Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos [email protected]...

24
Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos [email protected] Environment and Energy Scientific Area Department of Mechanical Engineering DEB Course 2011 Lisbon, Portugal, 4-12 April 2011

Transcript of Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos [email protected]...

Page 1: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Dynamic Energy Budget TheoryScientific Context and Structure

Tiago Domingos

[email protected]

Environment and Energy Scientific Area

Department of Mechanical Engineering

DEB Course 2011

Lisbon, Portugal, 4-12 April 2011

Page 2: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Overview

• The importance of scientific unification ...– ... through mathematics

– ... respecting thermodynamic constraints

– ... combining fundamental and applied science

• The fundamental principles of DEB

• Further developments in DEB– ... namely, the combination of general mathematical theory with

massive statistical approaches

Page 3: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

IST Research Towards Scientific Unification

• Unify the fields of – Thermodynamics,

– Ecology (or, more generally, the natural sciences)

– Economics (or, more generally, the social sciences)

• Formal analogy– The same mathematical/conceptual description and interpretation of

different phenomena• e.g. wave equation, Malthusian ideas in Darwin and Wallace

– Consistency within the same domain

– Development of new theoretical results

• Substantive integration– Different mathematical/conceptual descriptions and interpretations of the

same phenomenon• e.g., thermodynamic constraints

– Consistency between different domains

– Development of new theoretical results

Page 4: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Why is Scientific Unification Worthwhile?

• Curiosity

• Efficiency– Fast transfer of knowledge, insights and tools

• Consilience– But sometimes “capillarity” may be needed

• Falsifiability

• Simplicity

• Embedding– In a single (parameter) space

– Able to deal with novelty (including the automatic generation of novelty)

Page 5: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Mathematical Theory in the Sciences

• In Physics and Economics, mathematical theory is paramount and there is a quest for a unified theory within each domain – However, in Physics there is also a paramount concern with empirical

testing

• In contrast, in Biology mathematical theory has in general played a secondary role– Biology is frequently seen as a science of exception and particular cases,

with no interest in abstraction and generalisation

• A minor group in Biology has developed “Theoretical Biology” and “Mathematical Biology”– One of the major schools for this has been the Netherlands

• However, Theoretical and Mathematical Biology have frequently been carried out without a concern for empirical testing– When this concern appears, models are of narrow application, reducing

their theoretical breadth

• DEB– Builds on the Dutch tradition of Theoretical and Mathematical Biology,

but couples it with a fundamental concern with producing general theory, subjected to careful empirical testing

Page 6: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Is (Mathematical) Theory Important in Science?

• “All models are wrong, but some are useful.”George Box, statistician (c. 1980)

• “All models are wrong, and increasingly you can succeed without them.”Peter Norvig, Google research director

• “Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanistic explanation at all.”Chris Anderson, editor of Wired (2009)

• “I just don't know very much about the field of economics. I'm not good at math, I don't know a lot of econometrics, and I also don't know how to do theory” Steve Levitt, author of Freakonomics (2003)

Anderson, C. (2009). What science can learn from Google? http://www.interdisciplines.org/liquidpub/papers/3

http://en.wikipedia.org/wiki/Steven_Levitt

Page 7: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

A Refresher on the Philosophy of Science I

• Inductivism– “All swans are white”

– The induction problem: black swans

• Falsificationism– Assymetry in truth:

• I can prove that “All swans are white” is false, but I cannot prove that it is true

• I can prove that “Some swans are black” is true, but I cannot prove that it is false

– The assymetry is in “all” (universal quantifier) vs. “some” (existential quantifier)

Chalmers, A. F. (1999). What is this thing called science? (3rd. ed.) Open University Press, Buckingham.

Page 8: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

A Refresher on the Philosophy of Science II

• Kuhn’s paradigms– Paradigms: normal science (problem solving)– Revolutions: incommensurability

• Lakatos’s research programs– Hard core– Protective belt (auxiliary theory)– Negative and positive heuristics

– ... so, theories are not just rejected based on specific “crucial” experiments

• e.g.: Michelson-Morley experiment

Chalmers, A. F. (1999). What is this thing called science? (3rd. ed.) Open University Press, Buckingham.

Page 9: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Occam’s Razor: The Epistemological and the Biological

• (Epistemological) Occam’s razor (or Law of Parsimony), attributed to the 14th-century English logician William of Ockham, is the principle that, given two hypotheses consistent with the observed data, the simpler one should be preferred (Esmeir and Markovitch, 2007).

– “Theories should be made as simple as possible, but not more” Albert Einstein

• In the context of machine learning, the widely accepted interpretation of Occam’s razor is that given two consistent hypotheses, the simpler one is likely to have a lower error rate.

– Empirical evidence both for and against (Esmeir and Markovitch, 2007)

• However, simplicity can be an aim in itself• Karl Popper argued that simple theories are more falsifiable• Simplicity in scientific theories?

– e.g., is Copernicus simpler than Ptolomey? (No, namely before Galileo, Arthur Koestler, The Sleepwalkers)

• CONJECTURE (Biological Occam’s Razor): Ceteribus paribus, organisms with simpler control models are evolutionarily favoured

Page 10: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Fundamental Principles of DEB TheoryOccam’s Razor

• Pragmatic Application of Occam’s Razor:– Minimum number of state variables

– Minimum number of parameters

– Constant functions instead of linear

– Linear functions instead of non-linear

• Metabolic Control– Organisms increased their control over metabolism during

evolution [Biological Occam’s Razor]

• Cell Universality: – Cells are metabolically very similar, independently of the

organism [Epistemological Occam’s Razor] or its size [Biological Occam’s Razor]

Page 11: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Fundamental Principles of DEB TheoryOccam’s Razor (cont.)

• Constant chemical composition and conversion coefficients (Strong Homeostasis)

• At constant food, one state variable and one forcing flow(Weak Homeostasis)

• At variable food, two state variables and one forcing flow (three independent flows)

Page 12: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Thermodynamic Constraints

• Laws of thermodynamics– 1st Law: Conservation of mass and energy

– 2nd Law: Entropy increase in adiabatic systems or entropy production in all processes

• Thermodynamic constraints must be obeyed, but are not enough to build theories in biological and social systems

• The major divide in Ecology:– Ecosystem and physiological ecology, based on energy and mass flows

– Population and community ecology, based on the behaviour (fitness) of individuals

• An analogous divide in Economics:– Ecological economics (clear minority), based on energy and mass flows

– Neoclassical economics (mainstream), based on the behaviour of humans (utility) and firms (profit)

• Optimisation requires trade-offs, for which thermodynamics is best

Page 13: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Fundamental Principles of DEB TheoryThermodynamics

• First Law of Thermodynamics Mass and energy are conserved

• Second Law of Thermodynamics Energy and mass conversion leads to dissipation (entropy production)– [Biological and Epistemological Occam’s Razor] Entropy

production is (mass)volume-specific in maintenance, (mass)energy-specific in transformations

• Non-Equilibrium Thermodynamics Mass and energy flows per unit surface depend only on intensive properties

– e.g., surface-dependent feeding and heating

Page 14: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Fundamental Principles of DEB Theory (cont.)

E (Reserve)

V (Structure)

X or f (Food)

ASSIMIL.

GROWTH DISS. PROC.

• Specific Biological Assumptions– Negligible maintenance needs for reserve (E)

• Empirically substantiated if reserve turnover is high

– Substrate uptake is a saturating function of structural volume (V)

Faeces, m

inerals, dissipating heat

Minerals,

dissipating heat

independent of f

Page 15: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Indirect Calorimetry I

• Indirect calorimetry is the empirical observation that dissipating heat is a weighted sum of used dioxygen, produced carbon dioxide and produced ammonia.

• For the standard DEB model, we have the following independent state variables:1. Dioxygen in the environment2. Carbon dioxide in the environment3. Ammonia in the environment4. Water in the environment5. Inorganic internal energy in the environment6. Food in the environment7. Faeces in the environment8. Reserve in the organism9. Structure in the organism10. Maturity in the organism11. Reserve in the reproduction buffer (for adults)

– Note that dissipating heat is a linear combination of the changes in 1, 2, 3, 4 and 5.

Page 16: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Indirect Calorimetry II

• There are conservation laws for:1. Carbon

2. Hydrogen

3. Nitrogen

4. Oxygen

5. Energy

– We assume that reserve in the reproduction buffer has the same composition as reserve and that maturity is massless and energyless

– Due to strong homeostasis, food and faeces are not independent

– So, there are 8 independent state variables and 5 constraints, so 3 degrees of freedom

– Indirect calorimetry is hence proved

Page 17: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Strong Homeostasis Implies Partitionability I

E1

Ei

En

Fractions in the variables must be constant (constant composition of E)

Fractions in the flows must be constant (constant composition of )

Maturation and reproduction

Somatic growth and maintenance

?

Cp

Page 18: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Strong Homeostasis Implies Partitionability II

• Each different category of chemical compounds must in general represent a constant relative abundance of E (1)– otherwise the chemical composition of E would change (violating

Strong Homeostasis).

• Since mobilisation is independent of assimilation, all categories must be mobilised at the same rate (2), but note they are only satisfying a fraction of needs of V (partitionability of fluxes):

• The metabolic control assumption also means that mobilisation power is independent of f

MGCMGC pEVEppEVEp ,;,,;,

Sousa, T., T. Domingos, S.A.L.M. Kooijman (2008). From empirical patterns to theory: a formal metabolic theory of life. Phil. Trans. R. Soc. B 363: 2453-2464 (Proposition 3.13).

(Eq. 2.9)

Page 19: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Strong Homeostasis Implies PartitionabilitySTRONGER VERSION

Cp

E1

Ei

En

Fractions in variables must be constant (constant composition of E)

Fractions in flows must be constant (constant composition of )

Maturation and reproduction

Somatic growth and maintenance

Food

Constant fractions in flows (constant composition of pA)

dt

Edppp Cdt

Ed

CCEXTRA0

MGCMGC pEVEppEVEp ,;,,;,

MGMG pEVEfdt

dEpEVEf

dt

dE ,;,,,;,,

Page 20: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Weak Homeostasis and Partitionability Imply Reserve Dynamics I

• General equation for reserve dynamics:

• Structure dynamics

• Assimilation power

• General equation for reserve density dynamics:

• Replace the reserve dynamics in the above expression:

• Replace structure dynamics (assuming constant kappa):

• Consider in particular

CA ppdt

dE

dt

dV

V

E

dt

dE

Vdt

Ed2

1

fVpp AmA32

growthby dilution

dt

dV

V

Epp

dt

EdCA

G

MC

E

pp

dt

dV

V

1

G

MCCA E

ppEpp

dt

Ed

(Eq. 2.6)

(Eq. 2.7)

(Eq. 2.3)

0

dt

Ed

Page 21: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Weak Homeostasis and Partitionability Imply Reserve Dynamics II

• Solve for mobilisation power

• But it has to be independent of f, so f*(E,V) when

• Apply the partitionability property:

• Concluding that

• We need weak homeostasis just to consider this food level is ind. of V

• The reserve density dynamics is just related to the difference in f:

• At maximum food, f=1 (saturation assumption), so:

B

Ef

B

EfVp

dt

EdAm

31

mEB

G

AmG

M

E

E

fVpE

pE

Cp

1

31

G

AmG

M

G

AmG

M

E

E

VEfVpE

pE

E

E

VEfVpE

pE

1

,

1

, 3131

0

dt

Ed

VEfVEf ,,

Page 22: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Implications of the Fundamental Principles

Strong Homeostasis

Partitionability of Reserve Dynamics

WeakHomeostasis

Catabolic Power

von Bertallanffy Growth

Sousa, T., T. Domingos, S.A.L.M. Kooijman (2008). From empirical patterns to theory: a formal metabolic theory of life. Phil. Trans. R. Soc. B 363: 2453-2464.

Occam’s Razor

E and V Dynamics

Intraspecific Kleiber

Maximum Reserve Density

and Size

Saturating Uptake

Cell Universality

Constant Primary Parameters

Interspecific Kleiber

Laws of Thermodynamics

Page 23: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Conclusions

• DEB theory is built on a set of fundamental epistemological, physical and biological principles

• DEB has the characteristics of a robust research program

• One way forward for DEB is its development as a general pertubation theory, coupled with systematic statistical fitting procedures (preferably automatic)

Page 24: Dynamic Energy Budget Theory Scientific Context and Structure Tiago Domingos tdomingos@ist.utl.pt Environment and Energy Scientific Area Department of.

Dynamic Energy Budget TheoryScientific Context and Structure

Tiago Domingos

[email protected]

Environment and Energy Scientific Area

Department of Mechanical Engineering

DEB Course 2011

Lisbon, Portugal, 4-12 April 2011