhu, Z. H.,

โ€œSynthesis of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Eutectic

Molten Salt LiOH-LiNO3,โ€ Acta Phys. Chim. Sin., 24, 513-519

(2008).

17. Chang, Z., Chen, Z., Wu, F., Yuan, X. Z. and Wang, H., โ€œThe

Synthesis of Li(Ni1/3Co1/3Mn1/3)O2 Using Eutectic Mixed Lith-

ium Salt LiNO3-LiOH,โ€ Electrochim. Acta, 54, 6529-6535(2009).

18. Dahn, J. R., Sacken, U. V., Michal, C. A., โ€œStructure and Elec-

trochemistry of Li1ยฑyNiO2 and a New Li2NiO2 Phase with the

Ni(OH)2 Structure,โ€ Solid State Ionics, 44, 87-97(1990).

19. Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., โ€œStructure

and Electrochemistry of LixFeyNi1-yO2,โ€ Solid State Ionics, 61,

์ƒ์šฉ ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ์ด์˜จ์ด์ฐจ์ „์ง€์šฉ NCA ์–‘๊ทนํ™œ๋ฌผ์งˆ์˜ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ 169

Korean Chem. Eng. Res., Vol. 55, No. 2, April, 2017

335-344(1993).

20. Wu, K., Wang, F., Gao, L., Li, M. R., Xiao, L., Zhao, L., Hu, S.,

Wang, X., Xu, Z. and Wu, Q., โ€œEffect of Precursor and Synthe-

sis Temperature on the Structural and Electrochemical Proper-

ties of Li(Ni0.5Co0.2Mn0.3)O2,โ€ Electrochim. Acta, 75, 393-398(2012).

21. Li, W., Reimers, J. N. and Dahn, J. R., โ€œIn situ x-ray Diffraction

and Electrochemical Studies of Li1-xNiO2,โ€ Solid State Ionics,

67, 123-130(1993).

22. Makimura, Y., Sasaki, T., Nanaka, T., Nishimura, Y. F., Uyama,

T., Okuda, C., Itou, Y. and Takeuchi, Y., โ€œFactors Affecting Cycling

Life of LiNi0.8Co0.15Al0.05O2 for Lithium-ion Batteries,โ€ J. Mater.

Chem. A, 4, 8350-8358(2016).