Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on...

18
Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar Jonathan Greenberg University of Illinois at Urbana Champaign Presented at HyspIRI Science and Applications Workshop - Caltech October 2015 1

Transcript of Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on...

Page 1: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data

Debsunder Dutta Praveen Kumar

Jonathan GreenbergUniversity of Illinois at Urbana Champaign

Presented at HyspIRI Science and Applications Workshop - Caltech

October 2015 1

Page 2: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

ProblemStatementandResearchQuestions

1. Whatisthefeasibilityofquantificationofthesoilproperties/constituents usingairborneimagingspectroscopydata?

2. WhatistheEffectofSpatialResolution(ScalingUp)ontheCharacterizationofSoilConstituents?

2

Page 3: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Approach– FeasibilityofCharacterizingSoilConstituentsoverLargeAreas

3

500 1000 1500 2000 25000

2000

4000

Sand Silt Clay NDVI<=0.7

Wavelengths (nm)

Reflecta

nce%

(x100)

500 1000 1500 2000 2500

02000

4000

Sand Silt with NDVI<=0.7

Wavelengths (nm)

Reflecta

nce%

(x100)

Soils arecomplexHeterogeneoussystem

Generallyanover-determinedproblemwithp>>n

Developamodelingframeworkapplicable

overlargeareas

Evaluatetheconsistencyofresultsoverthelandscape

TakeadvantageoftheAVIRISspectra(224bands@10nm)coveringthefullVis-NIRandSWIRregionofthespectra

-sparse“narrowband”modelswillbeabletocapturesoilattributes

Gaininsightsintothemodelstructure

Characterizingsoilattributesoverlarge

areas

Veryfewfieldobservations

!" #!" $!!" $#!" %!!" %#!"

!"#!!"

$!!!"$#!!"%!!!"%#!!"&!!!"&#!!"'!!!"

&(#" )(#" $&(#" $)(#" %&(#" %)(#"

!"#$%&'()*+%

,*-*

./"#.*%0

1233

%45%

6"7*8*#9/:%0#(5%

!*&+,!*)%"-." !*)%,$*%)"-." $*%),$*+)"-." $*+),%*%(-." %*%(,%*#-."

100 data points76 data points with NDVI <0.7

training and test set split 80% and 20%

224 predictor set

10

Reduced set of 45 predictors

10 10 10 5

Observed Soil Texture Data

clay

silty clay

sandy clay

clay loam silty clay loam

sandy clay loam

loam

silty loam

sandy loam

siltloamy sandsand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand 50−2000 µm

[%] C

lay

0−2 µm

[%] S

ilt 2−50 µ

m

3 6

8

91011

12

13

14

16

1718

19

20

21

23

24

25

26

2728 29

30

31

3233

34

3536

37

38

39

40

42

4344

46

48

49

50

51

52

57

58

61

62

63

64

65

666768

71

72 75

76

80

81

8283

8485

86

87

8889

91

92

9394

96

98

99

100

Predicted Soil Texture Data

clay

silty clay

sandy clay

clay loam silty clay loam

sandy clay loam

loam

silty loam

sandy loam

siltloamy sandsand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand 50−2000 µm

[%] C

lay

0−2 µm

[%] S

ilt 2−50 µ

m

3

6

8

9

10

11

12

13

14

16

17

18

1920

21

23

24

2526 27

28

29

30

31

32

33

3435

36

37

38

39

40

42

4344

46

48 49

50

51

52

57

58

61

62

63

64

656667687172

75

768081

8283

84

85

86

87

8889

91

92

9394

96

98

99

100

Lasso 50 times

Bootstrapping

50 times for final model coefficients

Final Model Coefficients

-”lasso”methodsuitedforp>>n

y = β0 + β1X1 + β2X2 + ...+ βnXn

Applicationofmodelsspatiallyoverlargeareas

Capturesvariabilityinattributesspatially?

Duttaet.al.,OntheFeasibilityofCharacterizingSoilPropertiesFromAVIRISData, IEEETGRS,Sept2015:doi:10.1109/TGRS.2015.2417547

Page 4: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

4

!( !(

!(

!(!(!( !( !(

!(!(!(

!(!(

!(!(

!(!(!(

!(!(!(!(!( !(!(!(

!( !(!(!(

!(!(!(

!(

!( !(

!(!(!(

!(

!(!(

!(!(!(!(

!(

!(!(!(!(

!(

!(!(!(!(!(

!( !(

!(!(!(

!(

!(

!(!(!(!(

!(

!(!(!(!(!(!(!(

!(

!(!(!( !(

!(

!(!(

!(!(!(!(!(!(

!(

!(!(

!(!(

!( !(

Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO,USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, EsriJapan, METI, Esri China (Hong Kong), swisstopo, and the GIS User Community

0 10 205 Kms µ

Historic Meander Patternsof the Mississippi River

O' Bryan's Ridge

Region R1:

Region R2: DataandStudyRegion

• 27th July2011between14:04and15:00localtime(19:04– 20:00GMT).

• Altitude9.0– 9.1kmresultinginpixelresolutionof7.6m.

• Grabsamplesat100differentlocations.

• Labanalysisoftextureandchemicalconstituents, Organicmatter,Ca,Mg,K,Al,B,S,Fe,Zn,Cu,PandMn

Page 5: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Results– SpatialMapsofTextureandOrganicMatter

5

Page 6: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Results– SpatialOrganizationandLandscapeFeatures

6

Thespatialmapswhichrevealsconsistentspatialorganizationincludinglegacylandscapefeaturesandimmediatefinescaledisturbancesonthelandscape.

Page 7: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Results– SpatialMapsofChemicalConstituents

7

0 10 205 Kms

Mg [mg/kg]0 - 200

200 - 400

400 - 600

600 - 800

800 - 1,000

1,000 - 1,200

1,200 - 1,400

1,400 - 1,600

1,600 - 1,800

1,800 - 2,000

2,000 - 5,000

Erroneous Values

Water

Vegetation

0 10 205 Kms

Al [mg/kg]0 - 200

200 - 400

400 - 600

600 - 800

800 - 1,000

1,000 - 5,000

Erroneous Pixels

Water

Vegetation

0 10 205 Kms

Ca [mg/kg]0 - 1,000

1,000 - 2,000

2,000 - 3,000

3,000 - 4,000

4,000 - 5,000

5,000 - 6,000

6,000 - 7,000

7,000 - 8,000

8,000 - 15,000

Erroneous Pixels

Water

Vegetation

0 10 205 Kms

K [mg/kg]0 - 200

200 - 400

400 - 600

600 - 800

800 - 1,000

1,000 - 5,000

Erroneous Pixels

Water

Vegetation

Historic meander paths of the Mississippi River

Historic meander paths of the Mississippi River

Historic meander paths of the Mississippi River

Historic meander paths of the Mississippi River

Page 8: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

GuidingResearchQuestions

1. Whatisthefeasibilityofquantificationofthesoilproperties/constituents usingairbornehyperspectraldata?

– “Lasso”algorithmbasedframeworkfoundtobefeasibletoquantifysoilconstituentsoverlargeareaswithlimitedsoilsampledataandfieldspectroscopy.

– Methodisapplicableequallywellforsoiltextureandchemicalconstituentsandprovidesspatialmapswhichrevealsconsistentspatialorganizationincludinglegacylandscapefeaturesandimmediatedisturbancesonthelandscape.

2. WhatistheEffectofSpatialResolution(ScalingUp)ontheCharacterizationofSoilConstituents?

– Feasibilityofapplicationofthedata-miningbasedmethodforquantifyingsoilconstituentsfromspacebasedsatelliteplatforms?

– Developingasuitablesetofmetricsforevaluationofperformanceandconsistencyofresultsacrossscales?

8

Page 9: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Distribution of spatial median and lasso

modeled value of soil constituent for a set of

pixels at L1

Within pixel distribution of soil constituent

Distribution of within pixel vari-ance for a set of

pixels at L1

Original

Upscaled Resolution (L1)

lasso predicted

value

pixel spectra

within pixel variance for a single pixel lo-cation for upscaled

resolution L1

2. Measure of deviation of soil 3. Error in prediction of

Approach forEvaluatingEffectofScaleontheCharacterizationofSoilConstituents

1

Convolution andresampling

Evaluatetheconsistencyofpointscaleresultsacross

scales

Evaluatetheconsistencyofspatialdistributionacross

scales

Within PixelVariance

ScaleupImagesfromFinetoCoarseResolutions

-applicationof”lasso”basedbootstrapframeworkatdifferentresolutions

DeviationofPredictionfrommedian

Pdfofconstituents

Refle

ctan

ce

Wavelength

Refle

ctan

ce

Wavelength

Refle

ctan

ce

Wavelength

Observed Value

Pred

icte

d Va

lue

Observed Value

Pred

icte

d Va

lue

Observed Value

Pred

icte

d Va

lue

Scal

ing

up o

f im

ages

from

fine

to c

oars

e sp

atia

l res

olut

ions

Upscaled pixel reflectances and model (lasso) structure at different spatial resolutions

Point scale results of soil-constituents (based on lasso method) and comparison with observatiional data

Eval

uate

the

cons

iste

ncy

of p

oint

scal

e re

sults

in te

rms o

f obs

erve

d vs

pre

dict

ion

plot

s, so

il te

xtur

e tr

iang

le a

nd m

odel

stru

ctur

e (b

and

impo

rtan

ce)

acro

ss d

iffer

ent s

patia

l res

olut

ions

X

X

f(x) [

pdf]

f(x) [

pdf]

pdf of soil constituent 1 and soil constituent 2

pdf of soil constituent 1 and soil constituent 2

Com

paris

on o

f pdf

of s

oil c

onst

ituen

ts a

cros

s ent

ire

land

scap

e (s

tudy

are

a) a

t diff

eren

t res

olut

ions

Difference of spa-tial median and lasso modeled

value of soil con-stituent

Spat

ial m

ap o

f soi

l con

stitu

ent

at d

iffer

ent r

esol

utio

ns

Within pixel distribution of soil constituent

Distribution of within pixel variance for a set of

pixels at L1

Original

Upscaled (L1)

Lasso predicted

Eval

uate

the

cons

iste

ncy

betw

een

lass

o m

odel

pre

dict

ed

and

stat

istic

al sc

alin

g of

soil

cons

titue

nts

at d

iffer

ent r

esol

utio

ns

Landscape of Area A under

Study

Comparison of point scale results and model structure based on scaling up imaging spectroscopy data for different resolutions

Comparison of spatial distribution of constituents obtained by model appli-cation to that obtained by statistical scaling for different resolutions

X

X

f(x) [

pdf]

pdf of soil constituent 1 and soil constituent 2

Observed Value

Pred

icted

Valu

eC

Refle

ctan

ce

Wavelength

SoilTextureTriangle

Observedvsmodelpredictions

ModelStructure

Duttaet.al.,inpreparation,2015

Page 10: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

PointScaleEvaluationofResults– ObservedvsModelPrediction

10

0 20 40 60 80 100

02

04

06

08

01

00

Observed Sand [%]

Pre

dic

ted

Sa

nd

[%

]

+

+

+

+

+

+

+

++ +

+

+++

+

++ +

+

+ +

+ ++

+

+

+

+

+

+

+

+

+

+

+ ++

++

++

+

+

+

++

+++

+

+

+

++

+

+

+

+

+

+ +++

+++

+

+

+

+

+ +

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

++

+ : Sand

R2

0.691

30

50

70

% R

MS

Test

Err

or

0 20 40 60 80

02

04

06

08

0

Observed Silt [%]

Pre

dic

ted

Silt

[%]

+

+

+

+

+

+

+ ++

+

++

+ +

++

+

+

+

++

+

++

+

+ +++ +

+++

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

++ +

+

++

+

++++

+++

+ ++

+

++

+

++

++

+

+

+

+ +++

+

++

+

+

++

+ : Silt

R2

0.505

20

40

60

80

% R

MS

Test

Err

or

0 10 20 30 40 50 60

01

02

03

04

05

06

0

Observed Clay [%]

Pre

dic

ted

Cla

y [

%]

+

+

+

+

+

+

+

++

+

+

++

+++

+

++

+

+

+

++

+

+

+

+

+

+

+

+

++

++

+

+ +

++

+

++

+

+

++ +

++

+

+

++

+

+

+

+

++ ++++

+

+

+

+

+

+++

+

+ +

+

+

+

+

+

+

+

++

+

+

++

+ +

+ : Clay

R2

0.798

20

60

100

% R

MS

Test

Err

or

0 20 40 60 80 100 120

02

04

06

08

01

20

Observed Sand [%]

Pre

dic

ted

Sa

nd

[%

]

+

++

+ +

+++ ++

++

+

+

++

+

+

+

+

+ +++++

+ ++

+

+

+

+

+++

+

+

++

+

++

+

+

++++

+

++

+

+

+

+

+

+

+

+ +++

++ ++

+

+

+

+ +

+

+

+

++

+

++

++

+

+ +

+

+

++

++

+ : Sand

R2

0.736

30

50

70

% R

MS

Test

Err

or

0 20 40 60 80

02

04

06

08

0

Observed Silt [%]

Pre

dic

ted

Silt

[%] +

+

+

++

+

++

+

++

+ +++

++++

++

+ +

++

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

++

+

+

+

+

++++

++

+

+

+

+

+

++

++

+

++ +

++

+

+

+

+++

+ +

+ +

+

+ : Silt

R2

0.646

10

20

30

40

50

% R

MS

Test

Err

or

0 20 40 60

02

04

06

0

Observed Clay [%]

Pre

dic

ted

Cla

y [

%]

+

++

+

+

+

+

++

+

+ +

+

++

++

+

+

+

+

++

+++

+

++

+

+ +

+

++

+

+ +

+

+

+

+

+

+

+

++

+ ++

++

+

++

+

+

+

+

++ ++ ++

+

++

+

+

++

+

+

+++

+

++

++

+

++

+

+++

+ +

+ : Clay

R2

0.812

50

150

250

% R

MS

Test

Err

or

0 20 40 60 80 100

02

04

06

08

01

00

Observed Sand [%]

Pre

dic

ted

Sa

nd

[%

]

+

++

+

+

+++

+

++++

++

++

+

++

+

++

+

+ ++

++

+

+ ++

+

+

++ +

+

+

++

+

+++

+

+

+

+

++

+

++

+

+ +++

++

++ +

+ +

++

++

+

+

++

++

+

+

+

++

+ +

+

+

+ : Sand

R2

0.644

50

150

250

% R

MS

Test

Err

or

0 20 40 60 80

02

04

06

08

0

Observed Silt [%]

Pre

dic

ted

Silt

[%]

+

++

+

+

+

++

+

+

+

+

+

+

+

+

++ +

+

+

+

+

++

+

++

+

+

+

+

+

+

+

+

++

+

+

++

+

+

++

+

++

+ +

+

+

++

+

++++

++

+

+

+

++

+ +

+

+

++

++

+

+

+ ++

+

+

+

+

++

+ : Silt

R2

0.686

20

40

60

80

% R

MS

Test

Err

or

0 20 40 60 80

02

04

06

08

0

Observed Clay [%]

Pre

dic

ted

Cla

y [

%]

+

+

+++

+

++

+

+

+

+

++

++

+

+

+

+

+

+++

+

+

+

+ ++

+

+

+

+

++++

+

+

+

+

++

+ +

+++

+

++

+

+ +

+

++ ++++

+

+

+

+++

+

+ ++

+

++

++

+

++

+++

+

+ +

+ : Clay

R2

0.791

0100

200

300

% R

MS

Test

Err

or

(a) 15.2m (b) 30.4m (c) 60.8m

0 2 4 6 8

02

46

8

Observed SOM [%]

Pre

dic

ted

SO

M [

%]

+

+

+

+

++

+

++++

++

+

+

++

+

+ ++

+

+

+

+

+

+

++

+++

+

+

++

+

+

+

+

+

+

+

+

+

+

++ ++

+

+

+

+

+

++

+

+

++ ++

+++

+

+

++

+++

+

+

+

+

+

++

+ +

++

++

+

+

+

+

+

+ : SOM

R2

0.732

10

20

30

40

50

% R

MS

Test

Err

or

0 2 4 6 8

02

46

8

Observed SOM [%]

Pre

dic

ted

SO

M [

%]

+

+

++

++

+++

+

+++

+

+

++

+

++

+ +

+

+

+

+

+

+++

+

+

+

++ +

+++

+

+

+

+

+

++++ +

++

+

++

+

++

+

+

++ ++

++++

+

+

+++

+

+

++

+

+

++

++

++

+

+

+

+

++

+

+ : SOM

R2

0.695

20

40

60

80

% R

MS

Test

Err

or

0 2 4 6 8

02

46

8

Observed SOM [%]

Pre

dic

ted

SO

M [

%]

+

+ +

++

+

+++

+ +

+

++

+

+

+

++

++

++

+

++

+

+

+

+

++

+

+

++

++

+

+

+

++++ ++

+

+

+

+

+

+

+

+

+

++ ++

++

+

+

+++

+

+

+

++

+

++

+

+

+

+

+

+

+

+

+ + ++ : SOM

R2

0.718

50

100

200

% R

MS

Test

Err

or

10m 15.2m 20m 30.4m 45m 60.8m 90mSand 0.689 0.691 0.655 0.736 0.490 0.644 0.657Silt 0.564 0.505 0.540 0.646 0.596 0.686 0.361Clay 0.781 0.798 0.799 0.812 0.781 0.791 0.762SOM 0.638 0.732 0.659 0.695 0.533 0.718 0.557Ca 0.784 0.738 0.745 0.758 0.712 0.739 0.748Mg 0.791 0.798 0.750 0.751 0.744 0.767 0.705K 0.700 0.691 0.696 0.653 0.687 0.698 0.658Al 0.774 0.814 0.737 0.776 0.709 0.760 0.748Fe 0.579 0.535 0.624 0.425 0.453 0.586 0.464

SummaryofR2

valuesforalltheresolutions

Page 11: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

PointScaleEvaluationofResults– SoilTextureTriangles

11

clay

silty claysandy clay

clay loam silty clay loam

sandy clay loam

loamsilty loam

sandy loamsiltloamy sand

sand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand 50−2000 μm

[%] C

lay

0−2

μm

[%] Silt 2−50 μm

2

3

4

6

7

8

9

10 11

12

13

14

1516

1718

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

3536

3738

39

40 42

4344

46

4849

50

51

525354

5556

57

58

5960

61

62

63

656667687172

73

75

76

78

79

808182

83

8485

86

87

88

89

90

91

92

93 94

95

96

9798

99100

clay

silty claysandy clay

clay loam silty clay loam

sandy clay loam

loamsilty loam

sandy loamsiltloamy sand

sand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand 50−2000 μm

[%] C

lay

0−2

μm

[%] Silt 2−50 μm

2

3 6

7

8

9

10

11

12

13

1415

16

1718

1920

21

22

23

24

2526

27

2829

30

31

3233

34 35

36

37

38

39

4042

43

44

46

47

48

49

50

5152

5354

55

56

57

58

5960

61

62

63

656667687172

73

7475

76

78

8081

82

83

8485

86

87

8889

9091

92

9394

95

9697

98

99100

clay

silty claysandy clay

clay loam silty clay loam

sandy clay loam

loamsilty loam

sandy loamsiltloamy sand

sand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand 50−2000 μm

[%] C

lay

0−2

μm

[%] Silt 2−50 μm

2

3

6

78

9

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

2628

29

30

31

33

3435

36

37

38

39

40

4142

4344

46

48

49

5152

5354

55

5657

58

5960

61

6263

656667687172

75

78

8081

82

83

848586

87

88

90

91

92

9394

9596

9798

99100

Observed Soil Texture Data Predicted Soil Texture Data

clay

silty claysandy clay

clay loam silty clay loam

sandy clay loam

loamsilty loam

sandy loamsiltloamy sand

sand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand ��ï���� μm

[%] C

lay

0ï�

μm

[%] Silt �ï50 μm

3 6

8

91011

12

13

14

16

1718

19

20

21

23

24

25

26

2728 29

30

31

3233

34

3536

37

38

39

40

42

4344

46

48

49

50

51

52

57

58

61

62

63

64

65

666768

71

72 75

76

80

81

8283

8485

86

87

8889

91

92

9394

96

98

99

100

clay

silty claysandy clay

clay loam silty clay loam

sandy clay loam

loamsilty loam

sandy loamsiltloamy sand

sand

102030405060708090

10

20

30

40

50

60

70

80

90

1020

3040

5060

7080

90

[%] Sand ��ï���� μm

[%] C

lay

0ï�

μm

[%] Silt �ï50 μm

3

6

8

9

10

11

12

13

14

16

17

18

1920

21

23

24

2526 27

28

29

30

31

32

33

3435

36

37

38

39

40

42

4344

46

48 49

50

51

52

57

58

61

62

63

64

656667687172

75

768081

8283

84

85

86

87

8889

91

92

9394

96

98

99

100

(a) (b)

(c) (d) (e)

(a)Theobserved(b)modelpredictedpointsat7.6mairborneAVIRISresolution(c)modelpredictedup-scaled15.2m (d)30.4mand(e)60.8Thesamplenumbersareindicatedoneachofthedots.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXXX 2015 25

TABLE IDESIGN KERNEL SIZES FOR UPSCALING THE AVIRIS DATA

Convolve and Resample Resolution Kernel Size

10 m 3⇥ 315.2 m 5⇥ 520 m 7⇥ 730.4 m 11⇥ 1145 m 15⇥ 1560.8 m 21⇥ 2190 m 29⇥ 29

TABLE IITHE DIFFERENT PARAMETERS USED FOR ATMOSPHERIC CORRECTION OF AVIRIS SCENES

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Flight Altitude (km) 9.092 9.108 9.088 9.072 9.093 9.108Flight Heading (deg) 42.451 214.64 44.16 210.33 46.39 210.01Ground Elevation (km) 0.0914 0.09095 0.0924 0.09412 0.0961 0.0994Solar Zenith Angle (deg) 44.24 40.8 37.5 34.3 31.2 28.1Solar Azimuth Angle (deg) 100.29 103.6 107.3 111.3 116.1 121.5Pixel Size (m) 7.6 7.6 7.6 7.6 7.6 7.6

TABLE IIICLASSIFICATION ACCURACY OF USDA MODELED SOIL TEXTURE CLASSES AS COMPARED WITH OBSERVED SOIL TEXTURE CLASSES

Spatial Resolution Exact Classification[%] Close Classification[%] Incorrect Classification[%]

10 m 46.67 28.89 24.4415.2 m 42.86 38.46 18.6820 m 40.22 40.22 19.5730.4 m 43.96 43.96 12.0945 m 43.33 36.67 20.0060.8 m 46.51 40.70 12.7990 m 37.35 33.73 28.92

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXXX 2015 6

originally used to identify them during data collection andlaboratory analysis, and (b) model predicted textural results at7.6m original airborne AVIRIS resolution. Fig. 8(c) through8(e) show the model predicted textural results using upscaleresolution data at 15.2 m, 30.4 m and 60.8 m respectively.

1) Effect of coarsening the spatial resolution on modelprediction results for soil texture and organic matter?: Fromthe USDA soil texture triangles (Fig. 8) it is found that thelaboratory and modeled soil classification results agree well.The spread of the data in different classes is the same forboth observed and modeled results and across the data at thevarious spatial resolutions. Moreover, inspection of the datalabels and comparison with the observed data reveals thatmost of them are classified correctly, and we categorized theclassifications as ‘Exact Match’, ‘Close Classification’, and‘Incorrect Classification’ defined as follows.

1) If the observed and the model predicted soil propertiesbelong to the same USDA soil texture class, we call ita coincident match or exact classification.

2) If a soil property does not fall in the same categorywe compute the deviation in the observed and modelpredicted values for sand and clay percentages for thesample and the total deviation as:

sand%

= |�observed

sand%

��

predicted

sand%

|

clay%

= |�observed

clay%

��

predicted

clay%

|

total%

= �

sand%

+�

clay%

3) If the total deviation (�total%

) is less than or equal to25% we call it a ‘close’ match, otherwise we call it an‘incorrect’ classification.

The results of the classification analysis for all the differentspatial resolutions are presented in Table. III. The resultsindicate that across all the different spatial resolutions (exceptthe large 90m pixel resolution) about 40 - 47 % of the samplesare classified exactly and about 28 - 41% samples indicateclose classification with the USDA soil texture classes. Theseresults show us that the ensemble lasso method performswell not only for individual models but also for all the threedifferent soil texture models combined together.

B. Model Structure of Soil Constituents at Different SpatialResolutions

The model structure is investigated in terms of the explana-tory predictor variables (wavelengths) for the different soilconstituents at all of the eight different spatial resolutions(namely 7.6m, 10m, 15.2m, 20m, 30.4m, 45m, 60.8m and90m) used for the study. For a particular soil constituent itis interesting to know the forms of inter-relationships betweenpredictor bands of the models as we upscale the data. Figure9 shows the relationships between model structure (predictorbands) at different spatial resolutions for clay, silt, sand andsoil organic matter. It Illustrates which bands participatesin the prediction model (eq. 9) across different resolutions.

When a band participates in at least 3 different resolutionsit is identified in Fig. 9(a). Similarly when it participatesin atleast 4 different resolutions it is identified in Fig. 9(b).Figs. 9(c) and (d) represent participation in 5 and 7 differentresolutions. It is found that there are a number of bands whichemerge as important predictors across most of the spatialresolutions. A number of bands which are important predictorfor not one constituent but for a couple or all of the fourconstituents. The model structure for soil chemical constituentscalcium, magnesium, potassium and aluminum show similarpatterns [see supplementary info. fig. S2 (a) - (d)]. The bandswhich are predictor variables for the combination of otherspatial resolutions for the textural and chemical properties arepresented in the supplementary material [see figs. S3 and S4].

It is found that the number of common predictors acrossmany different spatial resolutions are higher for the chemicalconstituents than the soil texture models. The summary figurefor the importance of wavelengths across different scalesfor textural as well as chemical constituents is presented infig.10. We find that wavelengths in the blue region of thespectrum (360 - 460 nm) is important for all the texturalproperties and chemical constituents. The empirical modelsfor the prediction of the different soil constituents are basedon spectral characteristics of pure elements, compounds andradicals as well as the intercorrelations between differentwavelengths as soil is a complex mixture. Even in an automaticmodel development framework we have found that some ofthe pure spectroscopic characteristics are well pronounced inthe models. For the clay models the 2.2µm feature which is ahydroxyl absorption feature and is a signature of clay mineralskaolinite and montmorillonite is found to be a predictor acrossthe models for all the spatial resolutions. Some of the otherfeatures for these minerals such as the 1.4 µm water absorptionis captured across some of the spatial resolutions. Similarlyfor the chemicals a close examination [fig. 10] reveals that thebands at 1.1, 1.4 and 2.2 µm are selected as predictor bands forcalcium and magnesium across many of the spatial resolutions.These band are associated with and are specific signaturesof Ca-OH and Mg-OH. Thus it may be concluded that theempirical modeling framework selects the important spectralsignatures associated with a chemical constituent or a texturalproperty as well as utilizes an underlying correlation structureamong various bands across upscaled spatial resolutions forquantification of the soil constituents. The results of sectionIV - A and B indicate that the model results are consistentand establishes the potential applicability of the method acrossdifferent spatial resolutions (from airborne to space borne) forquantification of soil texture.

C. Spatial Distribution of Soil Constituents Across the Land-scape at Different Resolutions

1) Change in prediction maps of soil constituents overlarge areas due to coarsening spatial resolutions?: The lassoprediction models developed at different spatial resolutions(for soil texture and organic matter) were applied on a pixelby pixel basis for obtaining quantitative spatial maps of theconstituents over the entire floodplain. These maps help us to

1. IftheobservedandthemodelpredictedsoilpropertiesbelongtothesameUSDAsoiltextureclass,wecallitacoincidentmatchorexactclassification.

2. Otherwisewecomputethetotaldeviation.

1. Ifthetotaldeviation(∆total%)islessthanorequalto25%wecallita‘close’classification,otherwisewecallitan‘incorrect’classification.

Page 12: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

PointScaleEvaluationofResults– ModelStructure

12

Sand Silt

Clay OrganicMatter

Wavelength [nm]

Num

ber o

f Spa

tial R

esol

utio

ns

1

2

3

4

5

6

7

Band

1

Band

11

Band

22

Band

33

Band

44

Band

55

Band

66

Band

77

Band

88

Band

99

Band

110

Band

121

Band

132

Band

143

Band

154

Band

165

Band

176

Band

187

Band

198

Band

209

Band

220

365

462

569

655

763

870

976

1082

1187

1273

1382

1492

1602

1711

1821

1907

2017

2127

2237

2347

2456

Wavelength [nm]

Num

ber o

f Spa

tial R

esol

utio

ns

1

2

3

4

5

6

7

Band

1

Band

11

Band

22

Band

33

Band

44

Band

55

Band

66

Band

77

Band

88

Band

99

Band

110

Band

121

Band

132

Band

143

Band

154

Band

165

Band

176

Band

187

Band

198

Band

209

Band

220

365

462

569

655

763

870

976

1082

1187

1273

1382

1492

1602

1711

1821

1907

2017

2127

2237

2347

2456

Wavelength [nm]

Num

ber o

f Spa

tial R

esol

utio

ns

1

2

3

4

5

6

7

Band

1

Band

11

Band

22

Band

33

Band

44

Band

55

Band

66

Band

77

Band

88

Band

99

Band

110

Band

121

Band

132

Band

143

Band

154

Band

165

Band

176

Band

187

Band

198

Band

209

Band

220

365

462

569

655

763

870

976

1082

1187

1273

1382

1492

1602

1711

1821

1907

2017

2127

2237

2347

2456

Wavelength [nm]

Num

ber o

f Spa

tial R

esol

utio

ns

1

2

3

4

5

6

7

Band

1

Band

11

Band

22

Band

33

Band

44

Band

55

Band

66

Band

77

Band

88

Band

99

Band

110

Band

121

Band

132

Band

143

Band

154

Band

165

Band

176

Band

187

Band

198

Band

209

Band

220

365

462

569

655

763

870

976

1082

1187

1273

1382

1492

1602

1711

1821

1907

2017

2127

2237

2347

2456

(a) (b)

(c) (d)

Page 13: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

SpatialDistributionofSoilConstituentsAcrosstheLandscape

13

0 1 20.5 Kmsµ 0 1 20.5 Kmsµ

0 1 20.5 Kmsµ 0 1 20.5 Kmsµ

(a) (b)

(c) (d)

!( !(

!(

!(!(!( !( !(

!(!(!(

!(!(

!(!(

!(!(!(

!(!(!(!(!( !(!(!(

!( !(!(!(

!(!(!(

!(

!( !(

!(!(!(

!(

!(!(

!(!(!(!(

!(

!(!(!(!(

!(

!(!(!(!(!(

!( !(

!(!(!(

!(

!(

!(!(!(!(

!(

!(!(!(!(!(!(!(

!(

!(!(!( !(

!(

!(!(

!(!(!(!(!(!(

!(

!(!(

!(!(

!( !(

Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO,USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, EsriJapan, METI, Esri China (Hong Kong), swisstopo, and the GIS User Community

0 10 205 Kms µ

Historic Meander Patternsof the Mississippi River

O' Bryan's Ridge

Region R1:

Region R2:

7.6m 60.8m

0 8 164 Kms

Clay (60.8m) [%]0 - 20

20 - 40

40 - 60

60 - 80

80 - 100

Erroneous Values

Water

Vegetation

0 8 164 Kms

Clay (7.6m) [%]0 - 20

20 - 40

40 - 60

60 - 80

80 - 100

Erroneous Pixels

Water

Vegetation

0 8 164 Kms

SOM (7.6m) [%]0 - 1

1 - 2

2 - 3

3 - 4

4 - 10

10 - 40

Erroneous Pixels

Water

Vegetation

0 8 164 Kms

SOM (60.8m) [%]0 - 1

1 - 2

2 - 3

3 - 4

4 - 10

10 - 40

Erroneous Values

Water

Vegetation

0 8 164 Kms

Mg (7.6m) [mg/kg]0 - 200

200 - 400

400 - 600

600 - 800

800 - 1,000

1,000 - 1,200

1,200 - 1,400

1,400 - 1,600

1,600 - 1,800

1,800 - 2,000

2,000 - 5,000

Erroneous Values

Water

Vegetation

0 8 164 Kms

Mg (60.8m) [mg/kg]0 - 200

200 - 400

400 - 600

600 - 800

800 - 1000

1000 - 1200

1200 - 1400

1400 - 1600

1600 - 1800

1800 - 2000

2000 - 5000

Erroneous Values

Water

Vegetation

Page 14: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

SpatialDistributionofSoilConstituentsAcrosstheLandscape- pdfs

14

� � � � � � � � � � � � ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� ��

� ��

�10−3.5

10−3

10−2.5

10−2

10−1.5

0 25 50 75 100X (Sand [%])

f(x

) [p

df]

Resolution

� 7.6m

10 m

15.2m

20 m

30.4 m

45 m

60.8 m

90 m

� � ��

��

��

��

��

��

��

��

�� � � � � � � � � �

��

��

��

��

��

� �

� �

10−5

10−4

10−3

10−2

0 25 50 75 100X (Clay [%])

f(x

) [p

df]

Resolution

� 7.6m

10 m

15.2m

20 m

30.4 m

45 m

60.8 m

90 m

� ��

��

��

��

��

��

��

��

� � � � � � � � � � � �� � �

��

��

��

��

��

��

��

��

��

��

��

��

��

10−3.5

10−3

10−2.5

10−2

10−1.5

0 25 50 75 100X (Silt [%])

f(x

) [p

df]

Resolution

� 7.6m

10 m

15.2m

20 m

30.4 m

45 m

60.8 m

90 m

� � ��

��

��

��

��

�� � � � � � � �

��

��

��

��

��

��

��

��

�� �

10−3.5

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

0.0 2.5 5.0 7.5 10.0X (SOM [%])

f(x

) [p

df]

Resolution

� 7.6m

10 m

15.2m

20 m

30.4 m

45 m

60.8 m

90 m

Region:R1

Page 15: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

SpatialDistributionofSoilConstituentsAcrosstheLandscape–DeviationfromStatisticalCentralvalues

15

● ●

0

40

80

120

Cla

y [%

]

PropertyModel ValuesSpatial Median

●●

● ●

3

6

9

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

∆[%

]

● ●

● ●

0

5

10

15

20

SOM

[%]

PropertyModel ValuesSpatial Median

●● ●

●0

2

4

6

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

∆[%

]

●●

●●

●●

●●●

●● ●●●●

●●●●

●●

●●

●●

●●

2 11 20 29 38 48 56 64 76 86 940

50100

150

Gauss60.8m

Sample Number

Clay [%

]

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●●

● ●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

2 11 20 29 38 48 56 64 76 86 94

05

1015

2025

Gauss60.8m

Sample Number

SOM [

%]

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●●

●●

●●

●●●

● ●

●●

●●

0

1000

2000

3000

4000

Mg

[mg/

kg]

PropertyModel ValuesSpatial Median

● ●

● ●●

7.510.012.515.017.5

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

∆[%

]

●●●

●●

●●

●●

●●

●●

●●

0

500

1000

1500

2000

2500

Fe [m

g/kg

]

PropertyModel ValuesSpatial Median

●● ●

● ●

68101214

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

∆[%

]●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

2 11 20 29 38 48 56 64 76 86 94

0500

1000

1500

2000

2500

3000

Gauss60.8m

Sample Number

Mg [m

g/kg]

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●●

●●

2 11 20 29 38 48 56 64 76 86 94

0500

1000

1500

2000

2500

3000

Gauss60.8m

Sample NumberFe

[mg/kg

] ●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●●●

●●●●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

Page 16: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

●●

●●

1.89 1.69 1.8 2.11 2.12.71 2.36

1e−02

1e+00

1e+02

1e+04

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

With

in P

ixel

Var

ianc

e SO

M [

sq. %

]

SpatialDistributionofSoilConstituentsAcrosstheLandscape–WithinPixelVariances

16

●●

●●

134.15 158.76 146.64193.4 192.13 200.57 213.67

1e+01

1e+03

1e+05

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

With

in P

ixel

Var

ianc

e Cl

ay [

sq. %

]

●●

●●

●● ●

●●

47287.9738983.63 40914.03

53163.86 54002.9 59270.66 65987.151e+05

1e+07

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

With

in P

ixel

Var

ianc

e M

g [ s

q. m

g/kg

]

●●

● ●

●●

●●

47001.68 49531.15 54595.9 52872.23 54170.34 62898.28 57984.01

1e+04

1e+06

10m 15.2m 20m 30.4m 45m 60.8m 90mScale

With

in P

ixel

Var

ianc

e Fe

[ sq

. mg/

kg]

Page 17: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

SummaryandConclusions

• Lassoalgorithmbasedmodeling frameworkisapplicableacrossmultiple scalesfromfine tocoarsespatialresolutions.

• Themodel structureacrossmultiple resolutions revealsthatimportantspectralfeaturessuchaswaterabsorption,minerals(clay,OH-,CO3-)arerepresentedacrossmultiple resolutions.

• Thepoint scaleresultsandthewithinpixelvarianceofconstituentsarefound tobeconsistentacrossscales.

• Thepdf oftheconstituentsarealsofound tobesimilaracrossscaleswithslightshiftinthemodesforsomeconstituents.

• Thelassobasedquantificationmethodhasthepotentialtobeapplicablefromspace-basedsensorssuchasHyspIRI.

17

Page 18: Effect of Spatial Resolution on Characterizing Soil ... · Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data Debsunder Dutta Praveen Kumar

Thankyou!

18