Switched-Capacitor Circuits

54
– 1 – Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. Chiu ECE 581 Fall 2009 Switched-Capacitor Circuits

description

Switched-Capacitor Circuits. Continuous-Time Integrator. Approach : emulating resistors with switched capacitors. . Goal:. Concept of Switched Capacitor. A switched capacitor is a discrete-time “resistor” - PowerPoint PPT Presentation

Transcript of Switched-Capacitor Circuits

Page 1: Switched-Capacitor Circuits

– 1 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Switched-Capacitor Circuits

Page 2: Switched-Capacitor Circuits

– 2 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Continuous-Time Integrator

Goal:

C2

Vi Vo

R1

C2

Vi VoSC

1 2

1 2

1

1 1

t

o in

o

i

v t v dR C

VH s s

V R C s

Approach: emulating resistors with switched capacitors

1 2R C

Page 3: Switched-Capacitor Circuits

– 3 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Concept of Switched Capacitor

BA VVT

C

T

qi

BA VVR

i 1

Ф2

Ф1

C

TReq

• A switched capacitor is a discrete-time “resistor”

• RC time constant set by capacitor ratio C2/C1 (match considerably better than R and C) and clock period T (flexibility)

RVA VB

i

C Ф2Ф2

Ф1Ф1

VA VB

<i>

so,1

22

121, C

CTC

C

TCReq

Non-overlappingtwo-phase clock

Page 4: Switched-Capacitor Circuits

– 4 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2

Switched Capacitors

• Shunt- and series-type SCs are simple and cheap to implement

• Stray-insensitive SC requires 2 more switches, what’s the advantage besides being more flexible (i.e., w/ or w/o the T/2 delay)?

2-phase clock

Ф2Ф1

VA VB

CФ1

VA VB

C Ф2

Series-typeShunt-type

C Ф2Ф2(Ф1)

Ф1Ф1(Ф2)

VA VB Stray-insensitive

Page 5: Switched-Capacitor Circuits

– 5 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Discrete-Time Integrator (DTI)

2-phase clock

C2

Vi Vo

Ф2Ф1

C1

Series-typeShunt-type

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2

What are the VTFs (z-domain) of these DTIs, assuming no parasitic capacitance is present?

C2

Vi Vo

C1Ф1

Ф2

Page 6: Switched-Capacitor Circuits

– 6 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Shunt-Type DTI

Ф1(sample)

Charge conservation law (ideal):

Total charge on C1 and C2 during Ф1→ Ф2 transition must remain unchanged!

C2

Vi Vo

C1

C2

Vo

C1

Vi

Ф2(update)

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2

T

vi(t)

0 t

vo(t)

0 t

(n-1)(n)

(n+1)

(n-1)

(n)(n+1)

Page 7: Switched-Capacitor Circuits

– 7 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Shunt-Type DTI

Ф1(sample)

Ф2(update)C2

Vi Vo

C1

C2

Vo

C1

Vi

211 CnVCnVQ oi 212 10 CnVCQ o

212121 10 CnVCCnVCnVQQ ooi

221 CzVzCzVCzV ooi

1 1/21 1

1 12 2

1 1

o

i

V z C Cz zH z or

V z C z C z

Page 8: Switched-Capacitor Circuits

– 8 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Series-Type DTI

Ф1(sample/update)

Ф2(reset C1)

C2

Vi Vo

C1Ф1

Ф2

1

2

1

1

1

zC

C

zV

zVzH

i

oVTF:

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2

T

vi(t)

0 t

vo(t)

0 t

(n-1)(n)

(n+1)

(n-1)(n)

(n+1)

Page 9: Switched-Capacitor Circuits

– 9 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Stray CapacitanceSeries-typeShunt-type

Cu

Cu Cu

Cu Cu

C1 C2

• Strays derive from D/S diodes and wiring capacitance

• VTF is modified due to strays

• Strays at the summing node is of no significance (virtual ground)

41

2 C

C

C2

Vi Vo

C1

Ф1 Ф2

A

C2

Vi Vo

C1

Ф1

Ф2

A

Page 10: Switched-Capacitor Circuits

– 10 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Stray-Insensitive SC Integrator

1

2

1

1

1

zC

CzHVTF:

1

1

2

1

1

z

z

C

CzH

• Capacitors can be significantly sized down to save power/area

• Sizes are eventually limited by kT/C noise, mismatch, etc.

C1 Ф2Ф2(Ф1)

Ф1Ф1(Ф2)

C2

Vi Vo

A B

“Inverting” “Non-inverting”

VTF:

Page 11: Switched-Capacitor Circuits

– 11 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

SC Amplifier

11

2

CH z z

C

• Non-integrating, memoryless (less the delay)

• Used in many applications of parametric amplification

VTF:Vi

C2

C1Ф1

Ф2

Ф1

Vo

Page 12: Switched-Capacitor Circuits

– 12 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

SC Applications

Page 13: Switched-Capacitor Circuits

– 13 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

CT FilterR

CVi Vo

L

R1

CA

R

R

R3

R4

CB

R2

Vi Vo

RLC prototype

Active-RC Tow-Thomas

CT biquad

Page 14: Switched-Capacitor Circuits

– 14 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

SC DT Filter

SC DTbiquad

CA CB

Vi Vo

C1 Ф2Ф2

Ф1Ф1

C2

C4 Ф2

Ф1

C3 Ф2Ф1

Ф1Ф2

Ф2

R1

CA

R

R

R3

R4

CB

R2

Vi Vo

Active-RC Tow-Thomas

CT biquad

Page 15: Switched-Capacitor Circuits

– 15 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Sigma-Delta (ΣΔ) Modulator

CI

Ф2Ф1

Ф1Ф2

Vi

Do

+VR 1-b DAC-VR

CS

DTI + 1-bit comparator + 1-bit DAC = first-order ΣΔ ADC

Page 16: Switched-Capacitor Circuits

– 16 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Pipelined ADC

SC amplifier + 2 comparators + 3-level DAC = 1.5-bit pipelined ADC

Vo

Vi

0-VR

VR

1.5-bDAC

Φ1 C1

Φ1 C2

Φ2

Φ1

Φ2

-VR/4

VR/4

Page 17: Switched-Capacitor Circuits

– 17 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Noise in SC Circuits

Page 18: Switched-Capacitor Circuits

– 18 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Noise of CT Integrator

Noise in CT circuits can be simulated with SPICE (.noise)

R

C

Vi Vo

R

C

Vo

VN12

VN22

H1(f)

H2(f)

2 2

2 22 1 21 2

N NoN

V VV f H f df f H f df

f f

Page 19: Switched-Capacitor Circuits

– 19 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Noise of SC Integrator

SC circuits are NOT noise-free! Switches and op-amps introduce noise.

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2

C2

C1 Ф2Ф1

Ф1Ф2

Vi Vo

Page 20: Switched-Capacitor Circuits

– 20 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

• Noise is indistinguishable from signal after sampling

• The noise acquired by C1 will be amplified in Ф2 just like signal

Sampling (Ф1) Ideal Voltage Source

2 222 1 2

10

2

1 201 2

1

14 4

1 2

N NN

V VV f f H f df

f f

kTR kTR dfj f R R C

kT

C

C1

Vi

R1

R2

VN12 VN2

2

Page 21: Switched-Capacitor Circuits

– 21 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Integration (Ф2)

No simulator can directly simulate the aggregated output noise!

2 2 2

2 22 3 4 534 52 N N N

N

V V VV f f H f df f H f df

f f f

21 22

2

2

12 NNoN VVC

CV

Vo

VN32

VN52

H34(f)

H5(f)

C1

C2

R4VN42

R3

Page 22: Switched-Capacitor Circuits

– 22 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Sampling (Ф1) Noise – Cascaded Stages

C1'R1

R2

VN32

VN52

VN12 VN2

2C1

C2

R4VN42

R3

• Finite op-amp BW limits the noise bandwidth, resulting in less overall kT/C noise (noise filtering).

• But parasitic loop delay may introduce peaking in freq. response, resulting in more integrated noise (noise peaking).

C2 C2'

Vi Vo

C1 Ф1Ф2

Ф2Ф1

C1' Ф2Ф1

Ф1Ф2

Ф2

Page 23: Switched-Capacitor Circuits

– 23 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Sampled Noise Spectrum

• Total integrated noise power remains constant

• SNR remains constant

CT

DT

PSD

fs/2 fs 3/2fs0

PSD

fs 2fs0

Alias

Page 24: Switched-Capacitor Circuits

– 24 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonideal Effects in

SC Circuits

Page 25: Switched-Capacitor Circuits

– 25 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonideal Effects in SC Circuits

• Capacitors (poly-poly, metal-metal, MIM, MOM, sandwich, gate cap, accumulation-mode gate cap, etc.)– PP, MIM, and MOM are linear up to 14-16 bits (nonlinear voltage

coefficients negligible for most applications)– Gate caps are typically good for up to 8-10 bits

• Switches (MOS transistors)– Nonzero on-resistance (voltage dependent)– (Nonlinear) stray capacitance added (Cgs, Cgd, Cgb, Cdb, Csb)– Switch-induced sampling errors (charge injection, clock feedthrough,

junction leakage, drain-source leakage, and gate leakage)

• Operational amplifiers– Offset– Finite-gain effects (voltage dependent)– Finite bandwidth and slew rate (measured by settling speed)

Page 26: Switched-Capacitor Circuits

– 26 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonideal Effects of

Switches

Page 27: Switched-Capacitor Circuits

– 27 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonzero On-Resistance

• FET channel resistance (thus tracking bandwidth) depends on signal level

• Usually (RonCS)-1 ≥ (3-5)·ω-3dB of closed-loop op-amp for settling purpose

VGS

Vout

C

…Ф

CS

Ф

Ф

CS

Ron

0 VDDVout

VTnVTp

PMOS

NMOS

CMOS

outthDDoxon VVVL

WCR 1

Page 28: Switched-Capacitor Circuits

– 28 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Clock Bootstrapping

• Small on-resistance leads to large switches → large parasitic caps and large clock buffers

• Clock bootstrapping keeps VGS of the switch constant → constant on-resistance (body effect?) and less parasitics w/o the PMOS

Ф

Ф

CS

OutInM1

VDD

Ф1 Ф2

CMOS Bootstrapped NMOS

Page 29: Switched-Capacitor Circuits

– 29 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Simplified Clock Bootstrapper

Pros

• Linearity

• Bandwidth

Cons

• Device reliability

• Complexity

Out

C

In

M2

M1

VDD

VSS

OutInM1

VDD

Ф1 Ф2

Ф1Ф1

Ф2

Ф2

Ф2

Ф2

Page 30: Switched-Capacitor Circuits

– 30 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Switch-Induced Errors

Channel charge injection and clock feedthrough (on drain side) result in charge trapped on CS after switch is turned off.

Vout

Ф

CS

Zi

Vin

CgdCgs

Qch

• Clock feedthrough

• Charge injection

Page 31: Switched-Capacitor Circuits

– 31 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Clock Feedthrough and Charge Injection

• Both phenomena sensitive to Zi, CS, and clock rise/fall time

• Offset, gain error, and nonlinearity introduced to the sampling

• Clock feedthrough can be simulated by SPICE, but charge injection cannot be simulated with lumped transistor models

Ф

VDD

0

Vin+Vth

Switch on Switch off

Vout

Ф

CS

Zi

Vin

CgdCgs

Qch

Page 32: Switched-Capacitor Circuits

– 32 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Clock Rise/Fall-Time Dependence

Ф

VDD

0

Vin+Vth

Switch on Switch off

Vout

Ф

CS

Zi

Vin

CgdCgs

Qch

Clock feedthrough Charge injection

Fast turn-off

Slow turn-off

DDSgs

gs VCC

CV

Sgs

inthDDox

CC

VVVWLCV

2

thinSgs

gs VVCC

CV

0V

Page 33: Switched-Capacitor Circuits

– 33 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Dummy Switch

• Difficult to achieve precise cancellation due to the nonlinear dependence of ΔV on Zi, CS, and clock rise/fall time

• Sensitive to the phase alignment between Ф and Ф_

Vout

Ф

WL CS

W2L

Ф

Vin

Page 34: Switched-Capacitor Circuits

– 34 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

CMOS Switch

• Very sensitive to phase alignment between Ф and Ф_

• Subject to threshold mismatch between PMOS and NMOS

• Exact cancellation occurs only for one specific Vin (which one?)

Vout

CS

Vin

Ф

Ф

Same size for

P and N FETs

Page 35: Switched-Capacitor Circuits

– 35 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Differential Signaling

• Signal-independent errors (offset) and even-order distortions cancelled

• Gain error and odd-order nonlinearities remain

Balanced diff. input

Vop

CSp

Vip

M1

Von

CSn

Vin

M2

Ф

Ф

Page 36: Switched-Capacitor Circuits

– 36 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Switch Performance

ch

2

ithDDox

2

ithDDox

on μQ

L

VVVWLμC

L

VVVLW

μC

1R

S

ch

C

Q

2

1ΔV Charge injection:

Bandwidth:S

2ch

Son CL

μQ

CR

1BW

2 2

ch S

S ch

Q L CΔV 1 L≈ =

BW 2 C μQ 2μPerformance FoM:

Technology scaling improves switch performance!

On-resistance:

Page 37: Switched-Capacitor Circuits

– 37 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Leakage in SC Circuits

• I1 – diode leakage (existing in the old days too)

• I2 – sub-threshold drain-source leakage of summing-node switch

• I3 – gate leakage (FN tunneling) of amplifier input transistors

• Leakage currents are highly temperature- and process-dependent; the lower limit of clock frequency is often determined by leakage

Vo(t)

0 t

Ф1 Ф1Ф2 Ф2

Φ1 = “high”, Φ2 = “low”

Vi Vo

C2

C1

A0

Vx

Ф2 Ф2

Ф1 Ф1

VB

I2 I1I3

Page 38: Switched-Capacitor Circuits

– 38 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Gate Leakage

• Direct tunneling through the thin gate oxide

• Short-channel MOSFET behaves increasingly like BJT’s

• Violates the high-impedance assumption of the summing node

GSoxGS VtWLI expexp

Page 39: Switched-Capacitor Circuits

– 39 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Switch Size Optimization

• To minimize switch-induced error voltages, small transistor size,slow turn-off, low source impedance should be used.

• For fast settling (high-speed design), large W/L should be used, and errors will be inevitably large as well.

Guidelines

• Always use minimum channel length for switches as long as leakage allows.

• For a given speed, switch sizes can be optimized w/ simulation.

• Be aware of the limitations of simulators (SPICE etc.) using lumped device models.

Page 40: Switched-Capacitor Circuits

– 40 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonideal Effects of

Op-Amps

Page 41: Switched-Capacitor Circuits

– 41 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Nonideal Effects of Op-Amps

• Offset

• Finite-gain effects (voltage dependent)

• Finite bandwidth and slew rate (measured by settling speed)

Page 42: Switched-Capacitor Circuits

– 42 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Offset Voltage

211 CVnVCnVQ osoi

212 1 CVnVCVQ osoos

1

11

2 1o i

C zV z V z

C z

Vi Vo

C2

C1Ф1

Ф2

Ф2

Ф1 Vos

Vo(t)

0 t

Ф1 Ф1Ф2 Ф2

Vi = 0

1

2

0 1i o o os

CV V n V n V

C

Page 43: Switched-Capacitor Circuits

– 43 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Autozeroing

211 CVCVnVQ ososi

212 CVnVCVQ osoos

2

1

C

C

zV

zVzH

i

o

Vi Vo

C2

C1Ф1

Ф2

Ф2

Ф1

Vos

Ф1

• Also eliminates low-frequency noise, e.g., 1/f noise

• A.k.a. correlated double sampling (CDS)

Page 44: Switched-Capacitor Circuits

– 44 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Chopper Stabilization

Ref: K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise chopper-stabilized differential switched-capacitor filtering technique,” IEEE Journal of Solid-State Circuits, vol. 16, issue 6, pp. 708-715, 1981.

Vi VoA1

Vn2

A2

fC1

-1

A B

Page 45: Switched-Capacitor Circuits

– 45 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Chopper Stabilization

Also eliminates DC offset

voltage of A1

Vi VoA1

Vn2

A2

fC1

-1

A B

|Vi|2

f0

SN(f)

f0

f0

|VA|2

|VB|2

f0

fC

fC

fC

fC

Page 46: Switched-Capacitor Circuits

– 46 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Chopper-Stabilized Differential Op-Amp

Vi+

Vi-

Vo-

Vo+

Ф

Ф

Ф

Ф

Ф

Ф

Ф

Ф

• Integrators/amplifiers can be built using these op-amps

• Some oversampling is useful to facilitate the implementation

Page 47: Switched-Capacitor Circuits

– 47 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Ideal SC Amplifier

1

2CL

CA

C

• Closed-loop gain is determined by the capacitor ratio by design

• But this is assuming X is an ideal summing node (the op-amp is ideal)

Vi ∞

C2

C1Ф1

Ф2

Ф1

VoX

Page 48: Switched-Capacitor Circuits

– 48 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Finite-Gain Effect in SC Amplifier

1 1 1 2

1 22 2 2

2

11

1

oCL

i

V C C C CA

C CV C C C AC A

Vi A

C2

C1Ф1

Ф2

Ф1

VoX

1 1 1 1 2

1 1 1

0i x

x o x

Q V V C C

V V V A

1 2 1 1 2i x o xQ Q V C V C V V C

2 2 1 2 2 2

2 2

x o x

o x

Q V C V V C

V V A

o xV V A

Page 49: Switched-Capacitor Circuits

– 49 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Practical Issues

Page 50: Switched-Capacitor Circuits

– 50 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Analog vs. Digital Supply Lines

Sharing sensitive analog supplies with digital ones is a very bad idea.

Analogcircuits

Digitalcircuits

Pad

Pad

VDD CBP

id=dt

diLV d

L RiV dR RLDDA VVVV

Page 51: Switched-Capacitor Circuits

– 51 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Analog vs. Digital Supply Lines

• Dedicated pads for analog and digital supplies

• On-chip bypass capacitors help (watch ringing)

• Off-chip chokes (large inductors) can stop noise propagation at board level

Analogcircuits

Digitalcircuits

Pad

Pad

VDD CBP

Pad

Pad

id=

Page 52: Switched-Capacitor Circuits

– 52 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

“Supply” Capacitance

• Any summing-node stray capacitance can be a potential coupling path.

• VDD, VSS, substrate, clock line, and digital noises, body effect, etc.

• Fully differential circuits help to reject common-mode noise and coupling.

Cp

…VDD

VSS

M2

M5

M3 M4

M7

M6

Vo

CC

Vi

C2

C1Ф1

Ф2

Ф2

Ф1

M1

S

Y

X

Cgs

Cgd

2C

CVV stray

o

Page 53: Switched-Capacitor Circuits

– 53 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

“Supply” Capacitance

• Avoid connecting bottom-plate parasitics to the summing node

• Avoid crossing other signal lines with the summing node

• Shielding can mitigate substrate noise coupling

n substrate

p+p well

Cbot

C2

Page 54: Switched-Capacitor Circuits

– 54 –

Advanced Analog IC Design Switched-Capacitor Circuits Professor Y. ChiuECE 581 Fall 2009

Clock Generation

• Clock-gated ring structure

• Non-overlapping time determined by inverter delays, sensitive to process, voltage, and temperature (PVT) variations

• DLL is an alternative, often used in high-speed designs

CLK Ф2

Ф1

Ф2

Ф1