ECEN 301Discussion #14 – AC Circuit Analysis1 DateDayClass No. TitleChaptersHW Due date Lab Due...

41
ECEN 301 Discussion #14 – AC Circuit Analysis 1 Date Day Clas s No. Title Chapters HW Due date Lab Due date Exam 20 Oct Mon 14 AC Circuit Analysis 4.5 NO LAB 21 Oct Tue NO LAB 22 Oct Wed 15 Transient Response 1 st Order Circuits 5.4 23 Oct Thu 24 Oct Fri Recitation HW 6 25 Oct Sat 26 Oct Sun 27 Mon 16 Transient 5.5 Schedule…
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    2

Transcript of ECEN 301Discussion #14 – AC Circuit Analysis1 DateDayClass No. TitleChaptersHW Due date Lab Due...

Discussion #14 – AC Circuit AnalysisECEN 301 1

Date Day ClassNo.

Title Chapters HWDue date

LabDue date

Exam

20 Oct Mon 14 AC Circuit Analysis 4.5NO LAB

21 Oct Tue       NO LAB

22 Oct Wed 15 Transient Response1st Order Circuits

5.4    

23 Oct Thu            

24 Oct Fri   Recitation  HW 6    

25 Oct Sat      

26 Oct Sun            

27 Oct Mon 16 Transient Response2nd Order Circuits

5.5

LAB 528 Oct Tue Exam 1

Schedule…

Discussion #14 – AC Circuit AnalysisECEN 301 2

Obedience = HappinessMosiah 2:41  41 And moreover, I would desire that ye should consider on the

blessed and happy state of those that keep the commandments of God. For behold, they are blessed in all things, both temporal and spiritual; and if they hold out faithful to the end they are received into heaven, that thereby they may dwell with God in a state of never-ending happiness. O remember, remember that these things are true; for the Lord God hath spoken it.

Discussion #14 – AC Circuit AnalysisECEN 301 3

Lecture 14 – AC Circuit Analysis

Phasors allow the use of familiar network analysis

Discussion #14 – AC Circuit AnalysisECEN 301 4

RLC Circuits

Linear passive circuit elements: resistors (R), inductors (L), and capacitors (C) (a.k.a. RLC circuits)Assume RLC circuit sources are sinusoidal

ZR1

ZR2

Vs(jω)

+–

Ix

ZL

ZCIa(jω) Ib(jω)

R1

R2

ix

L

Cia(t) ib(t)

vs(t)+–~

Time domain Frequency (phasor) domain

Discussion #14 – AC Circuit AnalysisECEN 301 5

RLC Circuits - Series Impedances Series Rule: two or more circuit elements are said to be in

series if the current from one element exclusively flows into the next element. Impedances in series add the same way resistors in series add

N

nnEQ ZZ

1

ZEQ

Z1

∙ ∙ ∙ ∙ ∙ ∙Z2 Z3

Zn ZN

Discussion #14 – AC Circuit AnalysisECEN 301 6

RLC Circuits - Parallel Impedances Parallel Rule: two or more circuit elements are said to be in

parallel if the elements share the same terminals Impedances in parallel add the same way resistors in parallel add

N

EQNEQ

ZZZZ

ZZZZZZ 1111

111111

321

321

Z1 Z2 Z3 Zn ZN ZEQ

Discussion #14 – AC Circuit AnalysisECEN 301 7

RLC CircuitsAC Circuit Analysis

1. Identify the AC sources and note the excitation frequency (ω)

2. Convert all sources to the phasor domain3. Represent each circuit element by its impedance4. Solve the resulting phasor circuit using network

analysis methods5. Convert from the phasor domain back to the time

domain

Discussion #14 – AC Circuit AnalysisECEN 301 8

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

R1

R2 C

is(t)

vs(t)+–~

Discussion #14 – AC Circuit AnalysisECEN 301 9

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

R1

R2 C

is(t)

vs(t)+–~

1. Note frequencies of AC sources

Only one AC source - ω = 377 rad/s

Discussion #14 – AC Circuit AnalysisECEN 301 10

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

R1

R2 C

is(t)

vs(t)+–~

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

1. Note frequencies of AC sources2. Convert to phasor domain

Discussion #14 – AC Circuit AnalysisECEN 301 11

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

11 RZ

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

1. Note frequencies of AC sources2. Convert to phasor domain3. Represent each element by its impedance

010010)(

)cos(10)(j

s

s

ejV

ttv

22 RZ Cj

Z1

3

Discussion #14 – AC Circuit AnalysisECEN 301 12

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

32 ||

)()(

:a Nodeat KCL

ZZ

jVjI a

s

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

1. Note frequencies of AC sources2. Convert to phasor domain3. Represent each element by its impedance4. Solve using network analysis

• Use node voltage and Ohm’s law

Node a

1

1

1

)()(

)()(

:Law sOhm'

Z

jVjV

Z

jVjI

as

s

Discussion #14 – AC Circuit AnalysisECEN 301 13

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

4. Solve using network analysis• Use node voltage and Ohm’s lawNode a

21

2121

12

2

12

2

1321

321

)(

11

1

)/1(

)/1(

1

||

1

||

RR

RRRCRjV

RR

CRjV

RCjR

CjRV

ZZZV

Z

V

ZZ

V

Z

VV

a

a

a

as

as a

Discussion #14 – AC Circuit AnalysisECEN 301 14

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

4. Solve using network analysis• Use node voltage and Ohm’s lawNode a

)9852.0(421.4

)200()50()200)(50)(10)(377(

)200)(50(

50

010

)(

)(

4

2121

21

1

21

2121

1

j

RRRCRj

RR

R

VV

RR

RRRCRjV

Z

V

sa

as

Discussion #14 – AC Circuit AnalysisECEN 301 15

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

4. Solve using network analysis• Use node voltage and Ohm’s lawNode a

4537.01681.050

)9852.(421.4010

)()()(

1

Z

jVjVjI as

s

Discussion #14 – AC Circuit AnalysisECEN 301 16

RLC Circuits Example1: find is(t)

vs(t) = 10cos(ωt), ω = 377 rad/s R1 = 50Ω, R2 = 200Ω, C = 100uF

Z1 = R1

Z2=R2 Z3=1/jωC

Is(jω)Vs=10ej0

+–~

4. Solve using network analysis• Use node voltage and Ohm’s law

5. Convert to time domainNode a

)4537.0377cos(1681.0)(

4537.01681.0)(

tti

jI

s

s

Discussion #14 – AC Circuit AnalysisECEN 301 17

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Rs

R1

is(t)

vs(t)+–~

L2

R2

L1

i1(t) i2(t)

Discussion #14 – AC Circuit AnalysisECEN 301 18

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Rs

R1

is(t)

vs(t)+–~

L2

R2

L1

i1(t) i2(t)

1. Note frequencies of AC sources

Only one AC source - ω = 377 rad/s

Discussion #14 – AC Circuit AnalysisECEN 301 19

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Rs

R1

is(t)

vs(t)+–~

L2

R2

L1

i1(t) i2(t)

Zs = Rs

ZR1=R1ZR2=R2

Is(jω)Vs=155ej0

+–~

ZL1=jωL1ZL2=jωL2

I1(jω) I2(jω)

1. Note frequencies of AC sources2. Convert to phasor domain

Discussion #14 – AC Circuit AnalysisECEN 301 20

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1

= 0.1H, L2 = 20mH Zs = Rs

ZR1=R1ZR2=R2

Is(jω)Vs=155ej0

+–~

ZL1=jωL1ZL2=jωL2

I1(jω) I2(jω)

1. Note frequencies of AC sources2. Convert to phasor domain3. Represent each element by its impedance

211 RZR

01550155)(

)cos(155)(j

s

s

ejV

ttv

2.022 RZR

7.37

)1.0)(377(11

j

j

LjZL

54.7

)02.0)(377(22

j

j

LjZL

Discussion #14 – AC Circuit AnalysisECEN 301 21

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Zs = Rs

Z1=ZR1+ZL1

Z2=ZR2+ZL2

Is(jω)Vs=155ej0

+–~

I1(jω)I2(jω)

4. Solve using network analysis• Ohm’s law

52.175.37

7.372111

j

ZZZ LR

54.154.7

54.72.0222

j

ZZZ LR

Discussion #14 – AC Circuit AnalysisECEN 301 22

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Zs

Z1 Z2

Is(jω)Vs=155ej0

+–~

I1(jω)

I2(jω)

4. Solve using network analysis• KCL

5.0

54.154.7

52.175.37

2

1

sZ

Z

Z

VjV

Z

jV

ZZZjV

Z

jVjV

Z

jV

Z

jV

jIjIjI

s

s

s

s

s

s

079.01.154)(

)(111)(

)()()()(

0)()()(

21

21

21

V(jω)

Discussion #14 – AC Circuit AnalysisECEN 301 23

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

465.144.20

)()(

22

Z

jVjI

Zs

Z1 Z2

Is(jω)Vs=155ej0

+–~

I1(jω)

I2(jω)

4. Solve using network analysis• Ohm’s Law

5.0

54.154.7

52.175.37

2

1

sZ

Z

Z

439.1083.4

)()(

11

Z

jVjI

V(jω)

Discussion #14 – AC Circuit AnalysisECEN 301 24

RLC Circuits Example2: find i1 and i2

vs(t) = 155cos(ωt)V, ω = 377 rads/s, Rs = 0.5Ω, R1 = 2Ω, R2 = 0.2Ω, L1 = 0.1H, L2 = 20mH

Atti

jI

)465.1377cos(44.20)(

465.144.20)(

2

2

Zs

Z1 Z2

Is(jω)Vs=155ej0

+–~

I1(jω)

I2(jω)

5. Convert to Time domain

Atti

jI

)439.1377cos(083.4)(

439.1083.4)(

1

1

V(jω)

Discussion #14 – AC Circuit AnalysisECEN 301 25

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+–~

R2

L

C

ia(t) ib(t)

Discussion #14 – AC Circuit AnalysisECEN 301 26

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+–~

R2

L

C

ia(t) ib(t)

1. Note frequencies of AC sources

Only one AC source - ω = 1500 rad/s

Discussion #14 – AC Circuit AnalysisECEN 301 27

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+–~

R2

L

C

ia(t) ib(t)

1. Note frequencies of AC sources2. Convert to phasor domain

ZR1

Vs(jω)+–~

ZR2

Ia(jω)

ZL

ZC

Ib(jω)

Discussion #14 – AC Circuit AnalysisECEN 301 28

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

ZR1

Vs(jω)+–~

ZR2

Ia(jω)

ZL

ZC

Ib(jω)

1. Note frequencies of AC sources2. Convert to phasor domain3. Represent each element by its impedance

10011 RZR

015015)(

)cos(15)(j

s

s

ejV

ttv

7522 RZR

750

)5.0)(1500(

j

j

LjZL

667

)10)(1500(/1

/16

j

j

CjZC

Discussion #14 – AC Circuit AnalysisECEN 301 29

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

0)(

0)(

0)()()(

:bat KVL

2

2

2

RLCbCa

RbLbCba

RLC

ZZZIZI

ZIZIZII

jVjVjV

+ZR1–

Vs(jω)+–~

+ZR2

–Ia(jω)

+ZL–

+ZC

– Ib(jω)

667

750

75

100

2

1

jZ

jZ

Z

Z

C

L

R

R

4. Solve using network analysis• Mesh current

sCbCRa

sCbaRa

CRs

VZIZZI

VZIIZI

jVjVjV

)(

)(

0)()()(

:aat KVL

1

1

1

Discussion #14 – AC Circuit AnalysisECEN 301 30

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

0)8375()667( jIjI ba

+ZR1–

Vs(jω)+–~

+ZR2

–Ia(jω)

+ZL–

+ZC

– Ib(jω)

AI

AI

49.1019.0

917.00032.0

2

1

4. Solve using network analysis• Mesh current

15)667()667100( jIjI ba

Discussion #14 – AC Circuit AnalysisECEN 301 31

RLC Circuits Example3: find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

+ZR1–

Vs(jω)+–~

+ZR2

–Ia(jω)

+ZL–

+ZC

– Ib(jω) mAtti

AI

)917.01500cos(2.3)(

917.00032.0

1

1

5. Convert to Time domain

mAtti

AI

)49.11500cos(19)(

49.1019.0

2

2

Discussion #14 – AC Circuit AnalysisECEN 301 32

AC Equivalent CircuitsThévenin and Norton equivalent circuits apply in AC analysis

Equivalent voltage/current will be complex and frequency dependent

Load

+V–

I

Source

VT(jω)+–

ZT

Load

+

V

I

IN(jω)

ZN Load

+

V

I

Norton EquivalentThévenin Equivalent

Discussion #14 – AC Circuit AnalysisECEN 301 33

AC Equivalent CircuitsComputation of Thévenin and Norton Impedances:

1. Remove the load (open circuit at load terminal)2. Zero all independent sources

Voltage sources short circuit (v = 0) Current sources open circuit (i = 0)

3. Compute equivalent impedance across load terminals (with load removed)

NB: same procedure as equivalent resistance

ZL

Z1

Vs(jω)

+–

Z3

Z2

Z4

a

b

Z1 Z3

Z2

Z4

a

b

ZT

Discussion #14 – AC Circuit AnalysisECEN 301 34

AC Equivalent CircuitsComputing Thévenin voltage:

1. Remove the load (open circuit at load terminals)2. Define the open-circuit voltage (Voc) across the load terminals3. Chose a network analysis method to find Voc

node, mesh, superposition, etc.

4. Thévenin voltage VT = Voc

Z1

Vs(jω)

+–

Z3

Z2

Z4

a

b

Z1

Vs(jω)

+–

Z3

Z2

Z4

a

b

+VT

NB: same procedure as equivalent resistance

Discussion #14 – AC Circuit AnalysisECEN 301 35

AC Equivalent CircuitsComputing Norton current:

1. Replace the load with a short circuit2. Define the short-circuit current (Isc) across the load terminals3. Chose a network analysis method to find Isc

node, mesh, superposition, etc.

4. Norton current IN = Isc

Z1

Vs(jω)

+–

Z3

Z2

Z4

a

b

Z1

Vs(jω)

+–

Z3

Z2

Z4

a

b

IN

NB: same procedure as equivalent resistance

Discussion #14 – AC Circuit AnalysisECEN 301 36

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+–~ RL

L

C +vL

Discussion #14 – AC Circuit AnalysisECEN 301 37

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+–~ RL

L

C +vL

1. Note frequencies of AC sources

Only one AC source - ω = 103 rad/s

Discussion #14 – AC Circuit AnalysisECEN 301 38

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+–~ RL

L

C +vL

1. Note frequencies of AC sources2. Convert to phasor domain

Zs

ZLD

+–~

ZL

ZC

Vs(jω)

Discussion #14 – AC Circuit AnalysisECEN 301 39

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

1. Note frequencies of AC sources2. Convert to phasor domain3. Find ZT

• Remove load & zero sources

Zs

ZL

ZC

9182.033.82

414.65501

)/1()(

)/1)((

||

2

jLC

LjR

CjLj

CjLjR

ZZZZ

S

S

LCST

Discussion #14 – AC Circuit AnalysisECEN 301 40

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

9182.033.82 TZ

1. Note frequencies of AC sources2. Convert to phasor domain3. Find ZT

• Remove load & zero sources4. Find VT(jω)

• Remove load

Zs

+–~

ZL

ZC

Vs(jω)+

VT(jω)–

NB: Since no current flows in the circuit once the load is removed:

ST VV

Discussion #14 – AC Circuit AnalysisECEN 301 41

AC Equivalent Circuits Example4: find the Thévenin equivalent

ω = 103 rads/s, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

9182.033.82 TZST VV

Zs

ZLD

+–~

ZL

ZC

Vs(jω)

ZT

+–~

VT(jω)

ZLD