Ejer Cici Os Control Digital

download Ejer Cici Os Control Digital

of 6

Transcript of Ejer Cici Os Control Digital

  • 7/31/2019 Ejer Cici Os Control Digital

    1/6

    Exercises

    24.3. Suppose that.

    1 - 0.2Z-1F(z) -

    - (1 + 0.6Z-1)(1 - 0.3Z-1)(1 - Z-1)

    (a) Calculate the corresponding time-domain responsef*(t).

    f*(t).

    24.4. Determine

    the inverse transform of

    z(z + 1)

    (z - 1)(z2 - z + 1)

    by the following methods:

    (a) Partial fraction expansion.

    (b) Long division.24.5Calthe

    I-trofth

    repsit

    dthat the s ampling period is t1t = 2 min. The pulse is f = 3 for 2 ::; t < 6.

    6.-

    f 31-

    00 2

    .14 6

    .1

    24.6. The pulse transfer function of a process is given by

    Y(z) - 5(z + 0.6)

    (a) Calculate the response y(nM) to a unit step change in x using the partial fraction

    method.(b)Cheyouansinpa

    (a)byuslo

    di(c) What is the steady-state value of y?24.7Thedesite

    trajT(foa

    bareissit

    d(a)Deran

    expforth

    Latro

    thtetT(s).

    (b) Determine the corresponding I-transform T(z) for s ampling periods of t1t = 4and 8 min.

    0 20

    J

    40

    24.8. The dynamic behavior of a temperature sensor and transmitter can be described by

    the first-order transfer function,

    T(s) 8s + 1

  • 7/31/2019 Ejer Cici Os Control Digital

    2/6

    588 RESPONSE

    If the actual temperature changes as follows (t in seconds):

    {

    a

    s

    mv

    o(b) If samples of the measured temperature are automatically logged in a digital

    coevtwm

    at=

    tthe logged temperature? .

    24.9. The transfer function for a process model and a zero-order hold can be written as

    (1 - e-SM

    )3.8e-zs

    H(s)Gp(s) = s (lOs + 1)(5s + 1)

    Derive an expression for the pulse transfer function ofH(s)Gp(s) when ~t = 2.24.

    Thpu

    trafuoap

    isgbY(z) - 2.7z-!(z + 3)

    Ii

    (a) Calculate the response y(n~t) to a unit step change in x using the partial fractionmethod.

    (b) Check your answer in part (a) by using long division.

    (c) What is the steady-state value of y?24.Agachis

    ustop

    c

    feedbackcolo

    Thoptrfi

    gG(s)

    and is

    I

    B(s)

    (l

    )(l-e-Sl!.t

    )(10

    )-21

    G(s) = E(s) = 2 1 + 8s s 12s + 1 e

    (a) Suppose that a sampling period of~t = 1 min is selected. Calculate HG(z), the

    putrafu

    ofGwZ(b) If a unit step change in the controller error signal e(t) is made, calculatethesa

    opreb

    u

    24.Deth

    putr

    fu

    z

    tprocess Gp(s) = K/[(5s + 1)(3s + 1)] using partial fraction expansion in the

    s-dC

    yorew

    thi

    S2

    there.

    24.13. Find HG(z) if G(s) = (1 - 9s)/[(3s + 1)(15s + 1)] for ~t = 4 (use partial fractionex

    Wisthcod

    e

    resinth

    ouYnfoastcit

    i

    t24.14. Verify the z-transform in Table 24.1 for f(t) = t2. What is the z-transform

    for

    f(t) = 1 - e-at?

    I

    24.FintheresYnfoth

    dieY-Y

    +0.

    =

    LeXo=1,Xn=0fon2:1.U

    lod

    a

    a

    ithe results.

    ill...

  • 7/31/2019 Ejer Cici Os Control Digital

    3/6

    Exercises 589.0.8rl

    F(z) = (1 - 0.8z-l)Z

    . . oro

    eaea

    rau

    + 1)/('Tzs

    the steady-state gain of the pulse transfer function.

    .18. Determine the sampled function f(nf:..t) corresponding to the z-transform

    0.5z-1( z )

    -- 1 - 1.5z-1 + 0.5z-zUsepartfracex

    (f:.=1)ancothrewt

    ldmethod for the first six sampled values (n = 0, 1, . . . , 5)._..1For

    G(s=1/[(+1)(+2)]obG(fo

    M=1.Dt

    rI

    to a unit step change in the input. Repeat using Tustin's method (approximate

    z-transform) and compare the step responses for the first five samples.~.20Todetetheeffof

    polanzeloc

    astI step responses of the pulse transfer functions shown below for the first six sampling

    instants, n = 0 t o n = 5. What conclusions can you make concerning the effect of

    pole and zero locations?

    1

    (a) i"""-=- Z-I

    1

    (b) 1 + 0.7z-1

    1(c) 1 - 0.7z-1

    1

    (d) (1 + 0.7z-I)(1 - O.3z-l)

    1 - 0.5rl

    (e) (1 + 0.7rl)(1 - 0.3z-l)

    f 1 - 0.2rl( ) (1 + 0.6rl)(1 - 0.3z-l)

    :4.21. For the transfer functions shown below, determine the corresponding pulse transfer

    function HGp(z) for the system and a zero-order hold.

    1

    (a) Gp(s) = (s + 1)36(1 - s)

    (b) Gp(s) = (s + 2)(s + 3)ForsamperofM=1an

    f:..=2,dewa

    pozof HGp(z) lie outside the unit circle for either process. Discuss the significance ofthese results.

  • 7/31/2019 Ejer Cici Os Control Digital

    4/6

    it has been determined that the closed-loop system is stable when '1"/

    -10

    .following instrumentation changes? Justify your answers using qualitative arguments.

    11.2. The block

    diagram of a feedback control system is shown in the drawing. Determine

    11.Anop

    unprht

    trfvp

    m('+1-

    1Can this process be made closed-loop stable by using a proportional feedback con-

    troller, Gc(s) = Kc? Can closed-loop stability be achieved using an ideal proportional-

    derivative controller, Gc(s) = Kc(1 + TDS)? Justify your answers.

    11.4. For the liquid-level control system in Figure 10.22, determine the numencal valuesofKcan'1"thre

    inastcls

    lne

    dyw

    thc

    vhaticnumerical values are available:

    A=3ft2

    ih = 10 gal/min

  • 7/31/2019 Ejer Cici Os Control Digital

    5/6

    Exercises 269.and the following transfer functions:

    Se -2s

    Gp(s)G,(s) = 0.8

    4e-s

    !GL(s) = 15s + 1

    o e

    oc

    wa

    ms

    eo

    smore

    c osysu

    yoana e

    prot me

    srer

    to.e

    met

    cos

    rer

    to.

    11.Itisdestocontheexite

    Tzofthhe

    sitdrabyadj

    thestefloratwsU

    dioiitemperature Tt. The dynamic behavior of the heat exchanger can be approximated

    by the transfer functions:If!

    n(s) 2.Se -s of

    T2(s) O.ge-ZS

    [ ]. .

    ---;--( )

    =5 1

    = dimensIOnless

    whethetim

    conanti

    dehauos

    Tchas the following steady-state characteristics:

    whepistheconoutexinm

    At

    noconp=12m

    Afasuchinthc

    o

    rane

    steavalin20s

    (astotafitic

    tature transmitter has negligible dynamics and is designed so that its output signalvarilinefro4to20m

    asTzvafr1

    to1oI p

    Liquidout

    Liquidin

    [2] = Steam trap

    y

    (a) If a proportional feedback controller is used, what is Kern?What is the frequencyoftheres

    oscw

    Ke=K(

    Ut

    dsmetandEulide(b) Estimate Kern using the Routh criterion and a 1/1 P ade approximation for the

    time-delay term. Does this analysis provide a satisfactory approximation?

  • 7/31/2019 Ejer Cici Os Control Digital

    6/6

    lIIil:"'I'

    270 STABILITY OF CLOSED-LOOP

    I

    II

    ".

    .p (2s + 1)(lOs + 1) L 5s + 1

    1

    Does the presence of a "right half plane zero" (i.e., a > 0) in the procefunction affect the stability of the closed-loop system? (Hint: Consider th

    uations where a = 0 and a > 0.) .

    seprp

    e

    troasshinthd!ilIII1illI,II1/i~ .I!1111",I',I:Ililll!I, I -P 4.5

    2

    (10s + 1)2

    c

    (a)Fow

    ras)o

    T

    wt

    rs(b) What practical arguments might be used to restrict the range(s) of acT

    evfu(c)Ifaprcanswers to (a) and (b) be affected?

    11.A

    opu

    pisd

    tt, B(s) e-2sCaapr

    fec

    ssof

    Kcre

    inastcls11.Aprinc

    vat

    witi

    coo

    1,2,2,a5

    sra

    ofcog

    thri

    ascisus

    wiT=2

    m11.Abldi

    ofafecsofco

    gaKa

    Kist

    csL

    1

    s + 1II

    s-2

    (8 + 10)(s + 5)

    1

    s + 1

    II