EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to...

13
Professor N Cheung, U.C. Berkeley Lecture 4 EE143 F2010 1 Electrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO 2 Al n-type Si SiO 2 V depletion region Majority carriers cannot move easily from the metal into the n-Si, due to a large potential barrier. For the same metal, this potential barrier is smaller for contacts to p-type Si. Al p-type Si V SiO 2 SiO 2 V moderately conducting I

Transcript of EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to...

Page 1: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

1

Electrical Contacts to Si(1) Schottky (rectifying) contacts:

I

V

conducting

non-conducting

SiO2

Al

n-type Si

SiO2

V

depletion region

Majority carriers cannot move easily from the metal into the n-Si, due to a large potential barrier.For the same metal, this potential barrier is smaller for contacts to p-type Si.

Al

p-type Si

V

SiO2SiO2V

moderately conducting

I

Page 2: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

2

(2) Tunneling “ohmic” contacts:

SiO2

Al

n-type Si

SiO2

V

n+ND 1020 cm-3

The depth of the depletion region ( xd ) decreases with increasing dopant concentration.For very high doping, xd is small enough (<10nm) to allow quantum tunneling of carriers.

NA 1020 cm-3

SiO2

Al

p-type Si

SiO2p+

V

I

V

Page 3: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

3

n-channel MOSFET

*sequence of additive and subtractive steps with lateral patterning

Si wafer

startingsubstrate

*planarprocessing

steps+ monolithic integration of

multiple devices=

e.g. oxidationdeposition

ion implantation

e.g. etching e.g. lithography

Monolithic Integration:Planar Technology

Page 4: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

4

Process Flow Example #1

Doped oxide (PSG) deposition (CVD)(blanket addition)

Anchor patterning (litho. & etch)(patterned subtraction)

Poly-Si deposition(blanket addition)

Poly-Si beam patterning (litho. & etch)(patterned subtraction)

Selective etch of PSG(blanket subtraction)

Suspended Beam Array

PSG = PhosphoSilicate Glass(mixture of Phosphorus oxide and Silicon Oxideprepared by CVD)

Page 5: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

5

out-of-plane movement

Process Flow Example #2Hinged Structure

Top view of masksCross-sectional views

3 Lithography steps:

1) Hinge pattern2) Staple anchor pattern3) Staple pattern

Page 6: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

6

N-channel MOSFETSchematic Cross-Sectional View

Layout (Top View)

4 lithography stepsare required:

1. active area2. gate electrode3. contacts4. metal interconnects

Page 7: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

7

1) Thermal oxidation(~10 nm “pad oxide”)

2) Silicon-nitride (Si3N4)deposition by CVD(~40nm)

3) Active-area definition(lithography & etch)

4) Boron ion implantation(“channel stop” implant)

Process Flow Example #3Simple nMOSFET Process Flow

Read Jaeger (textbook) Chap 1 for narrative description

Page 8: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

8

5) Thermal oxidation to growoxide in “field regions”

6) Si3N4 & pad oxideremoval

7) Thermal oxidation(“gate oxide”)

8) Poly-Si deposition by CVD

9) Poly-Si gate-electrodepatterning (litho. & etch)

10) P or As ion implantationto form n+ source and drainregions

Top view of masks

Process Flow Example #3 - cont

DopingConcentration

~1017/cm3

DopingConcentration

~1020/cm3

Page 9: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

9

11) SiO2 CVD

12) Contact holesDefinition (litho. & etch)

13) Al depositionby sputtering

14) Al patterning(litho. & etch)to form interconnects

Top view of masks

Process Flow Example #3 cont.

Page 10: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

Build both NMOS & PMOS transistors on a singlesilicon chip

• N-MOSFETs need a p-type substrate

• P-MOSFETs need an n-type substrate

What extra process steps will be needed ?

Example #4: CMOS Technology

oxide

p-welln-type Si

n+ n+p+p+

Page 11: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

oxiden-type wafer

*Create “p-well”

Grow thick oxide

*Remove thick oxide in transistor areas (“active region”)

Grow gate oxide

Deposit & *pattern poly-Si gate electrodes

*Dope n channel source and drains (need to protect PMOS areas)

Deposit insulating layer (oxide)

*Open contact holes

Deposit and *pattern metal interconnects

*Dope p-channel source and drains (need to protect NMOS areas)

→ At least 3 more masks, ascompared to NMOS process

A Simplified Conceptual CMOS Process to illustrate process flow

p-welln-type Si

n+ n+p+p+

*Remove thick oxide in transistor areas (“active region”)

**A detailed CMOS Process will be presented later in course when we study Process Integration

Page 12: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

Cross-sectional view of wafer

SiO2

n-type Si

1. Well Formation

- grow oxide layer; pattern oxide using p-well mask- implant boron; anneal to form deep p-type region

Additional Process Steps Discussion

boron

Top view of p-well mask

p-well

Page 13: EE143 F2010 Lecture 4 Electrical Contacts to Siee143/fa10/lectures/Lec_03.pdfElectrical Contacts to Si (1) Schottky (rectifying) contacts: I V conducting non-conducting SiO2 Al ...

Professor N Cheung, U.C. Berkeley

Lecture 4EE143 F2010

We must protect the n-channel devices duringthe boron implantation step, and

We must protect the p-channel devices duringthe arsenic implantation step

“Select n-channel”

Example: Select p-channel, use photoresist as boron implantation mask

2. Masking the two different Source/Drain Implants

“Select p-channel”

photoresist

boron

oxide

p-welln-type Si

n+ n+p+p+