Ejemplo Diseño Losa Postensada.pdf

20
EGN EGN - - 5439 The Design of Tall Buildings 5439 The Design of Tall Buildings Lecture #19 Lecture #19 Example of a post-tensioned plate for a residential high-rise building © L. A. Prieto-Portar - 2008

Transcript of Ejemplo Diseño Losa Postensada.pdf

Page 1: Ejemplo Diseño Losa Postensada.pdf

EGNEGN--5439 The Design of Tall Buildings5439 The Design of Tall Buildings

Lecture #19Lecture #19

Example of a post-tensioned platefor a

residential high-rise building

© L. A. Prieto-Portar - 2008

Page 2: Ejemplo Diseño Losa Postensada.pdf

This example illustrates the design method presented in ACI 318-05 and IBC 2003 for the design of a simple two-way post-tensioned plate for a residential high-rise building.

Step 1. Define the Loads.

1. Framing Dead Load = self-weight of the structure2. Super-imposed Dead Load = 25 psf for partitions, MEP and miscellaneous3. Live Load = 40 psf (residential)4. Provide a 2 hour fire-rating

Step 2. Define the Materials.

1. Normal weight concrete = 150 pcf 2. 28-day compressive strength f‘c = 5,000 psi3. Compressive strength when post-tensioned (typically after 24-hours) f’ci = 3,000 psi

4. Mild reinforcing steel fy = 60,000 psi5. Post-tensioning steel = un-bonded tendons, 0.5 inch-diameter, 7-wire strands, A = 0.153 in2

fpu = 270 ksi6. Estimated pre-stress losses = 15 ksi (as per ACI 318-05 Section 18.6)

fse = 0.7 fpu = 0.7(270 ksi) - 15 ksi = 174 ksi (as per ACI 318-05 Section 18.5.1)Peff = A*fse = (0.153 in2)(174 ksi) = 26.6 kips/tendon

dvillagomez
Cuadro de texto
19000 Kg/cm2
dvillagomez
Cuadro de texto
12 ton / tendon
Page 3: Ejemplo Diseño Losa Postensada.pdf

Layout of a typical residential floor plate.

Page 4: Ejemplo Diseño Losa Postensada.pdf

Step 3. Determine the preliminary slab thickness h.

Start with L / h = 45 where the longest span = 30 feet = 30 x 12 = 360 inches

h = (360 inches) / 45 = 8.0 inches is the preliminary plate (slab) thickness.

Step 4. Loads.

DL = Self weight = (8 in)(150 pcf) = 100 psf SIDL = 25 psf LLo = 40 psf

IBC-2003 Section 1607.9.1 allows for a LL reduction:For an exterior bay: AT = (25 feet)(27 feet) = 675 ft2

KLL = 1LL = 0.83 LLo = 33 psf

For an interior bay: AT = (25 feet)(30 feet) = 750 ft2

KLL = 1LL = 0.80 LLo = 32 psf

Page 5: Ejemplo Diseño Losa Postensada.pdf

Step 5. Design the East-West interior frame.

Use the Equivalent Frame Method of ACI 318-05 Section 13.7 (but excluding Sections 13.7.7.4-5).

Total bay width between centerlines = 25 feet.

Ignore the column stiffness in the equations for simplicity of hand calculations.

No pattern loading required, since LL / DL = 40/125 < 3/4 (as per ACI 318-05 Section 13.7.6)

Step 6. Calculate the section properties.

The two-way plate must be designed as Class U (ACI 318-05 Section18.3.3). The gross cross-sectional properties are allowed (ACI 318-05 Section 18.3.4),

A = bh = (300 in)(8 in) = 2,400 in2

S = bh2/6 = (300 in)(8 in)2 / 6 = 3,200 in3

Page 6: Ejemplo Diseño Losa Postensada.pdf

Step 7. Set the design parameters.

Allowable stresses: Class U (ACI 318-05 Section 18.3.3) Strength at time of jacking (ACI 318-05 Section 18.4.1) f’ci = 3,000 psi Compression = 0.60 f'ci = 0.6(3,000 psi) = 1,800 psi Tension = 3� f'ci = 3�3,000 = 164 psi

At service loads (ACI 318-05 Sections 18.4.2(a) and 18.3.3),f‘c = 5,000 psiCompression = 0.45 f'c = 0.45(5,000 psi) = 2,250 psiTension = 6� f'c = 6�5,000 = 424 psi

Average pre-compression limits (ACI 318-05 Section 18.12.4),P / A = 125 psi minimum to 300 psi maximum.

Target load balances, use 60% - 80% of DL (self-weight) for plate (good approximation for hand calculation). For this example: 0.75 wDL = 0.75(100 psf) = 75 psf

Cover Requirements (2-hour fire rating, assume carbonate aggregate as per IBC 2003),

Restrained slabs = 3/4” bottomUnrestrained slabs = 1 1/2” bottom

= 3/4” top

dvillagomez
Cuadro de texto
0.8 RAIZ(f'ci)
dvillagomez
Cuadro de texto
1.59 RAIZ(f'c)
dvillagomez
Cuadro de texto
8.8 kg/cm2
dvillagomez
Cuadro de texto
21 kg/cm2
Page 7: Ejemplo Diseño Losa Postensada.pdf

Step 8. Establish the tendon profile.

Use the parabolic shape. For a layout with spans of similar length, the tendons will be typically located at the highest allowable point at the interior columns, the lowest possible point at the mid-spans, and at the neutral axis at the anchor locations. This provides the maximum drape for load-balancing.

The continuous post-tensioned beam.

1.75”End span - bottom

1.0”Interior span - bottom

7.0”Interior support - top

4.0”Exterior support - anchor

Tendon (CG) Location* Tendon Ordinate (CG) means center of gravity*Means measured from the bottom of slab

a INT = 7.0” - 1.0” = 6.0”a END = (4.0” + 7.0”)/2 - 1.75” = 3.75”

The eccentricity e, is the distance from the center to tendon to the neutral axis.

It varies along the span.

Page 8: Ejemplo Diseño Losa Postensada.pdf

Step 9. Find the prestress force P required to balance 75% of self-weight DL.

Since the spans are of similar length, the end span will typically govern the maximum required post-tensioning force. This is due to the significantly reduced tendon drape, aEND.

wb = 0.75 wDL = 0.75 (100 psf)(25 ft) = 1,875 plf = 1.875 k/ft

The force P needed in the tendons to counteract the load in the end bay is,

P = wb l2 / 8 aEND = (1.875 k/ft)(27 ft)2 / [8(3.75 in / 12)] = 547 kips

Step 10. Check the pre-compression allowance.

Determine the number of tendons required to attain the 547 kips,

Number of tendons = (547 kips) / (26.6 kips/tendon) = 20.56 therefore, use 20 tendons

The actual force for banded tendons = (20 tendons) (26.6 k) = 532 kips.

Page 9: Ejemplo Diseño Losa Postensada.pdf

The balanced load for the end span is slightly adjusted,wb = (532 / 547)(1.875 kip/ft) = 1.82 k/ft

Determine the actual pre-compression stress in the slab,Pactual / A = (532 kips)(1000) / (2,400 in2) = 221 psi ( > than 125 psi minimum, and

< than 300 psi maximum) GOOD

Step 11. Check the interior span force P.

P = (1.875 k/ft)(30 ft)2 / [8(6.0 in / 12)] = 421 kips < 532 kipsTherefore, a smaller force is required in the center bay.

For this example, continue the force required for the end spans into the interior span and check the amount of load that will be balanced:

wb = (532 k)(8)(6.0 in /12) / (30 ft)2 = 2.36 kips/ft

Therefore, wb / wDL = 2.36 / 2.51 = 94%. This value is less than 100%, therefore GOOD.

Therefore, for the East-West interior frame:

Page 10: Ejemplo Diseño Losa Postensada.pdf

Step 12. Check the stresses in the plate.

Separately calculate the maximum positive and negative moments in the frame for the dead, live, and balancing loads. A combination of these values will determine the plate stresses at the time of stressing and at service loads.

Dead Load Moments: wDL = (125 psf) (25 ft) / 1000 = 3.125 plf

Page 11: Ejemplo Diseño Losa Postensada.pdf

Live Load Moments: wLL = (33 psf) (25 ft) / 1000 = 0.825 plf

Total Balancing Moments, Mbal : wb = -2.00 k/ft (average of 3 bays)

Page 12: Ejemplo Diseño Losa Postensada.pdf

Step 13. Stage 1 - Stresses immediately after jacking (DL + PT). As per ACI 318-05 18.4.1.

Mid-span stresses, f top = (-MDL + Mbal)/S - P/A f bot = (+MDL - Mbal)/S - P/A

Interior Spanf top = [(-101ft-k + 65ft-k)(12)(1000)]/(3200 in3) – 221 psi

= -135 - 221 = - 356 psi compression < 0.60 f'ci = 1800 psi GOOD f bot = [(101ft-k - 65ft-k)(12)(1000)] /(3200 in3) – 221 psi

= 135 - 221 = - 86 psi compression < 0.60 f'ci = 1800 psi GOOD

End Span f top = [(-172 ft-k + 110 ft-k)(12)(1000)] / (3200 in3) – 221 psi

= - 232 - 221 = - 453 psi compression < 0.60 f'ci = 1800 psi GOOD f bot = [(172 ft-k – 110 ft-k)(12)(1000)]/(3200 in3) – 221 psi

= 232 - 221 = 11 psi tension < 3�f'ci = 164 psi GOOD

Support stresses, f top = (+MDL - Mbal)/S - P/Af bot = (-MDL + Mbal)/S - P/A

f top = [(240 ft-k – 154 ft-k)(12)(1000)]/(3200 in3) – 221 psi = 323 - 221 = 102 psi tension < 3�f'ci = 164 psi GOOD

f bot = [(- 240 ft-k + 154 ft-k)(12)(1000)]/(3200 in3) – 221 psi = - 323 - 221 = -544 psi compression < 0.60 f'ci = 1800 psi GOOD

Page 13: Ejemplo Diseño Losa Postensada.pdf

Stage 2: Stresses at service load (DL + LL + PT). (As per ACI 318-05, 18.3.3 and 18.4.2).

Mid-span stresses, f top = (- MDL - MLL + Mbal)/S - P/A f bot = (+MDL + MLL - Mbal)/S - P/A

Interior Spanf top = [(- 101ft-k – 27 ft-k+ 65 ft-k)(1000)] / (3200 in3) – 221 psi

= - 236 - 221 = - 457 psi compression < 0.45 f'c = 2250 psi GOODf bot = [(101 ft-k + 27 ft-k – 65 ft-k)(1000)] / (3200 in3) - 221psi

= 236 - 221 = 15 psi tension < 6�f'c = 424 psi GOODEnd Span f top = [(-172 ft-k – 45 ft-k + 110 ft-k)(12)(1000)]/(3200 in3) – 221 psi

= - 401 - 221 = - 622 psi compression < 0.45 f'c = 2250 psi GOOD f bot = [(172 ft-k + 45 ft-k – 110 ft-k)(12)(1000)]/(3200 in3) – 221 psi

= 401 - 221 = 180 psi tension < 6�f'c = 424 psi GOOD

Support stresses, f top = (+MDL + MLL - Mbal)/S - P/Af bot = (-MDL - MLL + Mbal)/S - P/A

f top = [(240 ft-k + 64 ft-k – 154 ft-k)(12)(1000)]/(3200 in3) – 221 psi = 563 - 221 = 342 psi tension < 6�f'c = 424 psi GOOD

f bot = [(-240 ft-k - 64 ft-k + 154 ft-k)(12)(1000)]/(3200 in3) – 221 psi = - 563 - 221 = - 784 psi compression < 0.45 f'c = 2250 psi GOOD

All stresses are within the permissible code limits.

Page 14: Ejemplo Diseño Losa Postensada.pdf

Step 14. Determine the factored moments.

The primary post-tensioning moments Mprim , vary along the length of the span.

Mprim = P * e where e = 0 inches at the exterior support, and e = 3.0 inches at the interior support (neutral axis to the center of tendon)

Mprim = (532 k)(3.0 in) / (12) = 133 ft-k

The secondary post-tensioning moments Msec, vary linearly between supports.

Msec = Mbal – Mprim = 154 ft-k - 133 ft-k = 21 ft-kip at the interior supports.

The typical load combination for ultimate strength design is,Mu = 1.2 MDL+ 1.6 MLL+ 1.0 Msec

At midspan, Mu = 1.2 (172 ft-k) + 1.6 (45 ft-k) + 1.0 (10.5 ft-k) = 289 ft-kip At supports, Mu = 1.2 (-240 ft-k) + 1.6 (-64 ft-k) + 1.0 (21 ft-k) = - 370 ft-kip

Page 15: Ejemplo Diseño Losa Postensada.pdf

Step 15. Determine minimum bonded reinforcement.(This step is performed to see if it is acceptable for ultimate strength design).

Positive moment region: Interior span: ft = 15 psi < 2�f'c = 2�5,000 = 141 psi No positive reinforcement is required (ACI 318-05 Section 18.9.3.1).

Exterior span: ft = 180 psi > 2�f'c = 2�5,000 = 141 psi Minimum positive moment reinforcement is required (as per ACI 318-05, 18.9.3.2) y = ft /(ft + fc) h = [(180)/(180 + 622)](8 in) = 1.80 inches Nc = MDL+LL / (S)(0.5)(y)(l2)

= [(172 ft-k + 45 ft-k)(12) / (3,200 in3)(0.5)(1.80 in)(25ft)(12) = 220 kips

As,min = Nc / 0.5 fy = (220 k) / [0.5(60 ksi)] = 7.33 in2

Distribute the positive moment reinforcement uniformly across the slab-beam width and as close as practicable to the extreme tension fiber.

As, min = (7.33 in2) / (25 ft) = 0.293 in2/foot

Therefore, use #5 @ 12 in. on-center at bottom = 0.31 in2/ft (or equivalent). Minimum length shall be 1/3 clear span and centered in positive moment region (ACI 318-05 Sec 18.9.4.1).

Page 16: Ejemplo Diseño Losa Postensada.pdf

Negative moment region: A s, min = 0.00075Acf (as per ACI 318-05 Sec 18.9.3.3)

At interior supports:Acf = the maximum of (8in)[(30 ft + 27 ft)/2, or 25ft]*12 = 2,736 in2

A s, min = 0.00075(2,736 in2) = 2.05 in2

Therefore, use 11 #4 at the top (which provides 2.20 in2).

At exterior supports:Acf = the maximum of (8in)[(27 ft/2), or 25ft]*12 = 2,400 in2

As, min = 0.00075(2,400 in2) = 1.80 in2

Therefore, use 9 #4 at top (which provides 1.80 in2). Must span a minimum of 1/6 the clear span on each side of support (as per ACI 318-05 Sec 18.9.4.2). At least 4 bars required in each direction (ACI 318-05 Sec 18.9.3.3).

Place top bars within 1.5h away from the face of the support on each side (Sec 18.9.3.3) = 1.5 (8 in) = 12 inches

Maximum bar spacing is 12” (Sec 18.9.3.3).

Page 17: Ejemplo Diseño Losa Postensada.pdf

Step 16. Check minimum reinforcement to see if it is sufficient for ultimate strength.

Mn = (As fy + Aps fps) (d - a/2) d = effective depth Aps = 0.153 in2 * (number of tendons) = 0.153in2 * (20 tendons) = 3.06 in2

fps = fse + 10,000 + (f'cbd) / (300Aps) for slabs with L / h > 35 (Sec 18.7.2)= 174,000 psi + 10,000 + [(5,000 psi)(25ft*12)d] / [(300)( 3.06 in2)] = 184,000 psi + 1634d

a = (As fy + Aps fps) / (0.85f'cb)

At supports, d = 8 inches - 3/4” - 1/4” = 7 inchesfps = 184,000 psi + 1634(7 in) = 195,438 psia = [(2.20 in2)(60 ksi) + (3.06 in2)(195 ksi)] / [(0.85)(5 ksi)(25ft*12)] = 0.57 �Mn = 0.9 [(2.20 in2)(60 ksi) + (3.06 in2)(195 ksi)][7 inches - (0.57)/2]/12

= 0.9 (728 kips)(6.72 in)/12 = 367 ft-kip < 370 ft-kip therefore, the reinforcement for ultimate strength requirements governs.

A s, reqd = 2.30 in2

Therefore, use 12 - #4 top at interior supports and 9 - #4 top at exterior supports.

When reinforcement is provided to meet ultimate strength requirements, the minimum lengths must also conform to the provision of ACI 318-05 Chapter 12, Section 18.9.4.3).

Page 18: Ejemplo Diseño Losa Postensada.pdf

At mid-span (end span),

d = 8” – 1.5” – 0.25” = 6.25 inches fps = 184,000 psi + 1634(6.25 in) = 194,212 psi a = [(7.33 in2)(60 ksi) + (3.06 in2)(194 ksi)] / [(0.85)(5 ksi)(25ft*12)] = 0.81 �Mn = 0.9 [(7.33 in2)(60 ksi) + (3.06 in2)(194 ksi)][6.25” - (0.81)/2]/12

= 0.9 (1033 kip)(5.85 in)/12 = 453 ft-kip > 289 ft-kip therefore, minimum reinforcement is satisfactory.

Page 19: Ejemplo Diseño Losa Postensada.pdf

Final PT layout,

20 banded tendons running E-W.

20 distributed tendons running N-S.

Dead ends at North and West edges.

Live ends at East and South edges.

Page 20: Ejemplo Diseño Losa Postensada.pdf

References.

1. A. R. Trygestad, “The Post-tensioning for Two-Way Flat Plate Construction”, Structural Engineer, October 2005, Chicago.

2. www.cement.org/buildings/design_aids.asp