電動自行車的質子交換膜燃料電池智慧型動力系統研製 · 張耀庭等 /...

12
張耀庭等 / 高苑學報 第十七卷 第二期 民國一ΟΟ年 23 電動自行車的質子交換膜燃料電池智慧型動力系統研製 張耀庭 1 、陳邦家 1,* 、劉又齊 1 、張學斌 2 1 高苑科技大學電機工程所 2 高苑科技大學機械與自動化工程所 2011 2 24 日收稿;2011 3 25 日修訂稿;2011 7 7 日接受 本文主旨在採用質子交換膜燃料電池,設計一個可適用於電動自行車的電能系統。主要探討的項目,包含調節輸出電壓的電 能轉換器、超級電容輔助動力、與電能狀態即時監測等三個部份。以電能轉換器來調節燃料電池之輸出電壓,採用類比電路 作為控制信號,並搭配迴授電路來完成閉迴路控制,以達到在負載變動情況下,輸出電壓的穩定;由實驗量測結果可知,在 燃料電池的 13~23 伏特操作範圍內,電能轉換器的效率可達到 70%以上,電壓調節率則可維持在-4%以內。同時,運用超級 電容模組,以作為瞬間功率補償,有效提升電動自行車之行車性能與燃料效率。此外,將燃料電池模組運作狀態顯示於 LCD 上,讓使用者可即時監測燃料電池模組,包括電壓、電流、與溫度等狀態之即時數據。 關鍵字:質子交換膜燃料電池、電動自行車、電能轉換器、狀態監測 1. 前言 隨著工業蓬勃發展,使得能源的使用量愈來愈 大,相對的也危害到環境,導致地球的暖化和全球氣 候的變遷。因此,國際間已針對這個問題簽訂了「氣 候變化綱要公約」和「京都議定書」,並呼籲各國政 府制定相關的能源政策和價格機制,以減少有限化石 能源的浪費,和致力新能源的開發[1] 。由於環保議題 受到國際間熱切的探討與研究,各國間無不爭相研究 高效率、無汙染的再生能源,諸如:太陽能、風力、 地熱、生質能、燃料電池等。其中燃料電池又因具有 高電流密度、零汙染、高效率、多元化能源的發電科 [2]目前常見的燃料電池可分為六種,包含鹼性燃料 電池、直接甲醇燃料電池、質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC)、磷酸 燃料電池、熔融碳酸鹽燃料電池、固體氧化物。其中 以質子交換膜燃料電池是一種技術成熟且沒有污染 的能量轉換裝置,具有操作溫度低、輸出功率可隨意 調整、低腐蝕性、啟動快等特性,非常適合運用於電 動機車、電動自行車、大眾運輸等場合[3]電動代步車是解決都會地區空氣污染問題最有 效的方法之一,如何降低二氣化碳排放已是現代化都 市所應具備條件。電動代步車是指以電能方式來驅動 的車輛,然而目前商業運轉的電動代步車雖已到實用 化階段,但是距離普及化仍有一段差距,其主要的原 因為電池技術無法提昇,目前電動代步車使用的電池 有鉛酸電池、鎳鎘電池、鎳氫電池、鋰離子電池以及 燃料電池等,在電池技術上如能突破電池能量密度要 高、功率密度要高、壽命長、維修保養容易、安全性 及價格便宜 [4]電動自行車輛之動力馬達可區分為永磁式直流 馬達、感應馬達與直流無刷馬達等三類。近年來,由 於直流無刷馬達與電力電子驅動技術之結合,促使高 效能之直流無刷馬達逐漸取代了傳統直流馬達、感應 馬達,且被廣泛地運用於電動驅動系統。由於燃料電 池是潔淨且燃料容易取得及無汙染之綠色能源之 一,因此利用燃料電池作電源供應。燃料電池需要不 斷提供氫氣使系統正常運作,且輸出電壓不穩定,必 須增設輔助系統或儲能系統來改善暫態儲能。當效率 高時,則將多餘之能量對蓄電池等儲能元件進行儲 能,當效率低時,則由儲能系統進行釋放,達到充分 利用。至於動力輔助系統方法有很多,例如: 超級電 容器[5] 、電動自行車轉矩控制[6] 、電動自行車再生制 Journal of Kao Yuan University Vol. 17, No. 2 (2011) 23-34 高苑學報 第十七卷 第二期 23-34 民國一ΟΟ年 * 通訊作者:陳邦家 電子郵件信箱:[email protected]

Transcript of 電動自行車的質子交換膜燃料電池智慧型動力系統研製 · 張耀庭等 /...

  • /

    23

    1 1,* 1 2

    1 2

    2011 2 24 2011 3 25 2011 7 7

    13~23 70%-4% LCD

    1.

    [1]

    [2]

    (Proton Exchange Membrane Fuel Cell, PEMFC)

    [3]

    [4]

    : [5][6]

    Journal of Kao Yuan University Vol. 17, No. 2 (2011) 23-34

    23-34

    * [email protected]

  • /

    24

    [7]

    [8-10]

    IsSpice

    DSP DSP

    [10-11] dsPIC30F4011

    16 LCD PIC16F877

    A/D LCD

    100W

    2.

    2.1

    [12]

    2H

    +H -e +H -e

    ;

    2O

    +H -e -e 0.6~0.9(V)[13]

    1

    2(a) 100W 2(b) 100W 1 Horizon 100W 2(c) 100W 100W

    1.

    PEM

    24 1.4L/min 100W 0.4-0.6 Bar 14V/7.2A

    65

    13V-23V 40%/14V

    2.2

    [14][15]

    [16]

    (Self-Discharge)

  • /

    25

    3.

    3 PWM

    13V~23V PWM MOSFET 24V

    3.1 PWM (Pulse-Width Modulation, PWM)

    PWM PWM

    PI

    PWM TL494 OP PWM LM311 PWM 3.2

    (G)(S)

    PWM TLP250

    ;

    3.3 IR IRFP460

    MOSFET 20k~25kHz MOSFET

    MOSFET

    MOSFET MOSFET MOSFET (Snubber Circuit) MOSFET MOSFET

    3.4 100W

    - 4 PWM IC MOSFET

    4.

    5 PIC 2*16 LCD Microchip PIC16F877 TL074 0~5V (A/D)

    LCD

    6 4.1

    4 IC TL074 PIC 5V

    OP PIC /

    4.2 20m

  • /

    26

    PIC /

    4.3 Analog Device

    AD590

    0 2.73V

    2.73V 2.73VOP 5V PIC PIC A/D

    4.4 PIC16F877 LCD

    PIC16F877 8bit A/D PIC ADRESH LCD PIC LCD 4.5

    100W

    LCD 7

    5.

    5.1

    13V~23V 24V

    13V~23V 100W 2(a)~(c)

    (%) 23V 0.48A

    96.32%; 13V 2.96A 66.14% 8

    (%)

    24V 24V( ) 2

    4%

    5.2

    2 YTX5L-BS 12V/4AH 24V

    8

    3 0.15% 0.84% 4

    3.44% 5.66%

    1% 4%

    5.3

    9 24V2.7V 10

    27V

    5.4 10

    ;

  • /

    27

    LCD

    6.

    7.

    NSC-98-2221-E-244-015 NSC-99-2218-E-244-001

    8.

    1. A. Jossen, J. Garche, H. Doering, M. Goetz, W. Knaupp and L. Joerissen, Hybrid Systems with Lead-Acid Battery and Proton-Exchange Membrane Fuel Cell, Journal of Power Sources, vol. 144, no. 2, pp. 395-401, Jun. 2005.

    2. Y. Guezennec, T.-Y. Choi, G. Paganelli, and G. Rizzoni, Supervisory Control of Fuel Cell Vehicles and its Link to Overall System Efficiency and Low-Level Control Requirements, Proceedings of the American Control Conference Denver, vol. 3, pp. 20552061, 4-6 June 2003, Colorado, OH, USA.

    3.

    2009

    4. 9 4 2009

    5. M. Bertoluzzo, G. Buja and L. Cavalletto, Control and Operational Management of a Fuel-Cell Supply System for Electric Bicycle, ELECTROMOTION 2009 EPE Chapter Electric Drives Joint Symposium, pp.1-6, 1-3 July 2009, Lille, France.

    6. P.-C. Chen, H.-Y. Lin, S.-B. Chang, and Y.-C. Huang, The Torque Control of Human Power Assisted Electric Bikes, International Conference on System Science and Engineering(ICSSE), pp.373-378, 1-3 July 2010, Kaohsiung, Taiwan.

    7. P.-C. Chen, Y.-C. Liu, H.-S. Chuang, and S.-B.

    Chang, Regenerative Braking Control Strategies for E-Bike Systems, The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition ,EVS-25 Shenzhen, Nov. 5-9, 2010, China.

    8. 2008

    9. 2009

    10. 2008

    11. 2009

    12. 13.

    14. P. Thounthong, S. Rael, and B. Davat, Analysis of Supercapacitor as Second Source Based on Fuel Cell Power Generation, IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp.247-255, March 2009, North Bangkok (KMUTNB), Bangkok.

    15. 16. J.-W. Dixon, M.-D. Ortuzar and J.-A. Moreno,

    Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors, Electric Vehicle Symposium, EVS19, pp. 1368-1378, October 2002, Busan Corea.

  • /

    28

    2(a). 13V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    13 1.02 24.0 0.49 13.26 11.76 88.68 0

    13 4.51 23.6 1.93 58.63 45.54 77.67 -1.67

    13 8.02 23.3 2.96 104.26 68.96 66.14 -2.92

    2(b). 17V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    17 1.02 23.9 0.66 17.34 15.77 90.94 -0.42

    17 3.51 23.5 2.16 59.67 50.76 85.06 -2.08

    17 6.01 23.1 3.43 102.17 79.23 77.54 -3.75

    2(c). 21V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    21 0.51 24.0 0.42 10.71 10.08 94.11 0

    21 2.52 23.6 2.01 52.92 47.43 89.62 -1.67

    21 5.02 23.1 3.85 105.42 88.93 84.35 -3.75

    2(d). 23V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    23 0.52 24.0 0.48 11.96 11.52 96.32 0

    23 2.52 23.5 2.22 57.96 52.17 90.01 -2.08

    23 4.51 23.1 3.92 103.73 90.55 87.29 -3.75

  • /

    29

    3.

    R() (V) (V) (%)

    1 5 23.6 23.4 0.84

    2 10 24.2 24.1 0.41

    3 20 24.5 24.5 0

    4 30 24.6 24.6 0

    5 40 24.8 24.8 0

    6 50 24.8 24.8 0

    7 60 24.9 24.9 0

    8 80 25.0 25.0 0

    4.

    R() (A) (A) (%)

    1 5 4.96 5.0 0.80

    2 10 2.61 2.6 0.38

    3 20 1.27 1.2 5.51

    4 30 0.84 0.8 4.76

    5 40 0.63 0.6 4.76

    6 50 0.53 0.5 5.66

    7 60 0.41 0.4 2.43

    8 80 0.31 0.3 3.22

    1.

  • /

    30

    (a)

    (b)

    (c)

    2. 100W

  • /

    31

    3.

    (a) (b)

    4.

    5.

  • /

    32

    6.

    7.

  • /

    33

    60

    70

    80

    90

    100

    0 0.5 1 1.5 2 2.5 3 3.5 4

    (A)

    (%)

    13V

    17V

    21V

    23V

    8.

    9.

    10.

  • /

    34

    The Intelligent Power System Using PEM Fuel Cell

    for an Electric Bike Yao-Ting Chang1, Pang-Chia Chen1,*, Yow-Chyi Liu1, Shyue-Bin Chang2

    1 Department of Electronic Engineering, Kao Yuan University, Taiwan 2 Department of Mechanical and Automation Engineering, Kao Yuan University, Taiwan

    Received 24 February 2011; Revised 25 March 2011; Accepted 7 July 2010

    Abstract The purpose of the paper is to develop a PEM fuel cell power system with application for the electric bike. The main addressed

    issues include the energy converter for voltage regulation, ultra capacitor for energy buffering, and status monitoring for safety operation. The converter is implemented via analogy circuits to provide control signal with feedback loop. From the experiment result, in the full operation range of the fuel cell, the converter can achieve an energy efficiency higher than 70%, while voltage regulation maintained within -4%. The ultra capacitor for buffering of the changing power flow such that steady power can be provided for the hub motor and the driving performance as well energy efficiency can be improved. Moreover, the status parameters of the fuel cell, including the voltage, current, and temperature, are displayed in the LCD scheme, so that the operation of the fuel cell power system can be monitored in real time. Keywords: PEM fuel cell, Electric bike, Energy converter, State monitoring

    Journal of Kao Yuan University Vol. 17, No. 2 (2011) 23-34

    23-34

    * Correspondence to: P. C. Chen E-mail address: [email protected]