ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03...

72
ECE 2221 SIGNALS AND SYSTEMS ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot 1

Transcript of ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03...

Page 1: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

E C E 2 2 2 1 S I G N A L S A N D S Y S T E M S

ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot

1

Page 2: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Course Objectives

Dr. Sigit PW JarotECE 2221 Signals and Systems 2

To provide an analysis skill of the continuous‐time signals and systems as reflected to their roles in engineering 

practice. 

To expose students to both the time‐domain and frequency‐domain methods of analyzing signals and 

systems. 

To illustrate the potential applications of this course as a Pre‐requisite course to communication engineering and principles, digital signal processing and control system. 

Page 3: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

OBE (Outcome Based Education)Learning Outcomes

Dr. Sigit PW JarotECE 2221 Signals and Systems 3

Classify, characterize and conduct basic of signals and systems.

Analyze continuous‐time signals and systems in time domain using convolution.

Analyze continuous‐time signals and systems in frequency domain using Laplace transform.

Analyze continuous‐time signals and systems in frequency domain using Fourier series and Fourier transform.

Acquire introductory‐level knowledge of discrete‐time signals and systems, and sampling theory.

Work in group to perform basic simulation of signals and systems analysis.

After completion of this course the students will be able to:

Page 4: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Course Synopsis

Dr. Sigit PW JarotECE 2221 Signals and Systems 4

Introduction to Signals

Introduction to Systems

Time‐Domain Analysis of Continuous‐Time Systems

Frequency‐Domain System Analysis: the Laplace Transform

MID‐TERM Examination

Signals Analysis using the Fourier Series

Signals Analysis using the Fourier Transform

Introduction to Discrete Time Signals and Systems Analysis

FINAL Examination

Page 5: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Outline

ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot

5

Concept of system and system classification Linear time‐invariant continuous‐time systems Linearity and time‐invariance Causality and stability

System Representation Systems represented by differential equations  Convolution integral

System interconnection

Page 6: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

System Concept

ECE 2221 Signals and Systems, Sem 3 2010/2011, Dr. Sigit Jarot

6

System is a mathematical transformation of an input signal (or signals) into an output signal (or signals)

SIGNAL A set of data or information. A function or sequence of values that represents information. A function of one or more variables (e.g. time, frequency, space,..) that conveys information on the nature of a physical phenomenon.

SYSTEM A system is an entity that processes a set of signals (inputs) to yield another sets of signals (outputs)

SystemInputSignal

OutputSignal

Page 7: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Response of a Linear System

A system’s output for t ≥ 0 is the result of 2 independent causes:1. The initial condition at t = 0 zero‐input response2. The input x(t) for t ≥ 0 zero‐state response

Decomposition property:

Total response = zero‐input response + zero‐state response

x(t) y(t) +y0(t) x(t) ys(t)=

t

C tdxC

tRxvty0

0)(1)()0()(

zero‐input response  zero‐state response

Page 8: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

The importance of Impulse Response h(t)

Zero‐state response assumes that the system is in “rest” state, i.e. all internal system variables are zero.

Deriving and understanding zero‐state response depends on knowing the impulse response h(t) to a system.

Any input x(t) can be broken into many narrow rectangular pulses. Each pulse produces a system response.

Since the system is linear and time invariant, the system response to x(t) is the sum of its responses to all the impulse components.

h(t) is the system response to the rectangular pulse at t=0 as the pulse width approaches zero.

Page 9: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Zero‐state Response (1)

We now consider how to determine the system response y(t) to an input x(t) when system is in zero state.

Define a pulse p(t) of unit height and width Δτ at t=0 .

Input x(t) can be represented as sum of narrow rectangular pulses.

The pulse at t=nΔτ has a height x(t)=x(nΔτ) . This can be expressed as x(nΔτ)p (t-nΔτ). Therefore x(t) is the sum of all [x(nΔτ)/ Δτ] . such 

pulses, i.e, 

)()(lim

)()(lim)(

0

0

ntpnx

ntpnxtx

Page 10: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Zero‐state Response (2)

The term [x(nΔτ)/ Δτ]p(t-nΔτ) represents a pulse p(t-nΔτ) with height x(nΔτ).

As Δτ 0, height of strip  ∞, but area remain x(nΔτ) and

)()()()(

ntnxntpnx

)()(lim)(

0ntnxtx

Page 11: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Zero‐state Response (3)

Page 12: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Zero‐state Response (4)

x(t) y(t)

Page 13: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Zero‐state Response (5)

Therefore,

Knowing  h(t), we can determine the response y(t) to any input  x(t).  Observe the all‐pervasive nature of the system’s characteristic modes, which 

determines the impulse response of the system. 

LTI Systemh(t)x(t) y(t)

y(t) = x(t) * h(t)

)()(lim)(

0nthnxty

dthxty )()()(

dthxty )()()(

Page 14: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

How to determine the unit impulse response h(t) (1)

Given that a system is specified by the following differential equation, determine its unit impulse response h(t).

Remember the general system equation:

It can be shown that the impulse response h(t) is given by:

where u(t) is the unit step function, and yn(t) is a linear combination of the characteristic modes of the system.

)()()()( txDPtyDQ

)()]()([)( tutyDPth n

tN

ttn

Necececty ......)( 2121

dtdxty

dtdy

dtyd

)(232

2

Page 15: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

How to determine the unit impulse response h(t)? (2)

The constants ci are determined by the following initial conditions:

Note yn(k)(0) is the kth derivative of yn(t) at t=0.

The above is true if M, the order of P(D) is less the N, the order of Q(D)(which is generally the case for most stable systems).

0)0(....)0()0()0()2(

N

nnnn yyyy

1)0()1(

N

ny

Page 16: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Example

Find the unit impulse response of a systems specified by the equation :

)()()23( 2 tDxtyDD

Page 17: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Exercise 1

Find the unit impulse response of a systems specified by the equation :

)()5()()34( 2 txDtyDD

Page 18: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Exercise

Find the unit impulse response of a systems specified by the equation : )()5()()34( 2 txDtyDD

Page 19: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Exercise 2

Find the unit impulse response of a systems specified by the equation : )()117()()65( 22 txDDtyDD

Page 20: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Exercise Find the unit impulse response of a systems specified by the equation :

)()117()()65( 22 txDDtyDD

Page 21: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

The Convolution Integral

The derived integral equation occurs frequently in physical sciences, engineering, and mathematics.

It is given the name: the convolution integral. The convolution integral of two function x1(t) and x2(t) is denoted symbolically as x1(t)* x2(t)

And is defined as 

Note that the convolution operator is linear, i.e. it obeys the principle of superposition. 

dtxxtxtx )()()()( 2121

Page 22: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Properties of Convolution (1)

Commutative Property (order of operands does not matter):

Associative Property (order of operator does not matter):

Distributive Property:

Page 23: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Properties of Convolution (2)

Shift Property: if

then

also

Impulse Property Convolution of a function x(t) with a unit impulse results in the function x(t). 

Page 24: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Properties of Convolution (3)

Width Property: Duration of x1(t)=T1 , and duration of x2(t)=T2 , then duration of x1(t)*x2(t)=T1 + T2

Causality Property:

Page 25: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution Table (1)

Use table to find convolution results easily:

Page 26: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution Table (2)

Page 27: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution Table (3)

Page 28: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

When the input is complex … 

What happens if input x(t) is not real, but is complex? If x(t) = xr(t)+ jxi(t) , where xr(t) and xi(t) are the real and imaginary part of x(t) , then

That is, we can consider the convolution on the real and imaginary part separately.

)()()()()()(

)()()()(

tjytytxtjhtxth

tjxtxthty

ir

ir

ir

Page 29: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution usingGraphical Method

ECE  2 2 2 1   S I GNA L S  AND   SYST EMS

Page 30: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

The Convolution Integral

The derived integral equation occurs frequently in physical sciences, engineering, and mathematics.

It is given the name: the convolution integral. The convolution integral of two function x1(t) and x2(t) is denoted symbolically as x1(t)* x2(t)

And is defined as 

Note that the convolution operator is linear, i.e. it obeys the principle of superposition. 

dtxxtxtx )()()()( 2121

Page 31: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution Integral

The convolution integral of two function x1(t) and x2(t) is denoted symbolically as x1(t)* x2(t)

And is defined as

System output (i.e. zero‐state response) is found by convolvinginput x(t) with system impulse response h(t) .  

dtxxtxtx )()()()( 2121

LTI Systemh(t)x(t) y(t)

y(t) = x(t) * h(t)

dthxty )()()(

Page 32: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution Integral

dthxthtxty )()()()()(

The output is the sum/integration of scaled and shifted impulse responses

The definition of the convolution integral in LTI systems :

Page 33: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Demonstration of convolution sum

-4 -2 0 2 4 6 8 10 120

2

4

6input function,x

point number n

-4 -2 0 2 4 6 8 10 120

1

2

3

4system function,h

point number n

Page 34: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

convolution sum for n = 0

m

]m0[h]m[x]0[y

For n = 0:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 0

point number m

0 5 100

0.5

1

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

= 0

Page 35: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 1

point number m

0 5 100

0.5

1

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 1

m

]m1[h]m[x]1[y

For n = 1:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 0

Page 36: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 2

point number m

0 5 100

0.5

1

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 2

m

]m2[h]m[x]2[y

For n = 2:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 1

Page 37: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 3

point number m

0 5 100

1

2

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 3

m

]m3[h]m[x]3[y

For n = 3:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 4

Page 38: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 4

point number m

0 5 100

2

4

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 4

m

]m4[h]m[x]4[y

For n = 4:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 10

Page 39: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 5

point number m

0 5 100

5

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 5

m

]m5[h]m[x]5[y

For n = 5:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 20

Page 40: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 6

point number m

0 5 100

5

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 6

m

]m6[h]m[x]6[y

For n = 6:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 30

Page 41: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 7

point number m

0 5 100

5

10

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 7

m

]m7[h]m[x]7[y

For n = 7:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 40

Page 42: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 8

point number m

0 5 100

10

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 8

m

]m8[h]m[x]8[y

For n = 8:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 43

Page 43: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 9

point number m

0 5 100

10

20

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 9

m

]m9[h]m[x]9[y

For n = 9:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 38

Page 44: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 1

0

point number m

0 5 100

10

20

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 10

m

]m10[h]m[x]10[y

For n = 10:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 24

Page 45: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

0 5 100

5

point number m

inpu

t-fun

ctio

n,x[

m]

0 5 100

2

4

h[n-

m] f

or n

= 1

1

point number m

0 5 100

0.5

1

prod

uct

point number m0 5 10

0

50Convolution Sum

point number n

convolution sum for n = 11

m

]m11[h]m[x]11[y

For n = 11:

m

]mn[h]m[x]n[y

The value of the convolution sum is the sum of the product terms over m:

= 0

Page 46: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Animated Illustrations of Convolution Integral46

http://www.jhu.edu/signals/convolve/

Page 47: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Graphical MethodStep‐by‐step Procedure

dthxthtxty )()()()()(

1. Choose one signal to be x(t), the other to be h(t) ; draw them both in  axis

2. ROTATE one of the signal h() about the  axis3. SHIFT the rotated signal h(-) to the right by t

4. MULTIPLY x() with the flipped/shifted version of signal h()

5. Calculate the area under this product using correct limit of INTEGRATION

6. Step 4‐5 produces the equation x(t)*h(t) over specified region

7. Repeat step 4‐5 for all regions of interest 

123

4

5

Page 48: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

ExampleConvolution using Graphical Method

Convolve the following two functions:

Replace t with in f(t) and g(t) Choose to flip and slide g() since it is simpler and symmetric Functions overlap like this:

3

2

f()2

‐2 + t 2 + t

g(t‐)

*2

2

t

f(t)

‐2 2

3

t

g(t)

Page 49: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

ExampleConvolution using Graphical Method

Convolution can be divided into 5 partsI. t < ‐2

Two functions do not overlap Area under the product of the

functions is zero

II. ‐2  t < 0 Part of g(t) overlaps part of f(t) Area under the product of the

functions is

62

3262

2322

3)2(3222

0

22

0

tttd

tt

3

2

f()2

‐2 + t 2 + t

g(t‐)

3

2

f()2

‐2 + t 2 + t

g(t‐)

Page 50: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

ExampleConvolution using Graphical Method

III. 0  t < 2 Here, g(t) completely overlaps f(t) Area under the product is just

IV. 2  t < 4 Part of g(t) and f(t) overlap Calculated similarly to ‐2  t < 0

V. t 4 g(t) and f(t) do not overlap Area under their product is zero

6 22

3 232

0

22

0

d

3

2

f()2

‐2 + t 2 + t

g(t‐)

3

2

f()2

‐2 + t 2 + t

g(t‐)

Page 51: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

ExampleConvolution using Graphical Method

Result of convolution (5 intervals of interest):

4for 0

42for 24 1223

20for 6

02for 623

2for 0

)(*)()(2

2

t

ttt

t

tt

t

tgtfty

t

y(t)

0 2 4‐2

6

No overlap

Partial overlap

Complete overlap

Partial overlap

No overlap

Page 52: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution using graphical method (1)

Determine graphically y(t)=x(t)* h(t) for x(t)=e-t u(t) and h(t)=e-2t u(t) . 

Remember: variable of integration is τ, not t . 

Page 53: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Convolution using graphical method (2)

Page 54: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW
Page 55: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW
Page 56: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 56

Time‐Domain Representations of LTI Systems

2.4 The Convolution Integral1. A continuous‐time signal can be expressed as a weighted superposition of time‐shifted impulses.

-x(t) x( ) (t - )d

(2.10) 

The sifting property of the impulse !

2. Impulse response of LTI system H: LTI systemH

Input x(t) Output y(t)

Output:

y t H x t H x t d

-y(t) x( )H{ (t - )}d

(2.10) 

Linearity property

3. h(t) = H{ (t)}  impulse response of the LTI system HIf the system is also time invariant, then

H{ (t - )} h(t - ) (2.11) A time‐shifted impulse generates a time‐shifted impulse response 

output

Fig. 2.9.-y(t) x( )h(t )d

(2.12) 

Page 57: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 57

Time‐Domain Representations of LTI Systems

Convolution integral:

x t h t x h t d

2.5 Convolution Integral Evaluation Procedure1. Convolution integral:

-y(t) x( )h(t )d

(2.13) 

2. Define the intermediate signal:

tw x h t = independent variable, 

t = constant

h (t ) = h ( ( t)) is a reflected and shifted (by  t) version of h().

3. Output:

t-

y(t) w ( )d (2.14) The time shift t determines the time at which we evaluate the output of 

the system.

Page 58: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 58

Time‐Domain Representations of LTI Systems

Procedure 2.2: Reflect and Shift Convolution Integral Evaluation1. Graph both x() and h(t ) as a function of the independent variable  . Toobtain h(t ), reflect h() about  = 0 to obtain h( ) and then h(  ) shift by t.

2. Begin with the shift t large and negative. That is, shift h(  ) to the far left onthe time axis.

3. Write the mathematical representation for the intermediate signal wt ().4. Increase the shift t (i.e., move h(t ) toward the right) until the mathematicalrepresentation for wt () changes. The value of t at which the change occursdefines the end of the current set and the beginning of a new set.

5. Let t be in the new set. Repeat step 3 and 4 until all sets of shifts t and thecorresponding mathematical representations for wt () are identified. Thisusually implies increasing t to a very large positive number.

6. For each sets of shifts t, integrate wt () from  =  to  =  to obtain y(t).  

Page 59: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 59

Time‐Domain Representations of LTI Systems

Figure 2.10  (p. 117)Input signal and LTI system impulse response for Example 2.6.

Example 2.6 Reflect‐and‐shift Convolution Evaluation

Given  1 3x t u t u t 2h t u t u t and as depicted in Fig. 2‐10, Evaluate the convolution integral y(t) = x(t)  h(t).

Page 60: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 60

Time‐Domain Representations of LTI Systems

Figure 2.10  (p. 117)Input signal and LTI system impulse response for Example 2.6.

<Sol.>1. Graph of x() and h(t ): Fig. 2.11 (a).2. Intervals of time shifts: Four intervals

1’st interval: t < 12’nd interval: 1 ≤ t < 3 3’rd interval: 3 ≤ t < 54th interval: 5 ≤ t

3. First interval of time shifts: t < 1

1, 10, otherwiset

tw

Fig. 2.11 (b).

4. Second interval of time shifts: 1 ≤ t < 3wt() = 0

Page 61: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 61

Time‐Domain Representations of LTI Systems

Figure 2.11  (p. 118)Evaluation of the convolution integral for Example 2.6.  (a) The input x() depicted above the reflected and time‐shifted impulse response.  (b) The product signal wt() for 1  t < 3.  (c) The product signal wt() for 3  t < 5.  (d) The system output y(t).

Page 62: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 62

Time‐Domain Representations of LTI Systems

5. Third interval: 3 ≤ t < 5

1, 2 30, otherwiset

tw

Fig. 2.11 (c).

6. Fourth interval: 5 ≤ t wt() = 0

7. Convolution integral: 1) For t < 1 and t 5: y(t) = 02) For second interval 1 ≤ t < 3, y(t) = t 13) For third interval 3 ≤ t < 5, y(t) = 3  (t 2)

0, 11, 1 3

5 , 3 50, 5

tt t

y tt t

t

Page 63: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Example 2.7 RC Circuit OutputFor the RC circuit in Fig. 2.12, assume that the circuit’s time constant is RC = 1 sec. Ex. 1.21shows that the impulse response of this circuit is h(t) = e t u(t).Use convolution to determine the capacitor voltage, y(t), resulting from an input voltage x(t) = u(t)  u(t 2).

Figure 2.12  (p. 119)RC circuit system with the voltage source x(t) as input and the voltage measured across the capacitor y(t), 

as output.

Page 64: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 64

Time‐Domain Representations of LTI Systems

<Sol.>1. Graph of x() and h(t ): Fig. 2.13 (a).

2. Intervals of time shifts: Three intervals

1’st interval: t < 02’nd interval: 0 ≤ t < 2 3’rd interval: 2 ≤ t

RC circuit is LTI system, so y(t) = x(t)  h(t).

1, 0 20, otherwise

x

and

3. First interval of time shifts: t < 04. Second interval of time shifts: 0 ≤ t < 2

wt() = 0

For t > 0, , 00, otherwise

t

te tw

Fig. 2.13 (b).

5. Third interval: 2 ≤ t

, 0 20, otherwise

t

tew

Fig. 2.13 (c).

,0, otherwise

tt e th t e u t

Page 65: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 65

Time‐Domain Representations of LTI Systems

6. Convolution integral: 1) For t < 0: y(t) = 02) For second interval 0 ≤ t < 2:

3) For third interval 2 ≤ t:

001

t tt t ty t e d e e e

2 2 2

001t t ty t e d e e e e

2

0, 01 , 0 2

1 , 2

t

t

ty t e t

e e t

Fig. 2.13 (d).

Page 66: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 66

Time‐Domain Representations of LTI SystemsFigure 2.13  (p. 120)

Evaluation of the convolution integral for Example 2.7.  (a) The input x() superimposed over the reflected and time‐shifted impulse response h(t – ), depicted as a function of .  (b) The 

product signal wt() for 0 t < 2.  (c) The product signal wt() for t 2.  (d) The system output y(t).

Page 67: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 67

Time‐Domain Representations of LTI Systems

Example 2.8 Another Reflect‐and‐Shift Convolution EvaluationSuppose that the input x(t) and impulse response h(t) of an LTI system are, respectively, given by 

1 1 3x t t u t u t and 1 2 2h t u t u t

Find the output of the system.

Page 68: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 68

Time‐Domain Representations of LTI Systems

<Sol.>1. Graph of x() and h(t ): Fig. 2.14 (a).2. Intervals of time shifts: Five intervals

1’st interval: t < 02’nd interval: 0 ≤ t < 2 3’rd interval: 2 ≤ t < 34th interval: 3 ≤ t < 55th interval: t  5

3. First interval of time shifts: t < 0 wt() = 0

4. Second interval of time shifts: 0 ≤ t < 2

1, 1 1

0, otherwiset

tw

Fig. 2.14 (b).

5. Third interval of time shifts: 2 ≤ t < 3

1, 1 3

0, otherwisetw

Fig. 2.14 (c).

6. Fourth interval of time shifts: 3 ≤ t < 5

Page 69: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Signals and Systems_Simon Haykin & Barry Van Veen 69

Time‐Domain Representations of LTI SystemsFigure 2.14  (p. 121)  Evaluation of the convolution integral for Example 2.8. (a) The input x() superimposed on the reflected and time‐shifted impulse response h(t – ), depicted as a function of . (b) The product signal wt() for 0  t < 2. (c) The product signal wt() for 2  t < 3. (d) The product signal wt() for 3  t < 5. (e) The product signal wt() for t 5.  The system output y(t).

Page 70: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Interconnected Systems (1)

Parallel connected system

Cascade system

And commutative property

)()()()()( 21 txthtxthty

)()]()([)( 21 txththty

Page 71: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Interconnected Systems (2)

Integration

Also true for differentiation

Let x(t)=δ(t) and y(t)=h(t)(x(t)is an impulse, and h(t) is the impulse response of the system),

Then g(t), the step response is : dhtg

t

)()(

Page 72: ECE 2221 SIGNALS AND SYSTEMS - International …staff.iium.edu.my/sigit/ece2221/pdf/03 Convolution.pdf · 2011-05-23 · Course Objectives ECE 2221 Signals and Systems Dr. Sigit PW

Total Response

A system’s output for t ≥ 0 is the result of 2 independent causes:1. The initial condition at t = 0 zero‐input response2. The input x(t) for t ≥ 0 zero‐state response

Decomposition property:

Total response = zero‐input response + zero‐state response

x(t) y(t) +y0(t) x(t) ys(t)=

)()(1

thtxecresponsetotalN

k

tk

k

zero‐input component zero‐state component