EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters ©...

35
EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in choosing sampling rate –Effect of sample and hold –Switched-capacitor network electronic noise –Switched-capacitor integrators • DDI integrators • LDI integrators • Effect of parasitic capacitance • Bottom-plate integrator topology –Resonators EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 2 Summary of last lecture • Continuous-time filters continued – Various Gm-C filter implementations – Comparison of continuous-time filter topologies • Switched-capacitor filters – Emulating resistor via switched-capacitor network – 1st order switched-capacitor filter – Switch-capacitor filter considerations: • Issue of aliasing and how to avoid it – Sample at high enough frequency so that the entire range of signals including the parasitics are at freqs < f s /2 – Use of anti-aliasing prefilters

Transcript of EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters ©...

Page 1: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1

EE247Lecture 9

• Switched-capacitor filters–Tradeoffs in choosing sampling rate–Effect of sample and hold –Switched-capacitor network electronic noise

–Switched-capacitor integrators• DDI integrators• LDI integrators• Effect of parasitic capacitance• Bottom-plate integrator topology

–Resonators

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 2

Summary of last lecture• Continuous-time filters continued

– Various Gm-C filter implementations– Comparison of continuous-time filter topologies

• Switched-capacitor filters– Emulating resistor via switched-capacitor network– 1st order switched-capacitor filter– Switch-capacitor filter considerations:

• Issue of aliasing and how to avoid it– Sample at high enough frequency so that the entire range of

signals including the parasitics are at freqs < fs /2– Use of anti-aliasing prefilters

Page 2: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 3

Sampling Sine WavesProblem:

Identical samples for:v(t) = cos [2π fint ]v(t) = cos [2π(n.fs+fin )t ]v(t) = cos [2π(n.fs-fin)t ]• (n-integer)

Multiple continuous time signals can yield exactly the same discrete time signal

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 4

Sampling Sine WavesFrequency Spectrum

f /fs

Am

plitu

de

fs1MHz

… f

Am

plitu

de

fin100kHz

2fs

600kHz 1.2MHz

Continuous-Time

Discrete Time

Signal scenariobefore sampling

Signal scenarioafter sampling

Key point: Signals @ nfS ± fmax__signal fold back into band of interest Aliasing

0.50.1

0.40.2

1.7MHz

0.3

Page 3: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 5

How to Avoid Aliasing?

• Must obey sampling theorem:

fmax-Signal < fs /2*Note:

Minimum sampling rate of fs=2xfmax-Signal is called Nyquist rate

• Two possibilities:1. Sample fast enough to cover all spectral components, including

"parasitic" ones outside band of interest2. Limit fmax_Signal through filtering attenuate out-of-band

components prior to sampling

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 6

How to Avoid Aliasing?1-Sample Fast

fs_old …….. f

Am

plitu

de

fin 2fs_old

Frequency domain

Push sampling frequency to x2 of the highest frequency signal to cover all unwanted signals as well as wanted signals

In vast majority of cases not practical

fs_new

Page 4: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 7

How to Avoid Aliasing?2-Filter Out-of-Band Signal Prior to Sampling

Pre-filter signal to eliminate/attenuate signals above fs/2- then sample

fs …….. f

Am

plitu

de

fin 2fs

Frequency domain

fs …….. f

Am

plitu

de

fin 2fs

Frequency domain

fs /2

Filter

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 8

Anti-Aliasing Filter Considerations

Case1- B= fsigmax = fs /2

• Non-practical since an extremely high order anti-aliasing filter (close to an ideal brickwall filter) is required

• Practical anti-aliasing filter Non-zero filter "transition band"• In order to make this work, we need to sample much faster than 2x the

signal bandwidth"Oversampling"

0 fs 2fs ... f

Am

plitu

de

BrickwallAnti-Aliasing

Pre-Filter

fs/2

Anti-Aliasing Filter

Switched-CapacitorFilter

RealisticAnti-Aliasing

Pre-Filter

DesiredSignalBand

Page 5: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 9

Practical Anti-Aliasing Filter

0 fs ... f

DesiredSignalBand

fs/2B fs-B

ParasiticTone

Attenuation

0 ...B/fs

Anti-Aliasing Filter

Switched-CapacitorFilter

Case2 - B= fmax_Signal << fs/2• More practical anti-aliasing filter• Preferable to have an anti-

aliasing filter with:The lowest order possibleNo frequency tuning required (if frequency tuning is required then why use switched-capacitor filter, just use the prefilter!?)

f /fs0.5

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 10

TradeoffOversampling Ratio versus Anti-Aliasing Filter Order

Tradeoff: Sampling speed versus anti-aliasing filter order

Maximum Aliased SignalRejection

fs /fin-max

Filter Order

Ref: R. v. d. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed., Kluwer publishing, 2003, p.41

* Assumption anti-aliasing filter is Butterworth type (not a necessary requirement)

Page 6: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 11

Effect of Sample & Hold

......

Tp

Ts

......

Ts

Sample &Hold

•Using the Fourier transform of a rectangular impulse:

shapesin)sin()(

xx

fTfT

TT

fHp

p

s

p →=π

π

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 12

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f / fs

abs(

H(f

))

Effect of Sample & Hold onFrequency Response

s

s

p

sp

p

s

p

ff

TT

ff

fTfT

TT

fHπ

π

ππ )sin()sin(

|)(|×

==

integer

0|)(|

|)0(|

==

==

n

TTnffH

TT

fH

ps

s

s

p

Tp=Ts

Tp=0.5Ts

More practical

Page 7: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 13

Sample & Hold Effect (Reconstruction of Analog Signals)

Time domain

timevolta

geZOH

fs …….. f

Am

plitu

de

fin 2fs

Frequency domainsin( )( )

fTsH ffTs

ππ

=

Tp=Ts

Magnitude droop due to sinx/xeffect

Tp=Ts

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 14

Sample & Hold Effect (Reconstruction of Analog Signals)

Time domain

timeVolta

ge

fs f

Am

plitu

de

fin

Frequency domain

Magnitude droop due to sinx/x effect:

Case 1) fsig=fs /4

Droop= -1dB

-1dB

Page 8: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 15

Sample & Hold Effect (Reconstruction of Analog Signals)

Time domainMagnitude droop due to sinx/x effect:

Case 2) fsig=fs /32

Droop= -0.0035dB

• Insignificant droop High oversampling

ratio desirable fs f

Am

plitu

de

fin

Frequency domain-0.0035dB

0 0.5 1 1.5 2 2.5 3 3.5

x 10-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Am

plitu

de

sampled dataafter ZOH

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 16

Sampling Process Including S/H

fs

Time Domain

2fs

t

Vi

Freq. Domain

fs 2fsffin

fs 2fsfB

fs 2fs

fs 2fsfs 2fs

Freq. DomainGeneralSignal

Sampler H(Z)e.g. (S.C.F) S/H

Page 9: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 17

1st Order FilterTransient Analysis

SC response:extra ½ clock cycle delay & steps with finite rise time

exaggerated

1st Order RC versus SC LPFfs = 1MHzf-3dB=50kHzfin= 3.6kHz

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 18

1st Order Filter S.C. versus C.T.Transient Analysis

SC response:extra ½ clock cycle delay & steps with finite rise time due to Rsw

1st Order RC versus SC LPFfs = 1MHzf-3dB=50kHzfin= 3.6kHz

VIN

C2SC=1pF

VO_RC

C2RC=1pF

R1 3.2MOHM

VO_SC

C1314.2fF

S1 S2 Rsw

φ1 φ2

Page 10: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 19

1st Order FilterTransient Analysis

ZOH

• ZOH: Emulates an ideal S/H pick signal after settling(usually at end of clock phase)

• Adds delay and sin(x)/x shaping• When in doubt, use a ZOH in

periodic ac simulations

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 20

Periodic AC Analysis

Page 11: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 21

1st Order FilterMagnitude Response

1. RC filter output2. SC output after ZOH3. Output after single ZOH4. Output w/o effect of ZOH

• (2) over (3)• Repeats filter shape

around nfs• Identical to RC for

f <<fs/2

RC filter output

SC output after ZOH

Corrected output no ZOH

Sinc due to ZOH

fs 2fs 3fs

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 22

Periodic AC Analysis• SPICE frequency analysis

– ac linear, time-invariant circuits– pac linear, time-variant circuits

• SpectreRF statementsV1 ( Vi 0 ) vsource type=dc dc=0 mag=1 pacmag=1

PSS1 pss period=1u errpreset=conservative

PAC1 pac start=1 stop=1M lin=1001

• Output– Divide results by sinc(f/fs) to correct for ZOH distortion

Page 12: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 23

Spectre Circuit Filerc_pacsimulator lang=spectre

ahdl_include "zoh.def"

S1 ( Vi c1 phi1 0 ) relay ropen=100G rclosed=1 vt1=-500m vt2=500mS2 ( c1 Vo_sc phi2 0 ) relay ropen=100G rclosed=1 vt1=-500m vt2=500mC1 ( c1 0 ) capacitor c=314.159fC2 ( Vo_sc 0 ) capacitor c=1p

R1 ( Vi Vo_rc ) resistor r=3.1831MC2rc ( Vo_rc 0 ) capacitor c=1pCLK1_Vphi1 ( phi1 0 ) vsource type=pulse val0=-1 val1=1 period=1u

width=450n delay=50n rise=10n fall=10nCLK1_Vphi2 ( phi2 0 ) vsource type=pulse val0=-1 val1=1 period=1u

width=450n delay=550n rise=10n fall=10nV1 ( Vi 0 ) vsource type=dc dc=0 mag=1 pacmag=1

PSS1 pss period=1u errpreset=conservativePAC1 pac start=1 stop=3.1M log=1001ZOH1 ( Vo_sc_zoh 0 Vo_sc 0 ) zoh period=1u delay=500n aperture=1n tc=10pZOH2 ( Vi_zoh 0 Vi 0 ) zoh period=1u delay=0 aperture=1n tc=10p

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 24

ZOH Circuit File// Copy from the SpectreRF Primer

module zoh (Pout, Nout, Pin, Nin) (period, delay, aperture, tc)

node [V,I] Pin, Nin, Pout, Nout;

parameter real period=1 from (0:inf);parameter real delay=0 from [0:inf);parameter real aperture=1/100 from (0:inf);

parameter real tc=1/500 from (0:inf);{integer n; real start, stop;

node [V,I] hold;analog {

// determine the point when aperture beginsn = ($time() - delay + aperture) / period + 0.5;start = n*period + delay - aperture;

$break_point(start);

// determine the time when aperture endsn = ($time() - delay) / period + 0.5;stop = n*period + delay;

$break_point(stop);

// Implement switch with effective series

// resistence of 1 Ohm

if ( ($time() > start) && ($time() <= stop))

I(hold) <- V(hold) - V(Pin, Nin);

else

I(hold) <- 1.0e-12 * (V(hold) - V(Pin, Nin));

// Implement capacitor with an effective

// capacitance of tc

I(hold) <- tc * dot(V(hold));

// Buffer output

V(Pout, Nout) <- V(hold);

// Control time step tightly during

// aperture and loosely otherwise

if (($time() >= start) && ($time() <= stop))

$bound_step(tc);

else

$bound_step(period/5);

}

}

Page 13: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 25

time

Vo

Output Frequency Spectrum prior to hold

Antialiasing Pre-filter

fs 2fsf-3dB

First Order S.C. Filter

Vin Vout

C1

S1 S2

φ1 φ2

C2

Vintime

Switched-Capacitor Filters problem with aliasing

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 26

Sampled-Data FiltersAnti-aliasing Requirements

• Frequency response repeats at fs , 2fs , 3fs…..

• High frequency signals close to fs , 2fs ,….folds back into passband (aliasing)

• Most cases must pre-filter input to a sampled-data filter to attenuate signal at f > fs /2 (nyquist fmax < fs /2 )

• Usually, anti-aliasing filter included on-chip as continuous-time filter with relaxed specs. (no tuning)

Page 14: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 27

Antialiasing Pre-filter

fs 2fsf-3dB

Example : Anti-Aliasing Filter Requirements

• Voice-band CODEC SC filter f-3dB =4kHz & fs =256kHz • Anti-aliasing filter requirements:

– Need at least 40dB attenuation or all out-of-band signals which can alias inband

– Incur no phase-error from 0 to 4kHz – Gain error 0 to 4kHz < 0.05dB– Allow +-30% variation for anti-aliasing corner frequency (no tuning)

Need to find minimum required filter order

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 28

Oversampling Ratio versus Anti-Aliasing Filter Order

2nd order ButterworthNeed to find minimum corner frequency for mag. droop < 0.05dB

Maximum Aliasing Dynamic Range

fs/fin_max

Filter Order

* Assumption anti-aliasing filter is Butterworth type

fs/fin =256K/4K=64

Page 15: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 29

Example : Anti-Aliasing Filter Specifications

From: Williams and Taylor, p. 2-37

Stopband A

ttenuation dB

Νοrmalized ω

• Normalized frequency for 0.05dB droop: need perform passband simulation 0.344kHz/0.34=12kHz

• Set anti-aliasing filter corner frequency for minimum corner frequency 12kHz Find nominal corner frequency: 12kHz/0.7=17.1kHz

• Check if attenuation requirement is satisfied for widest filter bandwidth 17.1x1.3=22.28kHz

• Find (fs-fsig)/f-3dBmax

252/22.2=11.35 make sure enough attenuation

• Check phase-error within 4kHz bandwidth for min. filter bandwidth via simulation

0.05dB droop

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 30

Antialiasing Pre-filter

fs 2fsf-3dB

Example : Anti-Aliasing Filter

• Voice-band S.C. filter f-3dB =4kHz & fs =256kHz • Anti-aliasing filter requirements:

– Need 40dB attenuation at clock freq. – Incur no phase-error from 0 to 4kHz– Gain error 0 to 4kHz < 0.05dB– Allow +-30% variation for anti-aliasing corner frequency (no

tuning)

2-pole Butterworth LPF with nominal corner freq. of 17kHz & no tuning (min.=12kHz & max.=22kHz corner frequency )

Page 16: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 31

Summary• Sampling theorem fs > 2fmax_Signal

• Signals at frequencies nfS± fsig fold back down to desired signal band, fsig

This is called aliasing & usually dictates use of anti-aliasing pre-filters

• Oversampling helps reduce required order for anti-aliasing filter

• S/H function shapes the frequency response with sinx/x

Need to pay attention to droop in passband due to sinx/x

• If the above requirements are not met, CT signal can NOT be recovered from SD or DT without loss of information

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 32

Switched-Capacitor Network Noise

• During φ1 high: Resistance of switch S1 (Ron

S1) produces a noise voltage on C with variance kT/C (lecture 1- first order filter noise)

• The corresponding noise charge is:

Q2 = C2V2 = C2. kT/C = kTC

• φ1 low: S1 open This charge is sampled

vIN vOUT

CS1 S2

φ1 φ2

RonS1

C

vIN

Page 17: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 33

Switched-Capacitor Noise

vIN vOUT

CS1 S2

φ1 φ2

RonS2

C

• During φ2 high: Resistance of switch S2 contributes to an uncorrelated noise charge on C at the end of φ2 : with variance kT/C

• Mean-squared noise charge transferred from vIN to vOUT per sample period is:

Q2=2kTC

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 34

• The mean-squared noise current due to S1 and S2’s kT/C noise is :

• This noise is approximately white and distributed between 0 and fs /2 (noise spectra single sided by convention) The spectral density of the noise is:

S.C. resistor noise = a physical resistor noise with same value!

Switched-Capacitor Noise

( )2Q 2 2S ince i then i Qf 2k TCfs B st= → = =

22 2k TCfi B s 4k TCf B sf fs2

2 4k T1 i BSince R then : EQ f C f Rs EQ

= =Δ

= =Δ

Page 18: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 35

Periodic Noise AnalysisSpectreRF

PSS pss period=100n maxacfreq=1.5G errpreset=conservativePNOISE ( Vrc_hold 0 ) pnoise start=0 stop=20M lin=500 maxsideband=10

SpectreRF PNOISE: checknoisetype=timedomainnoisetimepoints=[…]

as alternative to ZOH.noiseskipcount=large

might speed up things in this case.

ZOH1T = 100ns

ZOH1

T = 100ns

S1R100kOhm

R100kOhm

C1pFC1pF

PNOISE Analysissweep from 0 to 20.01M (1037 steps)

PNOISE1

Netlistahdl_include "zoh.def"ahdl_include "zoh.def"

Vclk100ns

Vrc Vrc_hold

Sampling Noise from SC S/H

C11pFC11pFC11pFC11pF

R1100kOhm

R1100kOhm

R1100kOhm

R1100kOhm

Voltage NOISEVNOISE1

NetlistsimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1p

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 36

Sampled Noise Spectrum

Spectral density of sampled noise including sinx/x effect

Noise spectral density with sinx/x effect taken out

V/sq

rt(H

z)

Nor

mal

ized

Noi

se D

ensi

ty [d

B]

Page 19: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 37

Total Noise

Sampled simulated noise in 0 … fs/2: 62.2μV rms

(expect 64μV for 1pF)

Nor

mal

ized

Tot

al N

oise

v nT

/(KT/

C)

1

0.1

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 38

Switched-Capacitor Integrator

-

+

Vin

Vo

φ1 φ2CI

Css

s ignal sampling

s0 I

s0 s I

for f f

f CV V dtinC

Cf Cω

×=

<<

= ×

-

+∫ φ1

φ2

T=1/fs

Main advantage: No tuning needed critical frequency function of ratio of capacitors & clock freq.

Page 20: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 39

Switched-Capacitor Integrator

-

+

Vin

Vo

φ1 φ2CI

Cs

-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ1

φ2

T=1/fs

φ1 High Cs Charged to Vin

φ2 HighCharge transferred from Cs to CI

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 40

Continuous-Time versus Discrete Time Analysis Approach

Continuous-Time

• Write differential equation• Laplace transform (F(s))• Let s=jω F(jω)

• Plot |F(jω)|, phase(F(jω)

Discrete-Time

• Write difference equation relates output sequence to input sequence

• Use delay operator z -1 to transform the recursive realization to algebraic equation in z domain

• Set z= e jωT

• Plot mag./phase versus frequency

[ ]

( ) ( )

o s i s

1o i

V ( nT ) V . . . . . . . . . .( n 1)T

V z V . . . . . . .Z z−

= −−

=

Page 21: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 41

Discrete Time Design Flow• Transforming the recursive realization to algebraic

equation in z domain:– Use delay operator z :

s1s1/ 2s1s1/ 2s

nT ..................... 1............. z( n 1)T

.......... z( n 1/ 2 )T............. z( n 1)T

.......... z( n 1/ 2 )T

⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦⎡ ⎤⎣ ⎦

+

+

→→−→−→+→+

* Note: z = e jωTs = cos(ωTs )+ j sin(ωTs )

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 42

Switched-Capacitor IntegratorOutput Sampled on φ1

φ1 φ2 φ1 φ2 φ1

Vin

Vo

VCs

Clock

Vo1

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

Page 22: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 43

Switched-Capacitor Integrator

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

Vo1

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]Since Vo1= - QI /CI & Vi = Qs / Cs CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ]

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts (n+1/2)Ts

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 44

Switched-Capacitor IntegratorOutput Sampled on φ1

sIsI

1s1I

o s o ss sI I inCo s o s sinCC1 1o o inC

CC 1in

C V (nT ) C V C V(n 1)T (n 1)T

V (nT ) V V(n 1)T ( n 1)T

V ( Z ) Z V ( Z ) Z V ( Z )

Vo Z( Z )ZV

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−−

− −

= −− −

= −− −

= −

= − ×

DDI (Direct-Transform Discrete Integrator)

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

Page 23: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 45

z-Domain Frequency Response•The jω axis maps onto the unit-circle

•LHP singularities in s-plane map into inside of unit-circle in z-domain

•RHP singularities in s-plane map into outside of unit-circle in z-domain

•Particular values:– f = 0 z = 1

f = 0

f = fs /2

LHP in s-domain

imag. axis in s-domain z-plane

z = e s.Ts

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 46

z-Domain Frequency Response

• The frequency response is obtained by evaluating H(z) on the unit circle at:

z = e jωT = cos(ωTs) + j sin(ωTs)

• Once z=-1 (fs /2) is reached, the frequency response repeats, as expected

• The angle to the pole is equal to 360° (or 2πradians) times the ratio of the pole frequency to the sampling frequency

(cos(ωTs),sin(ωTs))

2πffS

z-plane

Page 24: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 47

Switched-Capacitor Direct-Transform Discrete Integrator

1s1I

s 1I

CC 1in

CC 1

Vo z( z )zV

z

−−−

= − ×

= − × −

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 48

DDI IntegratorPole-Zero Map in z-Plane

z -1=0 z = 1on unit circle

Pole from f 0in s-plane mapped to z =+1

As frequency increases zdomain pole moves on unit circle (CCW)

Once pole gets to:z=-1 (f=fs /2)

frequency response repeatsz-plane

f = fs /2

f

f1

1

(z-1)increasing

Page 25: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 49

DDI Switched-Capacitor IntegratorCI

Ideal Integrator Magnitude Error Phase Error

( )

( )

1s1I

j T / 2s sj T j T / 2 j T / 2I I

sI

sI

C j TC 1in

j jC CC C1

C j T / 2C

C j T / 2C j T

Vo z( z ) , z ezV

e ee1 since : s in 2 je e e

1j e 2 sin T / 2

T / 21 esin T / 2

ωω ω ω

ω

α α

ω

ω

α

ω

ωω ω

−−

−−

− −

= − × =

−= × = × =

= − × ×

= − × ×

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 50

DDI Switched-Capacitor Integrator

Example: Mag. & phase error for:1- f / fs=1/12 Mag. error = 1% or 0.1dB

Phase error=15 degreeQintg = -3.8

2- f / fs=1/32 Mag. error=0.16% or 0.014dBPhase error=5.6 degreeQintg = -10.2

CI

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

DDI Integrator:magnitude error no problemphase error major problem

Page 26: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 51

5th Order Low-Pass Switched Capacitor Filter Built with DDI Integrators

Example: 5th Order Elliptic FilterSingularities pushed towards RHP due to integrator excess phase

s-planeFine View

σ

Ideal PoleIdeal Zero

s-planeCoarse View

σ

ωs

-ωs DDI PoleDDI Zero

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 52

Frequency (Hz)

Switched Capacitor Filter Build with DDI Integrator

( )ωjH

sf / 2 sf 2fs fContinuous-TimePrototype

SC DDI basedFilter

PassbandPeaking

Zeros lost!

Page 27: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 53

Switched-Capacitor Integrator Output Sampled on φ2

CI

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

Sample output ½ clock cycle earlierSample output on φ2

Vo

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 54

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-3/2) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]

Φ2 Qs [(n+1/2) Ts] = 0 , QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]

φ1 φ2 φ1 φ2 φ1

Vin

Vo2

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

Switched-Capacitor Integrator Output Sampled on φ2

(n+1/2)Ts

Page 28: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 55

QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]Vo2= - QI /CI & Vi = Qs / Cs CI Vo2 [(n+1/2) Ts] = CI Vo2 [(n-1/2) Ts ] -Cs Vi [n Ts ]Using the z operator rules:

CI Vo2 z1/2 = CI Vo2 z-1/2 - Cs Vi

1 / 2s1I

CC 1in

Vo2 z( z )zV

−−−

= − ×

Switched-Capacitor Integrator Output Sampled on φ2

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 56

LDI Switched-Capacitor Integrator

( )

( )

1/ 2s1I

j T / 2s e s 1j T j T / 2 j T / 2I I

sI

sI

C j TC 1 zin

C CC C1

CC

CC j T

Vo2 z( z ) , z eV

e e e

1j 2 sin T / 2

T / 21sin T / 2

ωω ω ω

ω

ω

ωω ω

−−

−− − +

− −

= − × =

= − × = ×

= − ×

= − ×

CI

Ideal Integrator Magnitude Error

No Phase Error! For signals at frequencies << sampling freq.

Magnitude error negligible

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

LDI

LDI (Lossless Discrete Integrator) same as DDI but output is sampled ½clock cycle earlier

Page 29: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 57

Frequency Warping• Frequency response

– Continuous time (s-plane): imaginary axis– Sampled time (z-plane): unit circle

• Continuous to sampled time transformation– Should map imaginary axis onto unit circle– How do S.C. integrators map frequencies?

12s

S.C. 11

1s2

C zH ( z )C zint

C

C j sin f Tint π

−= −−

= −

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 58

CT – SC Integrator ComparisonCT Integrator SC Integrator

int

s s

CRCf C

τ = =Identical time constants:

Set: HRC(fRC) = HSC(fSC)

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

( )

12s

SC 11

1s2 s

C zH ( z )C zint

CC j sin f Tint SCπ

−= −−

= −

RC1

12 RC

H ( s )s

jf

τ

π τ

= −

= −

Page 30: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 59

LDI Integration

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

SCsRC f

fff ππ

sin

• “RC” frequencies up to fs /πmap to physical (real) “SC”frequencies

• Frequencies above fs /π do not map to physical frequencies

• Mapping is symmetric about fs /2 (aliasing)

• “Accurate” only for fRC << fs0 0.1 0.2 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fRC /fs

f SC/f s

1/π

Slope=1

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 60

Switched-Capacitor Filter Built with LDI Integrators( )ωjH

Zeros Preserved

Frequency (Hz) 2fs ffsfs /2

Page 31: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 61

Switched-Capacitor IntegratorParasitic Sensitivity

Effect of parasitic capacitors:

1- Cp1 - driven by opamp o.k.

2- Cp2 - at opamp virtual gnd o.k.

3- Cp3 – Charges to Vin & discharges into CI

Problem parasitic sensitivity

-

+

VinVo

φ1 φ2CI

CsCp3

Cp2

Cp1

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 62

Parasitic InsensitiveBottom-Plate Switched-Capacitor Integrator

Sensitive parasitic cap. Cp1 rearrange circuit so that Cp1 does not charge/discharge

φ1=1 Cp1 grounded

φ2=1 Cp1 at virtual ground

Solution: Bottom plate capacitor integrator

Vi+

Cs-

+ Vo

CI

Cp1

Cp2

φ1 φ2

Vi-

Page 32: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 63

Bottom Plate Switched-Capacitor Integrator

12

12

1s s1 1I I

s s1 1I I

C Cz zC C1 z 1 z

C Cz 1C C1 z 1 z

−−

− −

− −

− −

− −− −

Note: Different delay from Vi+ &Vi- to either output

Special attention needed for input/output connections

Vi+

Cs-

+ Vo

CIφ1 φ2

Vi-

Vi+on φ1

Vi-on φ2

Vo1on φ1

Vo2on φ2

φ1

φ2

Vo2

Vo1

Output/Inputz-Transform

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 64

Bottom Plate Switched-Capacitor Integratorz-Transform Model

12

12

11 1

1 1

z z1 z 1 z

z 11 z 1 z

−−− −

− −

− −

−− −

121

z1 z

−−

12z−

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-

φ1

φ2

Vo2

Vo1

Vi+

Vi- 12z+ Vo2

Vo1

LDI

s IC C

s IC C−

Page 33: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 65

LDI Switched-Capacitor Ladder Filter

CsCI

12

1z

1 z

−−

-+

+ - + -3

1sτ 4

1sτ 5

1sτ

12z

12z

+

12z

+12z

+

12z

CsCI

CsCI

−CsCI

−CsCI

CsCI

Delay around integrator loop is (z-1/2 . z+1/2 =1) LDI function

12

1z

1 z

−−

12

1z

1 z

−−12z

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 66

Switched-Capacitor LDI Resonator

2s

ω

1s

ω−

C1 1f1 sR C Ceq1 2 2C1 3f2 sR C Ceq3 4 4

ω

ω

= = ×

= = ×

Resonator Signal Flowgraph

φ1 φ2

φ2 φ1

Page 34: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 67

Fully Differential Switched-Capacitor Resonator

φ1 φ2

φ1 φ2

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 68

Switched-Capacitor LDI Bandpass FilterUtilizing Continuous-Time Termination

0s

ω

0s

ω−

C C3 1f0 s sC C4 2C2Q CQ

ω = × = ×

=

Bandpass FilterSignal Flowgraph

CQ

Vi

Vo-1/QVo2Vi

Vo2

Page 35: EE247 Lecture 9 - University of California, BerkeleyEECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 1 EE247 Lecture 9 • Switched-capacitor filters –Tradeoffs in

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 69

s-Plane versus z-PlaneExample: 2nd Order LDI Bandpass Filter

σ

jωs-plane z-plane

EECS 247 Lecture 9 Switched-Capacitor Filters © 2007 H. K. Page 70

Switched-Capacitor LDI Bandpass FilterContinuous-Time Termination

0.1 1 10f0

0

-3dBΔf

Frequency

Mag

nitu

de (d

B)

C1 1f f0 s2 C2f0f Q

C C1 Q1 fs2 C C2 4

π

π

= ×

Δ =

= ×

Both accurately determined by cap ratios & clock frequency