EE 5323 Project 16 Bit Sklansky Adder Phase 1 Report

16
EE 5323 Project 16 Bit Sklansky Adder Phase 1 Report Yuan Xu 4139225 [email protected]

description

EE 5323 Project 16 Bit Sklansky Adder Phase 1 Report. Yuan Xu 4139225 [email protected]. Contents. Literature review Schematic Netlist Design Optimization Waveforms of test cases Power consumption at the maximum operating frequency. Literature Review. - PowerPoint PPT Presentation

Transcript of EE 5323 Project 16 Bit Sklansky Adder Phase 1 Report

Page 1: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

EE 5323 Project16 Bit Sklansky Adder

Phase 1 Report

Yuan Xu4139225

[email protected]

Page 2: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Contents

• Literature review• Schematic• Netlist• Design Optimization• Waveforms of test cases• Power consumption at the maximum

operating frequency

Page 3: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Literature Review

• Sklansky adder belongs to tree adder family.• The difference between Sklansky adder and

other tree adders is prefix network.• Compare to other tree adders, Sklansky adder

has minimum logic levels, wiring tracks, but maxinum fanout. Also, it has largest delay at the same condition.

Page 4: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Literature review

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

Structure of 16 bit Sklansky Adder(Black square is dot operator

Grey square is empty dot operatorWhite triangle is buffer)

Page 5: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Reference List

• D.Harris, “ A Taxonomy of Parallel Prefix Networks, Signals ”, Systems and Computers, 2003. Conference Record of the Thirty-Seventh Asilomar Conference on, 2, 2213-2217 Vol.2,2003

• J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electronic Computers, vol. EC-9, pp. 226-231, June 1960.

• J M. Rabaey, A. Chandrakasan, B. Nikolic, “ Digital Integrated Circuits-A Design Perspective (Second Edition)”, Prentice Hall, 2003

Page 6: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Schematic of adder• Precomputation (Generating Propagate value

P and Generate value G). • Gi:i=Ai·Bi

• Pi:i=Ai B⊕ i

Page 7: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Schematic of adder

• Bubble shifted Dot operator

Page 8: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Schematic of adder• Empty empty dot operator

Page 9: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Schematic of adder• Bubble shifted empty dot operator

Page 10: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Schematic of adder• Overall view of adder

Page 11: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

HSPICE netlist see attached file

• Sizing:• NMOS: L=50nm, W=90nm• PMOS: L=50nm, W=135nm• Temperature: 25°C

Page 12: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Design Optimization

• Sizing the gate to minimum size (90nm) can reduce area and power

• By using bubble shifting, we save totally 28 inverters, and 4 inverters on the critical path

• Adding the buffer can effectively reduce delay. Setting stage=1, fanout=4

Page 13: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Waveforms of test cases

• Worst case: For Sklansky adder, the worst case happens when inputs are 7FFF+0001. Since G will propagate from A_0 to S_15 which is the critical path.

Page 14: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Waveforms of test cases• Worst case 7FFF+0001• A_0-A_15 B_0-B_15 Cout,S_0-S_15,

Page 15: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Waveforms of test cases• Other cases( FFFF+0001, 7FFF+0001, 3FFF+0001, 1FFF+0001, 0FFF+0001, 07FF+0001,• 03FF+0001• A_0-A_15 B_0-B_15 Cout,S_0-S_15

Page 16: EE 5323 Project 16 Bit  Sklansky  Adder Phase 1 Report

Power consumption at the maxinum operating frequency, V=1.1V

• Worst case Delay= 4.11E-10 S• Ptotal=4.50E-05W

• Pmax=1.64E-03W