Electrical and Computer Engineering | NYU Tandon School of...

16
Mikhail Pomeranets EE3414 Kathy Zaslavskaya Final Project Report Prof. Yao Wang Survey of Digital Watermarking Technology Watermarking is best known for official company letterheads or a hundred dollar bill. However, in today’s world of advanced technology, protecting copyrighted works gained a new urgency. Since the exponential rise of the Internet in the early 1990’s, illegal distribution of copyrighted material has followed the exponential rise. It is estimated that by 2005, book publishers and record label companies will lose 4.6 billion dollars a year (Forrester Research). This paper will focus on three main issues. First, the paper will disclose the reason why digital watermarking has become so important. Second, the paper will focus on different technical approaches to watermarking technology and describe different techniques. Finally, commercial applications and new research will be discussed in order to gain understanding of what the future holds. In order to proceed, some basic terms need to be defined. A watermark in its basic form is extra data that is inserted into a medium such as an image or audio file. A Page 1 of 8

Transcript of Electrical and Computer Engineering | NYU Tandon School of...

Page 1: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

Survey of Digital Watermarking Technology

Watermarking is best known for official company letterheads or a hundred dollar

bill. However, in today’s world of advanced technology, protecting copyrighted works

gained a new urgency. Since the exponential rise of the Internet in the early 1990’s,

illegal distribution of copyrighted material has followed the exponential rise. It is

estimated that by 2005, book publishers and record label companies will lose 4.6 billion

dollars a year (Forrester Research).

This paper will focus on three main issues. First, the paper will disclose the

reason why digital watermarking has become so important. Second, the paper will focus

on different technical approaches to watermarking technology and describe different

techniques. Finally, commercial applications and new research will be discussed in order

to gain understanding of what the future holds.

In order to proceed, some basic terms need to be defined. A watermark in its

basic form is extra data that is inserted into a medium such as an image or audio file. A

robust watermark is one that could withstand malicious or accidental attacks, such as

cropping, scaling, file conversion/compression, printing, and rotation. A fragile

watermark, on the other hand, is one that is destroyed once any changes to the document

occur. Under ideal circumstances, a robust watermark would also pinpoint exact pixels

that have been tampered with.

When working with images, watermarking can be implemented using the spatial

or frequency domain. Several techniques for the procedure exist, to use in both domains,

such as color separation in the spatial domain, and Fast Fourier Transform in the

Page 1 of 8

Page 2: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

frequency domain. Watermarking using these methods, as well as other schemes, will be

discussed in detail.

A simple watermarking algorithm uses metatags to embed secret code in the

header of the file. However, this technique is very fragile, as any type of file conversion

is likely to remove the watermark. Another simple technique takes advantage of the

Contrast Sensitivity Function (CSF). CSF is an index characterizing how well the human

could see at different frequencies. Particularly it shows that at high frequencies the eye is

very insensitive to change. Therefore, encompassing a watermark in high frequency will

make it transparent to the human eye. Unfortunately, a simple low pass filter will remove

the watermark.

Watermarking research has yielded algorithms, not only for use with ordinary

images, but with text as well. Though fragile, three proposed methods are text line

coding, word space coding, and character encoding. These methods depend on the

spacing between the lines of a text, spacing between words, and spacing between

characters. While some techniques are more fragile (watermark is easily removed) than

others, the purposes, potential use and security issues regarding each technique made its

way into our research, and will be discussed in full detail.

Page 2 of 8

Page 3: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

A superior watermarking method has been developed by Kodak. Either a logo or

a bitstream could be embedded in any image or movie. The bitstream is embedded using

positive or negative Dirac Delta function. d(x,y)= C(x,y)ÄC(x,y), where Ä is defined as

cyclic correlation. In other words, the formula above is equivalent to multiplying the

magnitudes of two signals, while subtracting their phases in the Fourier domain.

The process is designed to split the image into M x N blocks. A secret key is used to

generate a ‘random’ phase that resembles noise. The ‘noise’ and watermark are

convolved and scaled to a small amplitude. This result is then added to each block of the

original image. Because it resembles noise, the key cannot be easily intercepted in the

image. Mathematically, the process is

I’(x,y)= a(M(x,y)*C(x,y))+I(x,y), where

Page 3 of 8

Page 4: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

* is cyclic convolution, I(x,y) is original image, I’(x,y) is the image embedded with a

watermark, M(x,y) is the message image, C(x,y) is the carrier image, and a is arbitrary

constant to make image invisible and robust

The reverse is performed when extracting the watermark. The image is broken up

into M x N pieces and all the pieces are added together to cancel the effects of possible

noise. As a separate process, the same ‘random’ noise is generated using the same key.

The noise is then correlated with the sum of all blocks. If the correct key has been used,

the original watermark will appear. The image below, courtesy of Kodak, demonstrates

the process.

This same technology could be applied to the digital movie industry. An invisible

watermark could be embedded into the frames of a movie, containing theatre and

distributor information. If a pirated copy should fall into the hands of law enforcement

officials, the watermark could be extracted and used to prosecute the responsible parties.

Page 4 of 8

Courtesy of Kodak

Page 5: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

Kodak has demonstrated an accuracy of over 99.9%, given 23 or more frames which are

watermarked (half a second).

Another method has been proposed by Wong and Memon, both of whom are

professors at Polytechnic University. In fact, Wong and Memon have two variants to

their method. The first includes a secret key, and the second a public key. In the secret

key scheme, only two people have the key, the owner and the verifier. The key must be

passed along with the image, but on a different, yet secure channel. While this greatly

increases security, it is not always desirable. For instance, if an organization wants to

broadcast copyrighted material, having a secret decryption key would negate the purpose.

The public key resolves the problem by allowing anyone to verify the authenticity

of the document, while only one person is able to embed the watermark into the content.

Regardless of whichever method is used, the image must be grayscale. Otherwise, the

watermarking process has to be applied to each color plane separately (i.e., R, G, B).

The image is divided into N x M blocks where Xr denotes the rth block. First, all

LSBs are set to 0. The user key along with the LSBs and other parameters are used to

create a hash function output. In a good hash function, given x and y, where x is not

equal to y, h(x) will never equal h(y). Once the hash output has been calculated it is

XORed with the watermark to receive signals Cr. Cr is the inserted into the LSBs to make

the final image. Since only LSBs have been modified, no significant degradation is

visible. The figures below, courtesy of Wong and Memon, show embedding and

extracting algorithms.

Page 5 of 8

Page 6: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

The remaining work for this paper consists of obtaining various commercial uses

of watermarking technology, and how such technology would be implemented in a

commercial environment. Suffice it to say, questions regarding the usefulness of such

technology will be addressed.

Page 6 of 8

Page 7: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

New research has yet to be considered to see where digital watermarking is going.

However, it is evident that the field contains much promise, and is undergoing active

research. Possible uses of such technology include proof of occurrence, when a picture

has been modified using software such as Adobe Photoshop, the watermark will reveal

which part of the photograph has been tampered with. Another application currently

under development is duplication control. In such an application, additional hardware is

added to devices such as DVD players, where a watermark is read and modified each

time the media is copied. After a pre-programmed number of copies, the hardware will

not allow the creation of duplicates.

Just as importantly, a watermark could be inserted into a photo ID or a passport,

where the watermark would contain an index to the national database. Each time the

passport is scanned, the national database will be contacted to validate the passport. Such

system would make fake photo IDs almost impossible.

Page 7 of 8

Page 8: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

Sources

Digimarc is a commercial provider of watermarking technologies. The site offers

many solutions for modern business.

http://www.digimarc.com/watermarking/default.asp

“Digital Watermarking” by R. Chandramouli, Dept. of ECE, Stevens Institute of

Tecnology, Nasir Memon, Dept. of CS, Polytechnic University, and Majid

Rabbani, Imaging Research & Advanced Development, Eastman Kodak Co.

http://isis.poly.edu/memon/pdf/3.pdf

“Data Embedding Using Phase Dispersion” by Chris Honsinger and Majid

Rabbani, Copyright 2000, Eastman Kodak Co.

“Secret and Public Key Imgae Watermarking Schemes for Image Authentication

and Ownership Verificaiton” by Ping Wah Wong, and Nasir Memon, IEEE June

29, 1999.

Cannon has developed an error correcting approach, and is planning to improve it

further.

http://www.canon.com/technology/system/digital_watermark/content.html

ACM article describing different approaches and watermarking techniques.

http://www1.acm.org:82/~hlb/publications/dw_n/dw_n.html

Paper published by two German researchers regarding a new watermarking

technique. http://syscop.igd.fhg.de/Publications/Roth02a.pdf

Page 8 of 8

Page 9: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

-----------http://www.digimarc.com/watermarking/default.asp

WHAT IS DIGITAL WATERMARKING?

Digimarc's digital watermarking technologies allow users to embed in audio, images, video and printed documents a digital code that is imperceptible during normal use but readable by computers and software. The science of creating these imperceptible codes is known as digital watermarking. Digimarc is a leading owner of intellectual property relating to digital watermarks and a pioneer in the commercial application of this technology.

Digimarc ImageBridge watermarking copyright communication and tracking of digital images

Digimarc Excalibur Copy Detection counterfeit detection of ID cards and packaging

Digimarc Excalibur Secure Authentication

authentication and linking of packaging and documents

Digimarc MediaBridge technology linking of packaging, tags and labels

-----------http://www.businessweek.com/1997/35/b3542095.htm-----------

Performance

In general, the performance of a data embedding algorithm is a tradeoff between three factors:

1. Data capacity (number of embedded bits) 2. Visibility of the embedded message 3. Robustness (ability to withstand image-processing tasks)

Commonly, performance of a digital watermarking technology is evaluated by keeping (1) and (2) constant, and then measuring the message survival rate when the picture is subjected to varying degrees of image manipulation and degradation.

http://www.kodak.com/US/en/corp/researchDevelopment/technologyFeatures/aboutDW.shtml---------http://syscop.igd.fhg.de/Publications/Roth02a.pdf---------Data for still pictures is frequency-converted using Fourier conversion, where the converted data is manipulated according to the key information- embedding location and strength-and pulse signals are inserted for the inverse Fourier conversion that restores the picture data. The inserted pulse signals for different pieces of information are dispersed throughout the picture during the inverse conversion process and retained in an invisible state in the picture data, forming a digital watermark.

Page 9 of 8

Page 10: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

Canon's New Technologies Using Error-Correction EncodingDigital watermarking is one form of security technology to ensure copyright protection. This technology provides a high level of safety, because the location of embedded information is secret, and neither the watermark algorithm nor the location of embedding is made public.Although effective when used within one organization, the secrecy required for this method is a hindrance when several users are involved, or when standardization is desired.Working under the premise that making both algorithms for protecting image copyrights and embedding locations public would enable many people to use the technology for copyright protection, Canon developed its own error-correction encoding technology. This method uses mathematical processing to restore signals that are difficult to distinguish from noise to their original state. With this technology, the data in picture and voice contents that contain embedded watermark information is processed as a whole to correct errors. It is possible to restore embedded information in the contents by dispersing and embedding the watermark information and subjecting the entire contents to the error-correction encoding process. This works even if the information has been erased or illegally rewritten.This new technology, developed by attacking the problem from a different angle, protects copyright holders and purchases by preventing embedded data from being illegally rewritten. The software that reads the watermark is commercially available to facilitate the detection of illegal activity.In addition to the aforementioned method of protecting image copyrights, Canon is developing digital watermark using wavelet conversion adopted for JPEG 2000, as well as other digital watermark including those for high-quality printing.

http://www.canon.com/technology/system/digital_watermark/content.html-------------Techniques, applications, links, etc

http://www1.acm.org:82/~hlb/publications/dw_n/dw_n.html------

Despite claims that digital watermarks can survive image alteration and cannot be stripped without seriously affecting image quality, a recent CyberTimes report revealed that the digital watermarks on some images "may have been weakened or [may have] disappeared by the time the images were processed for the Internet." Resizing, compressing and converting images from one file type to another may add noise to an image or diminish its watermark in such a manner that the watermark becomes unreadable. Further, even when a digital watermark remains intact, tracking services are of limited use to copyright owners in searching for illegal copies of their works on the Internet when such copies are within sites protected by passwords.http://www.webreference.com/content/watermarks/tracking.html-------

An international meeting point for scientists, researchers and companies active in digital watermarking.

Why not add the copyright information into the file format?One could define a new audio file format, in which the watermark is a part of the header block but is not removable without destroying the original signal, because part of the definition of the file format requires the watermark to be therein. In this case the signal would not really be literally 'destroyed' but any application using this file format would not touch it without a valid watermark. Some electronic copyright management system propose mechanisms like this. Such schemes are  weak as anyone with a computer or a digital editing workstation would be able to convert the information to another format and remove the

Page 10 of 8

Page 11: Electrical and Computer Engineering | NYU Tandon School of ...eeweb.poly.edu/~yao/EE3414_S03/Projects/mikhail_kathy... · Web viewPossible uses of such technology include proof of

Mikhail Pomeranets EE3414Kathy Zaslavskaya Final Project Report Prof. Yao Wang

watermark at the same time. Finally this new audio format would be incompatible with the existing one. Thus the watermark should really be embedded in the audio signal. This is very similar to S.C.M.S. When Philips and Sony introduced the 'S/PDIF' (Sony/Phillips Digital Interchange Format), they included the S.C.M.S. (Serial Code Management System) which provides a way copies of digital music are regulated in the consumer market. This information is added to the stream of data that contains the music when one makes a digital copy (a 'clone'). This is in fact just a bit saying: digital copy prohibited or permitted. Some professional equipment are exempt for needing S.C.M.S.With watermarking however, the copy control information is part of the audio-visual signal and aim at surviving file format conversion and other transformations.

http://www.watermarkingworld.org/--------estimates of losseshttp://www.fasoo.com/eng/sub_news01read.html

Page 11 of 8